Construction d Applications Réparties / Master MIAGE

Size: px
Start display at page:

Download "Construction d Applications Réparties / Master MIAGE"

Transcription

1 Construction d Applications Réparties / Master MIAGE Networking Giuseppe Lipari CRiSTAL, Université de Lille January 26, 2016

2 Outline Introduction Networking Transport Protocols TCP and UDP Addressing Java Implementation TCP UDP Multicast IP

3 Outline Introduction Networking Transport Protocols TCP and UDP Addressing Java Implementation TCP UDP Multicast IP

4 Introduction Distributed Programming = Programming + Networking Software programs run in different nodes They communicate each other exchanging messages Protocol = Rules that dictate how to communicate Format of message Possible (legal) sequences of messages What to do in case of errors etc. Without a protocol, it is impossible to understand each other

5 ISO-OSI Model Network stack: the ISO-OSI model

6 Examples of protocols Application: HTPP, SMTP, FTP Internet level communication Transport: TCP, UDP end-to-end communication Network: IP routing between different LANs Link: Ethernet, IEEE communication within a LAN also called MAC protocol Physical: bits on the cable

7 Communication Protocol Set of formal rules for exchanging data messages between two or more parties Syntax: content and format of messages Semantic: what a message means Synchronization: order of messages requests and responses Protocols are defined in technical standards RFC: (Request for comments) Set of documents that describe the technical aspects of Internet protocols, published by IETF (Internet Engineering Task Force) Some of them became standards

8 Connection and packets Connection-oriented protocol e.g. TCP Establish a "connection" between sender and receiver, then send data flow-oriented Connection-less protocol e.g. UDP just send the data in packets without opening a connection before packet oriented

9 State Stateless protocol Each request is an independent transaction that is unrelated to any previous one the communication consists of independent pairs of request and response. Examples: IP, HTTP The server does not need to store state about the client Stateful protocol Each request depends on the previous one the server needs to maintain the state of the client to understand future requests Examples: TCP, FTP

10 Outline Introduction Networking Transport Protocols TCP and UDP Addressing Java Implementation TCP UDP Multicast IP

11 TCP Objective: safe and reliable transfer of data Connection Oriented initial handshaking for establishing the connection receiver sends acknowledgement of receipt if some packet is lost, it is retransmitted even if packets arrive in the wrong order, they are re-ordered by the receiver flow control: adjusts sending speed to receiving speed and to traffic congestion Advantages: reliable Disadvantages: not adequate for real-time communication (because of retransmission)

12 Example: Connection with TCP 3-way handshake to establish a connection Server is always listening (function listen()) on a port client connects (function connect() sends packet SYN) server responds with an SYN-ACK, but continues to wait when client receives the SYN-ACK, sends the ACK and continues with next instruction after connect() when the server receives the ACK unblocks from the listen() and finally establishes the connection.

13 UDP Objective: fast and efficient transmission of packets Connection-less No need to contact the other party before starting the communication Packets can be lost and are not re-transmitted (unreliable) Packets can arrive in out-of-order late packets can be discarded safely No flow control, no congestion control Advantages: fast, useful for soft real-time data Disadvantages: unreliable

14 IPv4 address 32 bits, grouped into 4 bytes example: In the past, addresses were classified into 4 classes, depending on the first leading bits this method was not scalable and it is now considered obsolete After 1993, IETF introduced the classless inter-domain routing network masks can have an arbitrary number of bits Two parts: MSB: network address LSB: host identifier Notation: /24 it means: network address is the first 24 bits of the remaining bits are used for host address

15 IPv6 address 128 bits, 8 groups of four hexadecimal digits example: 2001:0db8:85a3:0042:1000:8a2e:0370: bits for network subnet mask, 64 bits for the host Advantages wrt IPv4 A much large addressing space security embedded in the protocol stateless autconfig easier mobility etc. Slow adoption Not interoperable with IPv4 As of June 2014, the percentage of users reaching Google services with IPv6 surpassed 4% for the first time

16 IP address and port number Each network card has its own IP If a PC has two network interfaces, it has 2 IP addresses E.g. Ethernet and WiFi How to address one specific application in a host? there could be several running process, each one wants to communicate TCP and UDP both use a port to indicate the service application a 16bit number

17 Port ranges Well-known ports (0 1024) assigned by IANA (Internet Assigned Numbers Authority) to well-known internet services examples: FTP (20), HTTP (80), SSH (22), SMTP (25), etc. you shouldn t use them Registered ports ( ) still assigned by IANA, but not always official examples: OpenVPN (1194), Kazaa (1214), MySQL (3306), etc. you can use them, but of course at your own risk Ephemeral ports ( ) dynamically assigned by the OS, cannot rely on them

18 Client/Server model Two-party communication One party acts as a server, it provides a service to the other parties The others act as clients that request the service provided by the server

19 Client/Server communication 1. The server is listening for new requests 2. The client sends a request to the server 3. The server receives the request as well as the address of the client 4. The server processes the request 5. The server sends back the response to the client 6. return to 1. In connection-oriented communication (TCP), step 2 is used to establish a connection between the client and the server The connection remains valid until step 5 If the client needs to ask many different services, the connection can remain active

20 Synchronization Send synchronous: the sender blocks waiting for the message to arrive at the destination before continuing execution asynchronous: after sending the message, the sender continues execution without blocking Receive synchronous: the receiver blocks waiting for a message to arrive before it can continue executing asynchronous: if the message did not arrived yet, the receive returns an error, and processing continues Typical configuration: asynchronous send and synchronous receive.

