REMOTE PROCEDURE CALLS EE324

Size: px
Start display at page:

Download "REMOTE PROCEDURE CALLS EE324"

Transcription

1 REMOTE PROCEDURE CALLS EE324

2 Administrivia Course feedback Midterm plan Reading material/textbook/slides are updated. Computer Systems: A Programmer's Perspective, by Bryant and O'Hallaron Some reading material (URL) in the slides. (lecture 9)

3 Building up to today Abstractions for communication Internetworking protocol: IP TCP masks some of the pain of communicating across unreliable IP Abstractions for computation and I/O Process: A resource container for execution on a single machine Thread: pthread and synchronization primitives (sem, mutex, cv) File

4 Now back to Distributed Systems: remember? 4 A distributed system is: A collection of independent computers that appears to its users as a sin gle coherent system "A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable." Leslie La mport

5 Distributed Systems 5 The middleware layer extends over multiple machine s, and offers each application the same interface.

6 What does it do? 6 Hide complexity to programmers/users Hide the fact that its processes and resources are physically distributed across multiple machines. Transparency in a Distributed System

7 How? 7 The middleware layer extends over multiple machine s, and offers each application the same interface.

8 Starter for Today Splitting computation across the network What programming abstractions work well to split work among multiple networked computers?

9 Many ways Request-reply protocols Remote procedure calls (RPC) Remote method invocation (RMI) Recommended reading : Distributed Systems: Concepts and Design 5 th edition, by Coulouris, et al. (CDK5) chapter 5

10 Request-reply protocols Client Hey, do something Server working { Done/Result

11 Request-reply protocols eg, your PA1 (binary protocol) struct foomsg { u_int32_t len; } send_foo(char *contents) { int msglen = sizeof(struct foomsg) + strlen(contents); char buf = malloc(msglen); struct foomsg *fm = (struct foomsg *)buf; fm->len = htonl(strlen(contents)); memcpy(buf + sizeof(struct foomsg), contents, strlen(contents)); write(outsock, buf, msglen); } Then wait for response, handle timeout, etc.

12 Request-reply protocols: text protocol HTTP See the HTTP/1.1 standard: Done with your PA2 yet?

13 Remote Procedure Call (RPC) A type of client/server communication Attempts to make remote procedure calls look like local ones figure from Microsoft MSDN {... foo() } void foo() { invoke_remote_foo() }

14 RPC Goals Ease of programming Hide complexity Automate a lot of task of implementing Familiar model for programmers (just make a function call) Historical note: Seems obvious in retrospect, but RPC was only invented in the 80s. See Birrell & Nelson, Implementing Remote Procedure Call... or Bruce Nelson, Ph.D. Thesis, Carnegie Mellon University: Remote Procedure Call., 1981 :)

15 Remote procedure call 15 A remote procedure call makes a call to a remote service look like a l ocal call RPC makes transparent whether server is local or remote RPC allows applications to become distributed transparently RPC makes architecture of remote machine transparent

16 RPC 16 The interaction between client and server in a traditional RPC.

17 Passing Value Parameters (1) 17 The steps involved in a doing a remote computation through RPC.

18 But it s not always simple Calling and called procedures run on different machines, with different address spaces And perhaps different environments.. or operating systems.. Must convert to local representation of data Machines and network can fail

19 Marshaling and Unmarshaling (From example) hotnl() -- host to network-byte-order, long. network-byte-order (big-endian) standardized to deal with cross-platform variance Note how we arbitrarily decided to send the string by sending its length followed by L bytes of the string? That s marshalling, too. Floating point... Nested structures? (Design question for the RPC system - do you support them?) Complex datastructures? (Some RPC systems let you send lists and maps as firstorder objects)

20 stubs and IDLs RPC stubs do the work of marshaling and unmarshaling data But how do they know how to do it? Typically: Write a description of the function signature using an IDL -- interface definition language. Lots of these. Some look like C, some look like XML,... details don t matter much.

21 SunRPC Venerable, widely-used RPC system Defines XDR ( external Data Representation ) -- C-like language for describing functions -- and provides a compiler that creates stubs struct fooargs { string msg<255>; int baz; }

22 And describes functions program FOOPROG { version VERSION { void FOO(fooargs) = 1; void BAR(barargs) = 2; } = 1; } = 9999;

23 More requirements Provide reliable transmission (or indicate failure) May have a runtime that handles this Authentication, encryption, etc. Nice when you can add encryption to your system by changing a few lines in your IDL file (it s never really that simple, of course -- identity/key management)

24 RPC vs. LPC 24 Memory access Partial failures Latency

25 But it s not always simple Properties of distributed computing that make achieving transparency difficult: Calling and called procedures run on different machines, with different address spaces Machines and network can fail Latency

26 Passing Reference Parameters 26 Replace with pass by copy/restore Need to know size of data to copy Difficult in some programming languages Solves the problem only partially What about data structures containing pointers? Access to memory in general?