21 Outline Introduction Networking Transport Protocols TCP and UDP Addressing Java Implementation TCP UDP Multicast IP

22 Address representation Addresses are represented by interface InetAddress Examples InetAddress host = InetAddress.getLocalHost(); InetAddress host = InetAddress.getByName(" InetAddress host[] = InetAddress.getAllByName("

23 Sockets A socket is the basic entity for sending/receiving messages at the OS level It was proposed as part of the UNIX interface, now available in all OS Almost all languages provide an interface to the OS socket layer Two types of sockets: passive socket is used by the server to wait for incoming connections from clients when a connection request arrives and the 3-way handshake is completed, two active sockets are created, one on the server, the other on the client both client and server use the active sockets to exchange data

24 Sequence of messages

25 Java TCP Server code A simple server that accepts a string, and returns the same string capitalized ServerSocket ps = null; try { ps = new ServerSocket(4000); while (true) { Socket as = ps.accept(); System.out.println("Connection established"); BufferedReader in = new BufferedReader( new InputStreamReader(as.getInputStream())); DataOutputStream out = new DataOutputStream(as.getOutputStream()); String msg = in.readline(); System.out.println("Message received: " + msg); String resp = msg.touppercase() + \n ; out.writebytes(resp); System.out.println("Response has been sent."); } } catch (IOException ex) { System.exit(-1); }

26 Java TCP Client code The corresponding client Socket as = null; try { as = new Socket(InetAddress.getLocalHost(), 4000); System.out.println("Client: Connection established"); DataOutputStream out = new DataOutputStream(as.getOutputStream()); BufferedReader in = new BufferedReader( new InputStreamReader(as.getInputStream())); String sentence = "Vive la France!\n"; out.writebytes(sentence); System.out.println("Message sent"); String response = in.readline(); System.out.println("Message received: " + response); as.close(); } catch (UnknownHostException ex) { System.exit(-1); } catch (IOException ex) { System.exit(-1); }

27 TCP Server code The ServerSocket constructor requires a port this is a public information that must be given to the clients to allow them to contact the server Cannot read/write from/to a ServerSocket, only accept() new connection the accept() blocks the server until a new request for connection arrives Upon creation of a connection, a new active socket is created and the server can use it to receive/send data from/to the client readline() blocks the server if there is not enough data to read pay attention to the new-line character! The active socket has: the IP address of the host where the server is running an ephemeral port chosen by the OS

28 TCP Client code The client creates an active socket by calling connect() this function requires an IP address and a port It blocks the client until the connection is established The active socket has: the IP address of the host where the client is running an ephemeral port chosen by the OS There is a timeout: if the connection is not established before the timeout expires, the connect() raises an UnknownHostException The readline() blocks the client until a response has been received from the server it reads until a new-line is found, and then returns the string. pay attention to always terminate the messages with a new-line character!

29 Relationship between the two sockets A.getInetAddress() == B.getLocalInetAddress() A.getPort() == B.getLocalPort() A.getLocalInetAddress() == B.getInetAddress() A.getLocalPort() == B.getPort()

30 UDP It is a much simpler protocol no need to open a connection however, you still need to open a socket the client just sends one or more packets (datagrams) the server just waits for packets and replies

31 Java UDP Server code int myport = 4500; int cport; DatagramSocket ss = new DatagramSocket(myport); byte [] rdata = new byte[1024]; byte [] sdata; while(true) { DatagramPacket dp = new DatagramPacket(rData, rdata.length); ss.receive(dp); System.out.println("recv"); InetAddress caddr = dp.getaddress(); cport = dp.getport(); String s = new String(dp.getData()); String r = s.touppercase(); sdata = r.getbytes(); DatagramPacket rp = new DatagramPacket(sData, sdata.length,caddr,cport); ss.send(rp); System.out.println("sent"); }

32 Java UCP Client code DatagramSocket cs = new DatagramSocket(); InetAddress saddr = InetAddress.getByName("localhost"); int port = 4500; String sentence = "Construction d Applications Reparties"; byte[] sdata = sentence.getbytes(); DatagramPacket dp = new DatagramPacket(sData, sdata.length, saddr, port); cs.send(dp); System.out.println("Datagram sent"); byte[] rdata = new byte[1024]; DatagramPacket rp = new DatagramPacket(rData, rdata.length); cs.receive(rp); String response = new String(rp.getData()); System.out.println("Response: " + response);

33 Comments Packet Oriented communication there is no need for new lines to terminate the message communication happens with packets The socket is only for sending out packets, it sets the sender ports Destination address (IP+port) must be specified in each datagram

34 Customisation There are various way to customise the behaviour of sockets it depends on the objective, but also on the usage Modification of transmitted/received data it is possible to filter input/output data with appropriate streaming classes Filtering socket streams in = s.getinputstream(); out = s.getoutputstream(); zin = new GZIPInputStream(in); zout = new GZIPOutputStream(out); now we use zin and zout for reading/writing

35 Factory The second method consists in defining a class that creates sockets according to the desired parameters You can specify this class in the socket interface for creation call the method static Socket.setSocketFactory(SocketImplFactory) specify an object of a class that implements SocketImplFactory: interface SocketImplFactory { SocketImpl createsocket(); } You need to call this function only once in the program (during initialization) You can do the same with ServerSocket.

36 Subclassing The third method consists in subclassing the class Socket and ServerSocket you can redefine accept(), getinputstream(), etc... Advantages: more general and hence more powerful Disadvantages: you are changing the interface, so be careful when passing this object to existing code

37 Multicast Used to send messages to a (large) group of destinations the sender sends a message on a special address the message is received by all recipients that are listening on that address more than one emitter can send messages on the same special address the recipients can join/leave the group at all times The addresses must belong to class D ( ) these addresses are independent from the physical location of the senders/receivers It has the same properties as UDP message oriented no flow control it is possible to lose packets, etc...

38 Multicast Applications Massive on-line games streaming of popular video programs (soccer matches, etc. ) Interesting properties: the service location is independent of the address possibility of having multiple instances of the same service for fault-tolerance, or for load balancing Some class of multicast address has already been assigned see multicast-addresses/multicast-addresses.xhtml

39 Multicast Java API java.net.multicastsocket Constructor MulticastSocket(port) Open a socket on a certain port MulticastSocket() Open a socket on a ephemeral p. Sending send(datagrampacket) sending a packet Receiving receive(datagrampacket) receiving groups joingroup(inetaddress) join a group on a MCast addr. leavegroup(inetaddress) leave the group Control settimetolive(int) 0 (none, the packet is not sent) diffusion 1 (subnet) 128 (world) 1 1 Routers often block multicast packets after a certain number of hops (ignoring the TTL)

Outline of Topics. UDP Socket Java Programming. Multicast in Java. Real-time protocol (RTP) XMPP and Jingle protocols. Java I/O and New IO (NIO)

Outline of Topics. UDP Socket Java Programming. Multicast in Java. Real-time protocol (RTP) XMPP and Jingle protocols. Java I/O and New IO (NIO) Outline Outline of Topics UDP Socket Java Programming Multicast in Java Real-time protocol (RTP) XMPP and Jingle protocols Java I/O and New IO (NIO) UDP Socket Java Programming User Datagram Protocol (UDP)

More information

Interprocess Communication

Interprocess Communication Interprocess Communication Nicola Dragoni Embedded Systems Engineering DTU Informatics 4.2 Characteristics, Sockets, Client-Server Communication: UDP vs TCP 4.4 Group (Multicast) Communication The Characteristics

More information

Communication Paradigms

Communication Paradigms Communication Paradigms Nicola Dragoni Embedded Systems Engineering DTU Compute 1. Interprocess Communication Direct Communication: Sockets Indirect Communication: IP Multicast 2. High Level Communication

More information

Advanced Java Programming. Networking

Advanced Java Programming. Networking Advanced Java Programming Networking Eran Werner and Ohad Barzilay Tel-Aviv University Advanced Java Programming, Spring 2006 1 Overview of networking Advanced Java Programming, Spring 2006 2 TCP/IP protocol

More information

Transport layer protocols. Lecture 15: Operating Systems and Networks Behzad Bordbar

Transport layer protocols. Lecture 15: Operating Systems and Networks Behzad Bordbar Transport layer protocols Lecture 15: Operating Systems and Networks Behzad Bordbar 78 Interprocess communication Synchronous and asynchronous comm. Message destination Reliability Ordering Client Server

More information

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet Chapter 2 - Part 1 The TCP/IP Protocol: The Language of the Internet Protocols A protocol is a language or set of rules that two or more computers use to communicate 2 Protocol Analogy: Phone Call Parties

More information

JAVA SOCKET PROGRAMMING

JAVA SOCKET PROGRAMMING JAVA SOCKET PROGRAMMING WHAT IS A SOCKET? Socket The combination of an IP address and a port number. (RFC 793 original TCP specification) The name of the Berkeley-derived application programming interfaces

More information

CSCD 330 Network Programming Winter 2019

CSCD 330 Network Programming Winter 2019 CSCD 330 Network Programming Winter 2019 Lecture 7 Application Layer Socket Programming in Java Reading: Chapter 2, Java links Relevant Links page Some Material in these slides from J.F Kurose and K.W.

More information

Unix Network Programming

Unix Network Programming Unix Network Programming Remote Communication Dr Hamed Vahdat-Nejad Network Applications Types: Client Server Exampels: A web browser (client) Ap communicating with a Web server An FTP client Fetching

More information

Network Protocols - Revision

Network Protocols - Revision Network Protocols - Revision Luke Anderson luke@lukeanderson.com.au 18 th May 2018 University Of Sydney Overview 1. The Layers 1.1 OSI Model 1.2 Layer 1: Physical 1.3 Layer 2: Data Link MAC Addresses 1.4

More information

CSCD 330 Network Programming Spring 2018

CSCD 330 Network Programming Spring 2018 CSCD 330 Network Programming Spring 2018 Lecture 7 Application Layer Socket Programming in Java Reading: Chapter 2, Java links Relevant Links page Some Material in these slides from J.F Kurose and K.W.