27 Partial failures 27 In local computing: if machine fails, application fails In distributed computing: if a machine fails, part of application fails one cannot tell the difference between a machine failure and network failure How to make partial failures transparent to client?

28 RPC failures Request from cli -> srv lost Reply from srv -> cli lost Server crashes after receiving request Client crashes after sending request

29 Strawman solution 29 Make remote behavior identical to local behavior: Every partial failure results in complete failure You abort and reboot the whole system You wait patiently until system is repaired Problems with this solution: Many catastrophic failures Clients block for long periods System might not be able to recover

30 Real solution: break transparency 30 Possible semantics for RPC: Exactly-once Impossible in practice At least once: Only for idempotent operations At most once Zero, don t know, or once Zero or once Transactional semantics At-most-once most practical But different from LPC

31 RPC semantics: Exactly-Once? Sorry - no can do in general. Imagine that message triggers an external physical thing (say, a robot fires a missle) The robot could crash immediately before or after firing and lose its state. Don t know which one happened. Can, however, make this window very small.

32 RPC semantics At-least-once semantics Keep retrying... At-most-once Use a sequence # to ensure idempotency against network retransmissions and remember it at the server

33 Implementing at-most-once At-least-once: Just keep retrying on client side until you get a response. Server just processes requests as normal, doesn t remember anything. Simple! At-most-once: Server might get same request twice... Must re-send previous reply and not process request (implies: keep cache of handled requests/responses) Must be able to identify requests Strawman: remember all RPC IDs handled. -> Ugh! Requires infinite memory. Real: Keep sliding window of valid RPC IDs, have client number them sequentially.

34 Summary: 34 expose remoteness to client Expose RPC properties to client, since you cannot hide them Application writers have to decide how to deal with partial failures Consider: E-commerce application vs. game

35 35 RPC implementation issues

36 RPC implementation 36 Stub compiler Generates stubs for client and server Language dependent Compile into machine-independent format E.g., XDR Format describes types and values RPC protocol RPC transport

37 Writing a Client and a Server (1) 37 The steps in writing a client and a server in DCE RPC.

38 Writing a Client and a Server (2) 38 Three files output by the IDL compiler: A header file (e.g., interface.h, in C terms). The client stub. The server stub.

39 RPC protocol 39 Guarantee at-most-once semantics by tagging requests and response wit h a nonce RPC request header: Request nonce Service Identifier Call identifier Protocol: Client resends after time out Server maintains table of nonces and replies

40 RPC transport 40 Use reliable transport layer Flow control Congestion control Reliable message transfer Combine RPC and transport protocol Reduce number of messages RPC response can also function as acknowledgement for message transport protocol

41 Performance As a general library, performance is often a big concern for RPC systems Major source of overhead: copies and marshaling/unmarshaling overhead Zero-copy tricks: Representation: Send on the wire in native format and indicate that format with a bit/byte beforehand. What does this do? Think about sending uint32 between two little-endian machines Scatter-gather writes (writev() and friends)

42 Complex / Pointer Data Structures Very few low-level RPC systems support C is messy about things like that -- can t always understand the structure and know where to stop chasing Java RMI (and many other higher-level languages) allows sending objects as part of an RPC But be careful - don t want to send megabytes of data across network to ask simple question!

43 Important Lessons 43 Procedure calls Simple way to pass control and data Elegant transparent way to distribute application Not only way Hard to provide true transparency Failures Performance Memory access Etc. How to deal with hard problem give up and let programmer deal with it Worse is better

Administrivia. Remote Procedure Calls. Reminder about last time. Building up to today

Administrivia. Remote Procedure Calls. Reminder about last time. Building up to today Remote Procedure Calls Carnegie Mellon University 15-440 Distributed Systems Administrivia Readings are now listed on the syllabus See.announce post for some details The book covers a ton of material pretty

More information

Building up to today. Remote Procedure Calls. Reminder about last time. Threads - impl

Building up to today. Remote Procedure Calls. Reminder about last time. Threads - impl Remote Procedure Calls Carnegie Mellon University 15-440 Distributed Systems Building up to today 2x ago: Abstractions for communication example: TCP masks some of the pain of communicating across unreliable

More information

Distributed Systems. Lecture 06 Remote Procedure Calls Thursday, September 13 th, 2018

Distributed Systems. Lecture 06 Remote Procedure Calls Thursday, September 13 th, 2018 15-440 Distributed Systems Lecture 06 Remote Procedure Calls Thursday, September 13 th, 2018 1 Announcements P0 Due today (Thursday 9/13) How is everyone doing on it? :-) P1 Released Friday 9/14 Dates:

More information

416 Distributed Systems. RPC Day 2 Jan 12, 2018

416 Distributed Systems. RPC Day 2 Jan 12, 2018 416 Distributed Systems RPC Day 2 Jan 12, 2018 1 Last class Finish networks review Fate sharing End-to-end principle UDP versus TCP; blocking sockets IP thin waist, smart end-hosts, dumb (stateless) network

More information

Distributed Systems [Fall 2013]