More information

CS164 Final Exam Winter 2013

CS164 Final Exam Winter 2013 CS164 Final Exam Winter 2013 Name: Last 4 digits of Student ID: Problem 1. State whether each of the following statements is true or false. (Two points for each correct answer, 1 point for each incorrect

More information

Chapter 2: outline. 2.1 principles of network applications. 2.6 P2P applications 2.7 socket programming with UDP and TCP

Chapter 2: outline. 2.1 principles of network applications. 2.6 P2P applications 2.7 socket programming with UDP and TCP Chapter 2: outline 2.1 principles of network applications app architectures app requirements 2.2 Web and HTTP 2.3 FTP 2.4 electronic mail SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications 2.7 socket programming

More information

C19: User Datagram and Multicast

C19: User Datagram and Multicast CISC 3120 C19: User Datagram and Multicast Hui Chen Department of Computer & Information Science CUNY Brooklyn College 4/18/2018 CUNY Brooklyn College 1 Outline Recap Network fundamentals IPv4, IPv6 addresses

More information

QUIZ: Longest Matching Prefix

QUIZ: Longest Matching Prefix QUIZ: Longest Matching Prefix A router has the following routing table: 10.50.42.0 /24 Send out on interface Z 10.50.20.0 /24 Send out on interface A 10.50.24.0 /22 Send out on interface B 10.50.20.0 /22

More information

CSCD 330 Network Programming Spring 2018

CSCD 330 Network Programming Spring 2018 CSCD 330 Network Programming Spring 2018 Lecture 6 Application Layer Socket Programming in Java Reading for Java Client/Server see Relevant Links Some Material in these slides from J.F Kurose and K.W.

More information

Transport Layer (TCP/UDP)

Transport Layer (TCP/UDP) Transport Layer (TCP/UDP) Where we are in the Course Moving on up to the Transport Layer! Application Transport Network Link Physical CSE 461 University of Washington 2 Recall Transport layer provides

More information

Distributed Programming in Java

Distributed Programming in Java Distributed Programming in Java Networking (1) Motivating Scenario apps apps apps apps 2/28 apps nslookup A program for looking up IP addresses 3/28 1 InetAddress This class represents an IP address Each

More information

Unit 2.

Unit 2. Unit 2 Unit 2 Topics Covered: 1. PROCESS-TO-PROCESS DELIVERY 1. Client-Server 2. Addressing 2. IANA Ranges 3. Socket Addresses 4. Multiplexing and Demultiplexing 5. Connectionless Versus Connection-Oriented

More information

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst EITF25 Internet Techniques and Applications L7: Internet Stefan Höst What is Internet? Internet consists of a number of networks that exchange data according to traffic agreements. All networks in Internet

More information

EEC-484/584 Computer Networks

EEC-484/584 Computer Networks EEC-484/584 Computer Networks Lecture 2 Wenbing Zhao wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Misc. Interested in research? Secure

More information

Introduction to Protocols

Introduction to Protocols Chapter 6 Introduction to Protocols 1 Chapter 6 Introduction to Protocols What is a Network Protocol? A protocol is a set of rules that governs the communications between computers on a network. These

More information

Transport Layer. Gursharan Singh Tatla. Upendra Sharma. 1

Transport Layer. Gursharan Singh Tatla.   Upendra Sharma. 1 Transport Layer Gursharan Singh Tatla mailme@gursharansingh.in Upendra Sharma 1 Introduction The transport layer is the fourth layer from the bottom in the OSI reference model. It is responsible for message

More information

TCP /IP Fundamentals Mr. Cantu

TCP /IP Fundamentals Mr. Cantu TCP /IP Fundamentals Mr. Cantu OSI Model and TCP/IP Model Comparison TCP / IP Protocols (Application Layer) The TCP/IP subprotocols listed in this layer are services that support a number of network functions:

More information

CCNA 1 Chapter 7 v5.0 Exam Answers 2013

CCNA 1 Chapter 7 v5.0 Exam Answers 2013 CCNA 1 Chapter 7 v5.0 Exam Answers 2013 1 A PC is downloading a large file from a server. The TCP window is 1000 bytes. The server is sending the file using 100-byte segments. How many segments will the

More information

CS 716: Introduction to communication networks th class; 7 th Oct Instructor: Sridhar Iyer IIT Bombay

CS 716: Introduction to communication networks th class; 7 th Oct Instructor: Sridhar Iyer IIT Bombay CS 716: Introduction to communication networks - 18 th class; 7 th Oct 2011 Instructor: Sridhar Iyer IIT Bombay Reliable Transport We have already designed a reliable communication protocol for an analogy

More information

Client/Server Computing & Socket Programming

Client/Server Computing & Socket Programming CPSC 852 Intering Client/Server Computing & Socket Programming Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu http://www.cs.clemson.edu/~mweigle/courses/cpsc852

More information

UDP, TCP, IP multicast

UDP, TCP, IP multicast UDP, TCP, IP multicast Dan Williams In this lecture UDP (user datagram protocol) Unreliable, packet-based TCP (transmission control protocol) Reliable, connection oriented, stream-based IP multicast Process-to-Process

More information

User Datagram Protocol

User Datagram Protocol Topics Transport Layer TCP s three-way handshake TCP s connection termination sequence TCP s TIME_WAIT state TCP and UDP buffering by the socket layer 2 Introduction UDP is a simple, unreliable datagram

More information

9th Slide Set Computer Networks

9th Slide Set Computer Networks Prof. Dr. Christian Baun 9th Slide Set Computer Networks Frankfurt University of Applied Sciences WS1718 1/49 9th Slide Set Computer Networks Prof. Dr. Christian Baun Frankfurt University of Applied Sciences

More information

OSI Transport Layer. Network Fundamentals Chapter 4. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

OSI Transport Layer. Network Fundamentals Chapter 4. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 OSI Transport Layer Network Fundamentals Chapter 4 Version 4.0 1 Transport Layer Role and Services Transport layer is responsible for overall end-to-end transfer of application data 2 Transport Layer Role

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

More information

Internet Protocol (IP) TCP versus UDP

Internet Protocol (IP) TCP versus UDP Internet Protocol (IP) Low-level protocols used by hosts and routers Guides the packets from source to destination host Hides the transmission path phone lines, LANs, WANs, wireless radios, satellite links,

More information

Networking and Security

Networking and Security Chapter 03 Networking and Security Mr. Nilesh Vishwasrao Patil Government Polytechnic Ahmednagar Socket Network socket is an endpoint of an interprocess communication flow across a computer network. Sockets

More information

Different Layers Lecture 21

Different Layers Lecture 21 Different Layers Lecture 21 10/17/2003 Jian Ren 1 The Transport Layer 10/17/2003 Jian Ren 2 Transport Services and Protocols Provide logical communication between app processes running on different hosts

More information

TCP/IP Protocol Suite

TCP/IP Protocol Suite TCP/IP Protocol Suite Computer Networks Lecture 5 http://goo.gl/pze5o8 TCP/IP Network protocols used in the Internet also used in today's intranets TCP layer 4 protocol Together with UDP IP - layer 3 protocol

More information

Outlines. Networking in Java. Internet hardware structure. Networking Diagram. IP Address. Networking in Java. Networking basics

Outlines. Networking in Java. Internet hardware structure. Networking Diagram. IP Address. Networking in Java. Networking basics G52APR Application programming Networking in Java Michael Li http://www.cs.nott.ac.uk/~jwl/g52apr Outlines Networking basics Network architecture IP address and port Server-client model TCP and UDP protocol

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Internet and Intranet Protocols and Applications Lecture 4: Application Layer 3: Socket Programming Spring 2006 Arthur Goldberg Computer Science Department New York University artg@cs.nyu.edu Chapter 2

More information

CCNA Exploration Network Fundamentals. Chapter 04 OSI Transport Layer

CCNA Exploration Network Fundamentals. Chapter 04 OSI Transport Layer CCNA Exploration Network Fundamentals Chapter 04 OSI Transport Layer Updated: 05/05/2008 1 4.1 Roles of the Transport Layer 2 4.1 Roles of the Transport Layer The OSI Transport layer accept data from the

More information

C18: Network Fundamentals and Reliable Sockets

C18: Network Fundamentals and Reliable Sockets CISC 3120 C18: Network Fundamentals and Reliable Sockets Hui Chen Department of Computer & Information Science CUNY Brooklyn College 4/16/2018 CUNY Brooklyn College 1 Outline Networking fundamentals Network

More information

Business Data Networks and Security 10th Edition by Panko Test Bank

Business Data Networks and Security 10th Edition by Panko Test Bank Business Data Networks and Security 10th Edition by Panko Test Bank Chapter 2 Network Standards 1) Internet standards are published as. A) RFCs B) IETFs C) TCP/IPs D) Internet Protocols Question: 1a Objective:

More information

Different Layers Lecture 20

Different Layers Lecture 20 Different Layers Lecture 20 10/15/2003 Jian Ren 1 The Network Layer 10/15/2003 Jian Ren 2 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every host,

More information

CSE 461 Module 11. Connections

CSE 461 Module 11. Connections CSE 461 Module 11 Connections This Time More on the Transport Layer Focus How do we connect processes? Topics Naming processes Connection setup / teardown Flow control Application Presentation Session

More information

4.0.1 CHAPTER INTRODUCTION

4.0.1 CHAPTER INTRODUCTION 4.0.1 CHAPTER INTRODUCTION Data networks and the Internet support the human network by supplying seamless, reliable communication between people - both locally and around the globe. On a single device,

More information

Networking and Internetworking 1

Networking and Internetworking 1 Networking and Internetworking 1 Today l Networks and distributed systems l Internet architecture xkcd Networking issues for distributed systems Early networks were designed to meet relatively simple requirements

More information

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols Guide to Networking Essentials, 6 th Edition Chapter 5: Network Protocols Objectives Describe the purpose of a network protocol, the layers in the TCP/IP architecture, and the protocols in each TCP/IP

More information

ARP, IP, TCP, UDP. CS 166: Introduction to Computer Systems Security 4/7/18 ARP, IP, TCP, UDP 1

ARP, IP, TCP, UDP. CS 166: Introduction to Computer Systems Security 4/7/18 ARP, IP, TCP, UDP 1 ARP, IP, TCP, UDP CS 166: Introduction to Computer Systems Security 4/7/18 ARP, IP, TCP, UDP 1 IP and MAC Addresses Devices on a local area network have IP addresses (network layer) MAC addresses (data

More information

Operating Systems. 16. Networking. Paul Krzyzanowski. Rutgers University. Spring /6/ Paul Krzyzanowski

Operating Systems. 16. Networking. Paul Krzyzanowski. Rutgers University. Spring /6/ Paul Krzyzanowski Operating Systems 16. Networking Paul Krzyzanowski Rutgers University Spring 2015 1 Local Area Network (LAN) LAN = communications network Small area (building, set of buildings) Same, sometimes shared,

More information

NT1210 Introduction to Networking. Unit 10

NT1210 Introduction to Networking. Unit 10 NT1210 Introduction to Networking Unit 10 Chapter 10, TCP/IP Transport Objectives Identify the major needs and stakeholders for computer networks and network applications. Compare and contrast the OSI

More information

Link download full: Test Bank for Business Data Networks and Security 9th Edition by Panko https://digitalcontentmarket.org/download/business-data-networks-and-security-9thedition-by-panko/ Business Data