Distributed Systems [Fall 2013] Distributed Systems [Fall 2013] Lec 4: Remote Procedure Calls (RPC) Slide acks: Dave Andersen, Jinyang Li (http://www.cs.cmu.edu/~dga/15-440/f10/lectures/05-rpc.pdf, http://www.news.cs.nyu.edu/~jinyang/fa10/notes/ds-lec2.ppt)

More information

416 Distributed Systems. RPC Day 2 Jan 11, 2017

416 Distributed Systems. RPC Day 2 Jan 11, 2017 416 Distributed Systems RPC Day 2 Jan 11, 2017 1 Last class Finish networks review Fate sharing End-to-end principle UDP versus TCP; blocking sockets IP thin waist, smart end-hosts, dumb (stateless) network

More information

Distributed Systems. Lec 4: Remote Procedure Calls (RPC)

Distributed Systems. Lec 4: Remote Procedure Calls (RPC) Distributed Systems Lec 4: Remote Procedure Calls (RPC) Slide acks: Dave Andersen, Jinyang Li (http://www.cs.cmu.edu/~dga/15-440/f10/lectures/05-rpc.pdf, http://www.news.cs.nyu.edu/~jinyang/fa10/notes/ds-lec2.ppt)

More information

Remote Procedure Calls

Remote Procedure Calls CS 5450 Remote Procedure Calls Vitaly Shmatikov Abstractions Abstractions for communication TCP masks some of the pain of communicating over unreliable IP Abstractions for computation Goal: programming

More information

416 Distributed Systems. Networks review; Day 2 of 2 And start of RPC Jan 13, 2016

416 Distributed Systems. Networks review; Day 2 of 2 And start of RPC Jan 13, 2016 416 Distributed Systems Networks review; Day 2 of 2 And start of RPC Jan 13, 2016 1 Last Time Modularity, Layering, and Decomposition Example: UDP layered on top of IP to provide application demux ( ports

More information

Distributed Systems 8. Remote Procedure Calls

Distributed Systems 8. Remote Procedure Calls Distributed Systems 8. Remote Procedure Calls Paul Krzyzanowski pxk@cs.rutgers.edu 10/1/2012 1 Problems with the sockets API The sockets interface forces a read/write mechanism Programming is often easier

More information

Distributed Systems. How do regular procedure calls work in programming languages? Problems with sockets RPC. Regular procedure calls

Distributed Systems. How do regular procedure calls work in programming languages? Problems with sockets RPC. Regular procedure calls Problems with sockets Distributed Systems Sockets interface is straightforward [connect] read/write [disconnect] Remote Procedure Calls BUT it forces read/write mechanism We usually use a procedure call

More information

Operating Systems. 18. Remote Procedure Calls. Paul Krzyzanowski. Rutgers University. Spring /20/ Paul Krzyzanowski

Operating Systems. 18. Remote Procedure Calls. Paul Krzyzanowski. Rutgers University. Spring /20/ Paul Krzyzanowski Operating Systems 18. Remote Procedure Calls Paul Krzyzanowski Rutgers University Spring 2015 4/20/2015 2014-2015 Paul Krzyzanowski 1 Remote Procedure Calls 2 Problems with the sockets API The sockets

More information

Today CSCI Communication. Communication in Distributed Systems. Communication in Distributed Systems. Remote Procedure Calls (RPC)

Today CSCI Communication. Communication in Distributed Systems. Communication in Distributed Systems. Remote Procedure Calls (RPC) Today CSCI 5105 Communication in Distributed Systems Overview Types Remote Procedure Calls (RPC) Instructor: Abhishek Chandra 2 Communication How do program modules/processes communicate on a single machine?

More information

416 Distributed Systems. Networks review; Day 2 of 2 Fate sharing, e2e principle And start of RPC Jan 10, 2018

416 Distributed Systems. Networks review; Day 2 of 2 Fate sharing, e2e principle And start of RPC Jan 10, 2018 416 Distributed Systems Networks review; Day 2 of 2 Fate sharing, e2e principle And start of RPC Jan 10, 2018 1 Last Time Modularity, Layering, and Decomposition Example: UDP layered on top of IP to provide

More information

CHAPTER - 4 REMOTE COMMUNICATION

CHAPTER - 4 REMOTE COMMUNICATION CHAPTER - 4 REMOTE COMMUNICATION Topics Introduction to Remote Communication Remote Procedural Call Basics RPC Implementation RPC Communication Other RPC Issues Case Study: Sun RPC Remote invocation Basics

More information

Network Communication and Remote Procedure Calls

Network Communication and Remote Procedure Calls Network Communication and Remote Procedure Calls CS 240: Computing Systems and Concurrency Lecture 2 Marco Canini Credits: Michael Freedman and Kyle Jamieson developed much of the original material. Context

More information

struct foomsg { u_int32_t len; }

struct foomsg { u_int32_t len; } RPC 1. Group presentation 2. Notes from reviews: a. 3. Notes to discuss: a. Interface definition: can you just use header files? i. Separate language or integrate into source? ii. Stub compiler or normal

More information

CS 138: Communication II

CS 138: Communication II : Communication II VI 1 Today s Lecture Sockets RPC Overview Challenges Examples VI 2 Sockets VI 3 Sockets TCP and UDP allow sending and receiving of bytes over the network TCP: reliable infinite stream

More information

Remote Procedure Call (RPC) and Transparency

Remote Procedure Call (RPC) and Transparency Remote Procedure Call (RPC) and Transparency Brad Karp UCL Computer Science CS GZ03 / M030 10 th October 2014 Transparency in Distributed Systems Programmers accustomed to writing code for a single box

More information

Remote Invocation. Today. Next time. l Overlay networks and P2P. l Request-reply, RPC, RMI

Remote Invocation. Today. Next time. l Overlay networks and P2P. l Request-reply, RPC, RMI Remote Invocation Today l Request-reply, RPC, RMI Next time l Overlay networks and P2P Types of communication " Persistent or transient Persistent A submitted message is stored until delivered Transient

More information

RMI & RPC. CS 475, Spring 2019 Concurrent & Distributed Systems

RMI & RPC. CS 475, Spring 2019 Concurrent & Distributed Systems RMI & RPC CS 475, Spring 2019 Concurrent & Distributed Systems Why expand to distributed systems? Scalability Performance Latency Availability Fault Tolerance Distributed Systems for Fun and Profit, Takada!2

More information

Distributed Objects and Remote Invocation. Programming Models for Distributed Applications

Distributed Objects and Remote Invocation. Programming Models for Distributed Applications Distributed Objects and Remote Invocation Programming Models for Distributed Applications Extending Conventional Techniques The remote procedure call model is an extension of the conventional procedure

More information

C 1. Recap: Finger Table. CSE 486/586 Distributed Systems Remote Procedure Call. Chord: Node Joins and Leaves. Recall? Socket API

C 1. Recap: Finger Table. CSE 486/586 Distributed Systems Remote Procedure Call. Chord: Node Joins and Leaves. Recall? Socket API Recap: Finger Table Finding a using fingers CSE 486/586 Distributed Systems Remote Procedure Call Steve Ko Computer Sciences and Engineering University at Buffalo N102" 86 + 2 4! N86" 20 +

More information

CSci Introduction to Distributed Systems. Communication: RPC

CSci Introduction to Distributed Systems. Communication: RPC CSci 5105 Introduction to Distributed Systems Communication: RPC Today Remote Procedure Call Chapter 4 TVS Last Time Architectural styles RPC generally mandates client-server but not always Interprocess

More information

DISTRIBUTED COMPUTER SYSTEMS

DISTRIBUTED COMPUTER SYSTEMS DISTRIBUTED COMPUTER SYSTEMS Communication Fundamental REMOTE PROCEDURE CALL Dr. Jack Lange Computer Science Department University of Pittsburgh Fall 2015 Outline Communication Architecture Fundamentals

More information

Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC) Distributed Computing Remote Procedure Calls (RPC) Dr. Yingwu Zhu Problems with Sockets Sockets interface is straightforward [connect] read/write [disconnect] BUT it forces read/write mechanism We usually

More information

Dr. Robert N. M. Watson

Dr. Robert N. M. Watson Distributed systems Lecture 2: The Network File System (NFS) and Object Oriented Middleware (OOM) Dr. Robert N. M. Watson 1 Last time Distributed systems are everywhere Challenges including concurrency,

More information

Middleware. Adapted from Alonso, Casati, Kuno, Machiraju Web Services Springer 2004

Middleware. Adapted from Alonso, Casati, Kuno, Machiraju Web Services Springer 2004 Middleware Adapted from Alonso, Casati, Kuno, Machiraju Web Services Springer 2004 Outline Web Services Goals Where do they come from? Understanding middleware Middleware as infrastructure Communication

More information

Outline. Interprocess Communication. Interprocess Communication. Communication Models: Message Passing and shared Memory.

Outline. Interprocess Communication. Interprocess Communication. Communication Models: Message Passing and shared Memory. Eike Ritter 1 Modified: October 29, 2012 Lecture 14: Operating Systems with C/C++ School of Computer Science, University of Birmingham, UK Outline 1 2 3 Shared Memory in POSIX systems 1 Based on material

More information

Remote Invocation. To do. Request-reply, RPC, RMI. q Today q. q Next time: Indirect communication

Remote Invocation. To do. Request-reply, RPC, RMI. q Today q. q Next time: Indirect communication Remote Invocation To do q Today q Request-reply, RPC, RMI q Next time: Indirect communication Beyond message passing In DS, all IPC is based on low-level msg passing A bit too low level Modern distributed

More information

MODELS OF DISTRIBUTED SYSTEMS

MODELS OF DISTRIBUTED SYSTEMS Distributed Systems Fö 2/3-1 Distributed Systems Fö 2/3-2 MODELS OF DISTRIBUTED SYSTEMS Basic Elements 1. Architectural Models 2. Interaction Models Resources in a distributed system are shared between

More information

Two Phase Commit Protocol. Distributed Systems. Remote Procedure Calls (RPC) Network & Distributed Operating Systems. Network OS.