More information

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16 Guide To TCP/IP, Second Edition Chapter 5 Transport Layer TCP/IP Protocols Objectives Understand the key features and functions of the User Datagram Protocol (UDP) Explain the mechanisms that drive segmentation,

More information

Connectionless and Connection-Oriented Protocols OSI Layer 4 Common feature: Multiplexing Using. The Transmission Control Protocol (TCP)

Connectionless and Connection-Oriented Protocols OSI Layer 4 Common feature: Multiplexing Using. The Transmission Control Protocol (TCP) Lecture (07) OSI layer 4 protocols TCP/UDP protocols By: Dr. Ahmed ElShafee ١ Dr. Ahmed ElShafee, ACU Fall2014, Computer Networks II Introduction Most data-link protocols notice errors then discard frames

More information

Lecture 17 Overview. Last Lecture. Wide Area Networking (2) This Lecture. Internet Protocol (1) Source: chapters 2.2, 2.3,18.4, 19.1, 9.

Lecture 17 Overview. Last Lecture. Wide Area Networking (2) This Lecture. Internet Protocol (1) Source: chapters 2.2, 2.3,18.4, 19.1, 9. Lecture 17 Overview Last Lecture Wide Area Networking (2) This Lecture Internet Protocol (1) Source: chapters 2.2, 2.3,18.4, 19.1, 9.2 Next Lecture Internet Protocol (2) Source: chapters 19.1, 19.2, 22,1

More information

Introduction to Sockets 9/25/14

Introduction to Sockets 9/25/14 Introduction to Sockets 9/25/14 81 Remote communication Inter-process communication is at the heart of all distributed systems Using the network protocol stack on a node is the only way to communicate

More information

Sirindhorn International Institute of Technology Thammasat University

Sirindhorn International Institute of Technology Thammasat University Name.............................. ID............... Section...... Seat No...... Thammasat University Final Exam: Semester, 205 Course Title: Introduction to Data Communications Instructor: Steven Gordon

More information

NWEN 243. Networked Applications. Layer 4 TCP and UDP

NWEN 243. Networked Applications. Layer 4 TCP and UDP NWEN 243 Networked Applications Layer 4 TCP and UDP 1 About the second lecturer Aaron Chen Office: AM405 Phone: 463 5114 Email: aaron.chen@ecs.vuw.ac.nz Transport layer and application layer protocols

More information

Lecture (11) OSI layer 4 protocols TCP/UDP protocols

Lecture (11) OSI layer 4 protocols TCP/UDP protocols Lecture (11) OSI layer 4 protocols TCP/UDP protocols Dr. Ahmed M. ElShafee ١ Agenda Introduction Typical Features of OSI Layer 4 Connectionless and Connection Oriented Protocols OSI Layer 4 Common feature:

More information

UDP and TCP. Introduction. So far we have studied some data link layer protocols such as PPP which are responsible for getting data

UDP and TCP. Introduction. So far we have studied some data link layer protocols such as PPP which are responsible for getting data ELEX 4550 : Wide Area Networks 2015 Winter Session UDP and TCP is lecture describes the two most common transport-layer protocols used by IP networks: the User Datagram Protocol (UDP) and the Transmission

More information

Department of Computer Science and Engineering. Final Examination. Instructor: N. Vlajic Date: April 15, 2011

Department of Computer Science and Engineering. Final Examination. Instructor: N. Vlajic Date: April 15, 2011 Department of Computer Science and Engineering CSE 3214: Computer Network Protocols and Applications Final Examination Instructor: N. Vlajic Date: April 15, 2011 Instructions: Examination time: 180 min.

More information

06/02/ Local & Metropolitan Area Networks 0. INTRODUCTION. 1. History and Future of TCP/IP ACOE322

06/02/ Local & Metropolitan Area Networks 0. INTRODUCTION. 1. History and Future of TCP/IP ACOE322 1 Local & Metropolitan Area Networks ACOE322 Lecture 5 TCP/IP Protocol suite and IP addressing 1 0. INTRODUCTION We shall cover in this topic: 1. The relation of TCP/IP with internet and OSI model 2. Internet

More information

The TCP Protocol Stack

The TCP Protocol Stack The TCP Protocol Stack Michael Brockway February 16, 2018 Introduction - Layered archtecture Networking software is desgined in a layered fashion The bottom layer is the services offered by the underlying

More information

Vorlesung Kommunikationsnetze

Vorlesung Kommunikationsnetze Picture 15 13 Vorlesung Kommunikationsnetze Prof. Dr. H. P. Großmann mit B. Wiegel sowie A. Schmeiser und M. Rabel Sommersemester 2009 Institut für Organisation und Management von Informationssystemen

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 24, minutes. Name: Student No: TOT

CS 421: COMPUTER NETWORKS SPRING FINAL May 24, minutes. Name: Student No: TOT CS 421: COMPUTER NETWORKS SPRING 2012 FINAL May 24, 2012 150 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable

More information

OSI Transport Layer. objectives

OSI Transport Layer. objectives LECTURE 5 OSI Transport Layer objectives 1. Roles of the Transport Layer 1. segmentation of data 2. error detection 3. Multiplexing of upper layer application using port numbers 2. The TCP protocol Communicating

More information

Announcements. CS 5565 Network Architecture and Protocols. Outline for today. The Internet: nuts and bolts view. The Internet: nuts and bolts view

Announcements. CS 5565 Network Architecture and Protocols. Outline for today. The Internet: nuts and bolts view. The Internet: nuts and bolts view Announcements CS 5565 Network Architecture and Protocols Lecture 2 Godmar Back Created Lectures Page Created CS5565 Forum Use this to find a project partner All projects will be done in groups of up to