Two Phase Commit Protocol. Distributed Systems. Remote Procedure Calls (RPC) Network & Distributed Operating Systems. Network OS. A distributed system is... Distributed Systems "one on which I cannot get any work done because some machine I have never heard of has crashed". Loosely-coupled network connection could be different OSs,

More information

Lecture 8: February 19

Lecture 8: February 19 CMPSCI 677 Operating Systems Spring 2013 Lecture 8: February 19 Lecturer: Prashant Shenoy Scribe: Siddharth Gupta 8.1 Server Architecture Design of the server architecture is important for efficient and

More information

CSCI-1680 RPC and Data Representation. Rodrigo Fonseca

CSCI-1680 RPC and Data Representation. Rodrigo Fonseca CSCI-1680 RPC and Data Representation Rodrigo Fonseca Administrivia TCP: talk to the TAs if you still have questions! ursday: HW3 out Final Project (out 4/21) Implement a WebSockets server an efficient

More information

RMI: Design & Implementation

RMI: Design & Implementation RMI: Design & Implementation Operating Systems RMI 1 Middleware layers Applications, services RMI and RPC request-reply protocol marshalling and external data representation Middleware layers UDP and TCP

More information

Remote Procedure Call

Remote Procedure Call Remote Procedure Call Remote Procedure Call Integrate network communication with programming language Procedure call is well understood implementation use Control transfer Data transfer Goals Easy make

More information

MODELS OF DISTRIBUTED SYSTEMS

MODELS OF DISTRIBUTED SYSTEMS Distributed Systems Fö 2/3-1 Distributed Systems Fö 2/3-2 MODELS OF DISTRIBUTED SYSTEMS Basic Elements 1. Architectural Models 2. Interaction Models Resources in a distributed system are shared between

More information

Outline. EEC-681/781 Distributed Computing Systems. The OSI Network Architecture. Inter-Process Communications (IPC) Lecture 4

Outline. EEC-681/781 Distributed Computing Systems. The OSI Network Architecture. Inter-Process Communications (IPC) Lecture 4 EEC-681/781 Distributed Computing Systems Lecture 4 Department of Electrical and Computer Engineering Cleveland State University wenbing@ieee.org Outline Inter-process communications Computer networks

More information

Remote Invocation. Today. Next time. l Indirect communication. l Request-reply, RPC, RMI

Remote Invocation. Today. Next time. l Indirect communication. l Request-reply, RPC, RMI Remote Invocation Today l Request-reply, RPC, RMI Next time l Indirect communication Data representation and marshalling Processes information kept as data structures but sent in msgs as sequence of bytes

More information

Last Class: RPCs. Today:

Last Class: RPCs. Today: Last Class: RPCs RPCs make distributed computations look like local computations Issues: Parameter passing Binding Failure handling Lecture 4, page 1 Today: Case Study: Sun RPC Lightweight RPCs Remote

More information

Communication in Distributed Systems

Communication in Distributed Systems Communication in Distributed Systems Sape J. Mullender Huygens Systems Research Laboratory Universiteit Twente Enschede 1 Introduction Functions of Communication Transport data between processes, machines,

More information

Chapter 5: Remote Invocation. Copyright 2015 Prof. Amr El-Kadi

Chapter 5: Remote Invocation. Copyright 2015 Prof. Amr El-Kadi Chapter 5: Remote Invocation Outline Introduction Request-Reply Protocol Remote Procedure Call Remote Method Invocation This chapter (and Chapter 6) Applications Remote invocation, indirect communication

More information

COMMUNICATION IN DISTRIBUTED SYSTEMS

COMMUNICATION IN DISTRIBUTED SYSTEMS Distributed Systems Fö 3-1 Distributed Systems Fö 3-2 COMMUNICATION IN DISTRIBUTED SYSTEMS Communication Models and their Layered Implementation 1. Communication System: Layered Implementation 2. Network

More information

Lecture 8: February 17

Lecture 8: February 17 CMPSCI 677 Operating Systems Spring 2016 Lecture 8: February 17 Lecturer: Prashant Shenoy Scribe: Ravi Choudhary 8.1 Communications in Distributed Systems This lecture will deal with communication between

More information

CSCI-1680 RPC and Data Representation John Jannotti

CSCI-1680 RPC and Data Representation John Jannotti CSCI-1680 RPC and Data Representation John Jannotti Original Slides from Rodrigo Fonseca Today Defining Protocols RPC IDL Problem Two programs want to communicate: must define the protocol We have seen

More information

Remote Invocation Vladimir Vlassov and Johan Montelius

Remote Invocation Vladimir Vlassov and Johan Montelius KTH ROYAL INSTITUTE OF TECHNOLOGY Middleware Remote Invocation Vladimir Vlassov and Johan Montelius Application layer Remote invocation / indirect communication Socket layer Network layer ID2201 DISTRIBUTED

More information

Distributed Systems Lecture 2 1. External Data Representation and Marshalling (Sec. 4.3) Request reply protocol (failure modes) (Sec. 4.