More information

BrickNet (cont d) Other Academic Projects

BrickNet (cont d) Other Academic Projects BrickNet (cont d) Object-request brokers on the servers Aimed for collaborative design environments each node is responsible for its part of design and for sharing that information Also, networked games,

More information

Chapter 7. Local Area Network Communications Protocols

Chapter 7. Local Area Network Communications Protocols Chapter 7 Local Area Network Communications Protocols The Network Layer The third layer of the OSI Model is the network layer. The network layer is concerned with providing a means for hosts to communicate

More information

Transporting Voice by Using IP

Transporting Voice by Using IP Transporting Voice by Using IP National Chi Nan University Quincy Wu Email: solomon@ipv6.club.tw 1 Outline Introduction Voice over IP RTP & SIP Conclusion 2 Digital Circuit Technology Developed by telephone

More information

Chapter 6. What happens at the Transport Layer? Services provided Transport protocols UDP TCP Flow control Congestion control

Chapter 6. What happens at the Transport Layer? Services provided Transport protocols UDP TCP Flow control Congestion control Chapter 6 What happens at the Transport Layer? Services provided Transport protocols UDP TCP Flow control Congestion control OSI Model Hybrid Model Software outside the operating system Software inside

More information

Chapter 9: UDP sockets & address conversion function

Chapter 9: UDP sockets & address conversion function Chapter 9: UDP sockets & address conversion function 9.1 Elementary UDP sockets:- Introduction to UDP sockets UDP is connectionless, unreliable, datagram protocol TCP is connection-oriented, reliable byte

More information

Java networking using sockets

Java networking using sockets Teaching Assistant Andrei Vasilateanu Java networking using sockets Introduction One of the software architectures used in distributed computing is client-server. The server offers a service which is requested

More information

Fundamentals of Computer Networking AE6382

Fundamentals of Computer Networking AE6382 Computer networks are an integral part of the modern computing infrastructure The local network (LAN) is usually Ethernet LAN s are inter-connected with other LAN s in a hierarchical fashion eventually

More information

Unit 9: Network Programming

Unit 9: Network Programming Faculty of Computer Science Programming Language 2 Object oriented design using JAVA Dr. Ayman Ezzat Email: ayman@fcih.net Web: www.fcih.net/ayman Unit 9: Network Programming 1 1. Background 2. Accessing

More information

Introduction to Socket Programming

Introduction to Socket Programming Introduction to Socket Programming (Advanced Computer Networks) By Priyank Shah NET ID : pss160530 A Simple Question What are Sockets? Sockets are communication points on the same or different computers

More information

Networking Applications

Networking Applications Networking Dr. Ayman A. Abdel-Hamid College of Computing and Information Technology Arab Academy for Science & Technology and Maritime Transport 1 Outline Internet Layers Internet Data Packet transmission

More information

Internet and Intranet Protocols and Applications

Internet and Intranet Protocols and Applications Internet and Intranet Protocols and Applications Lecture 1b: The Transport Layer in the Internet January 17, 2006 Arthur Goldberg Computer Science Department New York University artg@cs.nyu.edu 01/17/06

More information

COMP 213. Advanced Object-oriented Programming. Lecture 20. Network Programming

COMP 213. Advanced Object-oriented Programming. Lecture 20. Network Programming COMP 213 Advanced Object-oriented Programming Lecture 20 Network Programming Network Programming A network consists of several computers connected so that data can be sent from one to another. Network

More information

Unit 1 Java Networking

Unit 1 Java Networking Q1. What is Server Socket? Discuss the difference between the Socket and ServerSocket class. The ServerSocket class (java.net) can be used to create a server socket. This object is used to establish communication

More information

Chapter 2 outline. 2.1 Principles of app layer protocols

Chapter 2 outline. 2.1 Principles of app layer protocols Chapter 2 outline 2.1 Principles of app layer protocols clients and servers app requirements 2.2 Web and HTTP 2.3 FTP 2.4 Electronic Mail SMTP, POP3, IMAP 2.5 DNS 2.6 Socket programming with TCP 2.7 Socket

More information

Transport Layer. The transport layer is responsible for the delivery of a message from one process to another. RSManiaol

Transport Layer. The transport layer is responsible for the delivery of a message from one process to another. RSManiaol Transport Layer Transport Layer The transport layer is responsible for the delivery of a message from one process to another Types of Data Deliveries Client/Server Paradigm An application program on the

More information

Chapter 16 Networking

Chapter 16 Networking Chapter 16 Networking Outline 16.1 Introduction 16.2 Network Topology 16.3 Network Types 16.4 TCP/IP Protocol Stack 16.5 Application Layer 16.5.1 Hypertext Transfer Protocol (HTTP) 16.5.2 File Transfer

More information

ECE 650 Systems Programming & Engineering. Spring 2018

ECE 650 Systems Programming & Engineering. Spring 2018 ECE 650 Systems Programming & Engineering Spring 2018 Networking Transport Layer Tyler Bletsch Duke University Slides are adapted from Brian Rogers (Duke) TCP/IP Model 2 Transport Layer Problem solved:

More information

Interprocess Communication

Interprocess Communication Interprocess Communication Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5 Introduction Applications, services

More information

CCNA 1 v3.11 Module 11 TCP/IP Transport and Application Layers

CCNA 1 v3.11 Module 11 TCP/IP Transport and Application Layers CCNA 1 v3.11 Module 11 TCP/IP Transport and Application Layers 2007, Jae-sul Lee. All rights reserved. 1 Agenda 11.1 TCP/IP Transport Layer 11.2 The Application Layer What does the TCP/IP transport layer

More information

Communication in Distributed Systems: Sockets Programming. Operating Systems

Communication in Distributed Systems: Sockets Programming. Operating Systems Communication in Distributed Systems: Sockets Programming Operating Systems TCP/IP layers Layers Message Application Transport Internet Network interface Messages (UDP) or Streams (TCP) UDP or TCP packets

More information

1. (10 points): For each of the following, choose exactly one best answer.