Distributed Systems Lecture 2 1. External Data Representation and Marshalling (Sec. 4.3) Request reply protocol (failure modes) (Sec. 4. Distributed Systems Lecture 2 1 Today s Topics External Data Representation and Marshalling (Sec. 4.3) Request reply protocol (failure modes) (Sec. 4.4) Distributed Objects and Remote Invocations (5.1)

More information

Overview. Communication types and role of Middleware Remote Procedure Call (RPC) Message Oriented Communication Multicasting 2/36

Overview. Communication types and role of Middleware Remote Procedure Call (RPC) Message Oriented Communication Multicasting 2/36 Communication address calls class client communication declarations implementations interface java language littleendian machine message method multicast network object operations parameters passing procedure

More information

Distributed Systems Theory 4. Remote Procedure Call. October 17, 2008

Distributed Systems Theory 4. Remote Procedure Call. October 17, 2008 Distributed Systems Theory 4. Remote Procedure Call October 17, 2008 Client-server model vs. RPC Client-server: building everything around I/O all communication built in send/receive distributed computing

More information

DS 2009: middleware. David Evans

DS 2009: middleware. David Evans DS 2009: middleware David Evans de239@cl.cam.ac.uk What is middleware? distributed applications middleware remote calls, method invocations, messages,... OS comms. interface sockets, IP,... layer between

More information

CSCI-1680 RPC and Data Representation. Rodrigo Fonseca

CSCI-1680 RPC and Data Representation. Rodrigo Fonseca CSCI-1680 RPC and Data Representation Rodrigo Fonseca Today Defining Protocols RPC IDL Problem Two programs want to communicate: must define the protocol We have seen many of these, across all layers E.g.,

More information

03 Remote invoaction. Request-reply RPC. Coulouris 5 Birrel_Nelson_84.pdf RMI

03 Remote invoaction. Request-reply RPC. Coulouris 5 Birrel_Nelson_84.pdf RMI 03 Remote invoaction Request-reply RPC Coulouris 5 Birrel_Nelson_84.pdf RMI 2/23 Remote invocation Mechanisms for process communication on a Built on top of interprocess communication primitives Lower

More information

Structured communication (Remote invocation)

Structured communication (Remote invocation) Prof. Dr. Claudia Müller-Birn Institute for Computer Science, Networked Information Systems Structured communication (Remote invocation) Nov 8th, 2011 Netzprogrammierung (Algorithmen und Programmierung

More information

Communication. Distributed Systems Santa Clara University 2016

Communication. Distributed Systems Santa Clara University 2016 Communication Distributed Systems Santa Clara University 2016 Protocol Stack Each layer has its own protocol Can make changes at one layer without changing layers above or below Use well defined interfaces

More information

3. Remote Procedure Call

3. Remote Procedure Call 3. Remote Procedure Call Master II Software Engineering Imed Bouchrika Dept of Mathematics & Computer Science University of Souk-Ahras imed@imed.ws Imed Bouchrika. Distributed Objects, Uni of Souk-Ahras

More information

CS603: Distributed Systems

CS603: Distributed Systems CS603: Distributed Systems Lecture 2: Client-Server Architecture, RPC, Corba Cristina Nita-Rotaru Lecture 2/ Spring 2006 1 ATC Architecture NETWORK INFRASTRUCTURE DATABASE HOW WOULD YOU START BUILDING

More information

Networks and Operating Systems Chapter 3: Remote Procedure Call (RPC)

Networks and Operating Systems Chapter 3: Remote Procedure Call (RPC) Systems Group Department of Computer Science ETH Zürich Networks and Operating Systems Chapter 3: Remote Procedure Call (RPC) Donald Kossmann & Torsten Höfler Frühjahrssemester 2013 DINFK, ETH Zürich.

More information

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [RPC & DISTRIBUTED OBJECTS] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey XDR Standard serialization

More information

ECE454 Tutorial. June 16, (Material prepared by Evan Jones)

ECE454 Tutorial. June 16, (Material prepared by Evan Jones) ECE454 Tutorial June 16, 2009 (Material prepared by Evan Jones) 2. Consider the following function: void strcpy(char* out, char* in) { while(*out++ = *in++); } which is invoked by the following code: void

More information

Question. Reliable Transport: The Prequel. Don t parse my words too carefully. Don t be intimidated. Decisions and Their Principles.

Question. Reliable Transport: The Prequel. Don t parse my words too carefully. Don t be intimidated. Decisions and Their Principles. Question How many people have not yet participated? Reliable Transport: The Prequel EE122 Fall 2012 Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ Materials with thanks to Jennifer Rexford, Ion Stoica,

More information

CS 417 9/18/17. Paul Krzyzanowski 1. Socket-based communication. Distributed Systems 03. Remote Procedure Calls. Sample SMTP Interaction

CS 417 9/18/17. Paul Krzyzanowski 1. Socket-based communication. Distributed Systems 03. Remote Procedure Calls. Sample SMTP Interaction Socket-based communication Distributed Systems 03. Remote Procedure Calls Socket API: all we get from the to access the network Socket = distinct end-to-end communication channels Read/write model Line-oriented,

More information

Chapter 4 Communication

Chapter 4 Communication DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 4 Communication Layered Protocols (1) Figure 4-1. Layers, interfaces, and protocols in the OSI

More information

Distributed Systems. 03. Remote Procedure Calls. Paul Krzyzanowski. Rutgers University. Fall 2017

Distributed Systems. 03. Remote Procedure Calls. Paul Krzyzanowski. Rutgers University. Fall 2017 Distributed Systems 03. Remote Procedure Calls Paul Krzyzanowski Rutgers University Fall 2017 1 Socket-based communication Socket API: all we get from the OS to access the network Socket = distinct end-to-end

More information

RPC. Remote Procedure Calls. Robert Grimm New York University

RPC. Remote Procedure Calls. Robert Grimm New York University RPC Remote Procedure Calls Robert Grimm New York University Assignments! You need (more) time for interoperability testing!! Your server should be running by midnight Sunday! Assignment 3 test case posted!

More information

Lecture 5: Object Interaction: RMI and RPC

Lecture 5: Object Interaction: RMI and RPC 06-06798 Distributed Systems Lecture 5: Object Interaction: RMI and RPC Distributed Systems 1 Recap Message passing: send, receive synchronous versus asynchronous No global Time types of failure socket

More information

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 22: Remote Procedure Call (RPC)

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 22: Remote Procedure Call (RPC) CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring 2002 Lecture 22: Remote Procedure Call (RPC) 22.0 Main Point Send/receive One vs. two-way communication Remote Procedure

More information

The basic theory of operation of RPC is pretty straightforward. But, to understand remote procedure calls, let s first make sure that we understand local procedure calls. The client (or caller) supplies

More information

MTAT Enterprise System Integration. Lecture 2: Middleware & Web Services

MTAT Enterprise System Integration. Lecture 2: Middleware & Web Services MTAT.03.229 Enterprise System Integration Lecture 2: Middleware & Web Services Luciano García-Bañuelos Slides by Prof. M. Dumas Overall view 2 Enterprise Java 2 Entity classes (Data layer) 3 Enterprise

More information

Communication. Communication. Distributed Systems. Networks and protocols Sockets Remote Invocation Messages Streams. Fall /10/2001 DoCS

Communication. Communication. Distributed Systems. Networks and protocols Sockets Remote Invocation Messages Streams. Fall /10/2001 DoCS Communication Distributed Systems Fall 2002 Communication Process Process Networks and protocols Sockets Remote Invocation Messages Streams 9/10/2001 DoCS 2002 2 Layered Protocols (1) Layers, interfaces,

More information

Last Time. Internet in a Day Day 2 of 1. Today: TCP and Apps

Last Time. Internet in a Day Day 2 of 1. Today: TCP and Apps Internet in a Day Day 2 of 1 Carnegie Mellon University 15-440, Distributed Systems Last Time Modularity, Layering, and Decomposition Example: UDP layered on top of IP to provide application demux ( ports

More information

RPC flow. 4.3 Remote procedure calls IDL. RPC components. Procedure. Program. sum (j,k) int j,k; {return j+k;} i = sum (3,7); Local procedure call

RPC flow. 4.3 Remote procedure calls IDL. RPC components. Procedure. Program. sum (j,k) int j,k; {return j+k;} i = sum (3,7); Local procedure call 4.3 Remote procedure calls RPC flow Client process Server process Program i = sum (3,7); Procedure sum (j,k) int j,k; {return j+k; Client stub Program Return Call Unpack Pack result para s Invisible to

More information

Project 2: Part 1: RPC and Locks

Project 2: Part 1: RPC and Locks Project 2: Part 1: RPC and Locks Due: 11:59PM Thursday, October 14, 2010 1 Introduction In this series of labs, you will implement a fully functional distributed file server with the Frangipani architecture

More information

How do modules communicate? Enforcing modularity. Modularity: client-server organization. Tradeoffs of enforcing modularity

How do modules communicate? Enforcing modularity. Modularity: client-server organization. Tradeoffs of enforcing modularity How do modules communicate? Enforcing modularity Within the same address space and protection domain local procedure calls Across protection domain system calls Over a connection client/server programming

More information

a. Under overload, whole network collapsed iii. How do you make an efficient high-level communication mechanism? 1. Similar to using compiler instead

a. Under overload, whole network collapsed iii. How do you make an efficient high-level communication mechanism? 1. Similar to using compiler instead RPC 1. Project proposals due tonight 2. Exam on Tuesday in class a. Open note, open papers b. Nothing else (no internet, no extra papers) 3. Notes from Creator: a. VMware ESX: Carl Waldspurger i. Still

More information

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 21: Network Protocols (and 2 Phase Commit)