1. (10 points): For each of the following, choose exactly one best answer. IS 450/650 Final Exam Martens 20 December 2010 Answer all twelve questions. Write your name on the first sheet. Short answers are better than long ones. No electronics. 1. (10 points): For each of the

More information

Layer 4: UDP, TCP, and others. based on Chapter 9 of CompTIA Network+ Exam Guide, 4th ed., Mike Meyers

Layer 4: UDP, TCP, and others. based on Chapter 9 of CompTIA Network+ Exam Guide, 4th ed., Mike Meyers Layer 4: UDP, TCP, and others based on Chapter 9 of CompTIA Network+ Exam Guide, 4th ed., Mike Meyers Concepts application set transport set High-level, "Application Set" protocols deal only with how handled

More information

Single Network: applications, client and server hosts, switches, access links, trunk links, frames, path. Review of TCP/IP Internetworking

Single Network: applications, client and server hosts, switches, access links, trunk links, frames, path. Review of TCP/IP Internetworking 1 Review of TCP/IP working Single Network: applications, client and server hosts, switches, access links, trunk links, frames, path Frame Path Chapter 3 Client Host Trunk Link Server Host Panko, Corporate

More information

CPSC 441 UDP Socket Programming. Department of Computer Science University of Calgary

CPSC 441 UDP Socket Programming. Department of Computer Science University of Calgary CPSC 441 UDP Socket Programming Department of Computer Science University of Calgary Socket programming using UDP (vs TCP) UDP: no connection between client and server vno handshaking vsender explicitly

More information

Computer Communication & Networks / Data Communication & Computer Networks Week # 03

Computer Communication & Networks / Data Communication & Computer Networks Week # 03 Computer Communication & Networks / Data Communication & Computer Networks Week # 03 M.Nadeem Akhtar CS & IT Department The University of Lahore Email: nadeem.akhtar@cs.uol.edu.pk URL-https://sites.google.com/site/nadeemuolcsccn/home

More information

IP Address Assignment

IP Address Assignment IP Address Assignment An IP address does not identify a specific computer. Instead, each IP address identifies a connection between a computer and a network. A computer with multiple network connections

More information

6.1 Internet Transport Layer Architecture 6.2 UDP (User Datagram Protocol) 6.3 TCP (Transmission Control Protocol) 6. Transport Layer 6-1

6.1 Internet Transport Layer Architecture 6.2 UDP (User Datagram Protocol) 6.3 TCP (Transmission Control Protocol) 6. Transport Layer 6-1 6. Transport Layer 6.1 Internet Transport Layer Architecture 6.2 UDP (User Datagram Protocol) 6.3 TCP (Transmission Control Protocol) 6. Transport Layer 6-1 6.1 Internet Transport Layer Architecture The

More information

Introduction to Internet. Ass. Prof. J.Y. Tigli University of Nice Sophia Antipolis

Introduction to Internet. Ass. Prof. J.Y. Tigli University of Nice Sophia Antipolis Introduction to Internet Ass. Prof. J.Y. Tigli University of Nice Sophia Antipolis What about inter-networks communications? Between LANs? Ethernet?? Ethernet Example Similarities and Differences between

More information

CCNA R&S: Introduction to Networks. Chapter 7: The Transport Layer

CCNA R&S: Introduction to Networks. Chapter 7: The Transport Layer CCNA R&S: Introduction to Networks Chapter 7: The Transport Layer Frank Schneemann 7.0.1.1 Introduction 7.0.1.2 Class Activity - We Need to Talk Game 7.1.1.1 Role of the Transport Layer The primary responsibilities

More information

Data and Computer Communications

Data and Computer Communications Data and Computer Communications Chapter 2 Protocol Architecture, TCP/IP, and Internet-Based Applications Eighth Edition by William Stallings Chap2: 1 Need For Protocol Architecture data exchange can involve

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

Network+ Guide to Networks 6 th Edition. Chapter 4 Introduction to TCP/IP Protocols

Network+ Guide to Networks 6 th Edition. Chapter 4 Introduction to TCP/IP Protocols Network+ Guide to Networks 6 th Edition Chapter 4 Introduction to TCP/IP Protocols Objectives Identify and explain the functions of the core TCP/IP protocols Explain the TCP/IP model and how it corresponds

More information

Introduction to TCP/IP networking

Introduction to TCP/IP networking Introduction to TCP/IP networking TCP/IP protocol family IP : Internet Protocol UDP : User Datagram Protocol RTP, traceroute TCP : Transmission Control Protocol HTTP, FTP, ssh What is an internet? A set

More information

Lecture 11: IP routing, IP protocols

Lecture 11: IP routing, IP protocols Lecture 11: IP routing, IP protocols Contents Routing principles Local datagram delivery ICMP Protocol UDP Protocol TCP/IP Protocol Assuring requirements for streaming TPC Building and terminating TCP

More information