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 21: Network Protocols (and 2 Phase Commit) CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring 2003 Lecture 21: Network Protocols (and 2 Phase Commit) 21.0 Main Point Protocol: agreement between two parties as to

More information

Remote Procedure Calls CS 707

Remote Procedure Calls CS 707 Remote Procedure Calls CS 707 Motivation Send and Recv calls I/O Goal: make distributed nature of system transparent to the programmer RPC provides procedural interface to distributed services CS 707 2

More information

Lecture 5: RMI etc. Servant. Java Remote Method Invocation Invocation Semantics Distributed Events CDK: Chapter 5 TVS: Section 8.3

Lecture 5: RMI etc. Servant. Java Remote Method Invocation Invocation Semantics Distributed Events CDK: Chapter 5 TVS: Section 8.3 Lecture 5: RMI etc. Java Remote Method Invocation Invocation Semantics Distributed Events CDK: Chapter 5 TVS: Section 8.3 CDK Figure 5.7 The role of proxy and skeleton in remote method invocation client

More information

A short introduction to Web Services

A short introduction to Web Services 1 di 5 17/05/2006 15.40 A short introduction to Web Services Prev Chapter Key Concepts Next A short introduction to Web Services Since Web Services are the basis for Grid Services, understanding the Web

More information

Chapter 5: Distributed objects and remote invocation

Chapter 5: Distributed objects and remote invocation Chapter 5: Distributed objects and remote invocation From Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edition 4, Addison-Wesley 2005 Figure 5.1 Middleware layers Applications

More information

KTH ROYAL INSTITUTE OF TECHNOLOGY. Remote Invocation. Vladimir Vlassov and Johan Montelius

KTH ROYAL INSTITUTE OF TECHNOLOGY. Remote Invocation. Vladimir Vlassov and Johan Montelius KTH ROYAL INSTITUTE OF TECHNOLOGY Remote Invocation Vladimir Vlassov and Johan Montelius Middleware Application layer Remote invocation / indirect communication Socket layer Network layer 2 Request / Reply

More information

May Gerd Liefländer System Architecture Group Universität Karlsruhe (TH), Systemarchitektur

May Gerd Liefländer System Architecture Group Universität Karlsruhe (TH), Systemarchitektur Distributed Systems 5 RPC May-11-2009 Gerd Liefländer System Architecture Group 1 Schedule of Today Introduction Types of Communication RPC Issues RPC Stubs RPC Semantics & Failures Speedup of RPCs Appendix

More information

Distributed Systems. 5. Remote Method Invocation

Distributed Systems. 5. Remote Method Invocation Distributed Systems 5. Remote Method Invocation Werner Nutt 1 Remote Method Invocation 5.1 Communication between Distributed Objects 1. Communication between Distributed Objects 2. RMI 2 Middleware Middleware

More information

IPC. Communication. Layered Protocols. Layered Protocols (1) Data Link Layer. Layered Protocols (2)

IPC. Communication. Layered Protocols. Layered Protocols (1) Data Link Layer. Layered Protocols (2) IPC Communication Chapter 2 Inter-Process Communication is the heart of all DSs. Processes on different machines. Always based on low-level message passing. In this chapter: RPC RMI MOM (Message Oriented

More information

02 - Distributed Systems

02 - Distributed Systems 02 - Distributed Systems Definition Coulouris 1 (Dis)advantages Coulouris 2 Challenges Saltzer_84.pdf Models Physical Architectural Fundamental 2/58 Definition Distributed Systems Distributed System is

More information

SAI/ST course Distributed Systems

SAI/ST course Distributed Systems SAI/ST course Distributed Systems 2013, Sep. 26 Oct 01 Lecture 3: Communication Agenda Overview Concepts Organization in layers IPC primitives Direct communication Indirect communication R.H. Mak 27-9-2013

More information

Implementing Remote Procedure Calls*

Implementing Remote Procedure Calls* Overview Implementing Remote Procedure Calls* Birrell, A. D. and Nelson, B. J. Brief introduction RPC issues Implementation Examples Current RPC implementations Presented by Emil Constantinescu Review

More information

02 - Distributed Systems

02 - Distributed Systems 02 - Distributed Systems Definition Coulouris 1 (Dis)advantages Coulouris 2 Challenges Saltzer_84.pdf Models Physical Architectural Fundamental 2/60 Definition Distributed Systems Distributed System is

More information

COMMUNICATION PROTOCOLS: REMOTE PROCEDURE CALL (RPC)

COMMUNICATION PROTOCOLS: REMOTE PROCEDURE CALL (RPC) COMMUNICATION PROTOCOLS: REMOTE PROCEDURE CALL (RPC) 1 2 CONVENTIONAL PROCEDURE CALL (a) (b) Parameter passing in a local procedure call: the stack before the call to read. The stack while the called procedure

More information

Chapter 3: Client-Server Paradigm and Middleware

Chapter 3: Client-Server Paradigm and Middleware 1 Chapter 3: Client-Server Paradigm and Middleware In order to overcome the heterogeneity of hardware and software in distributed systems, we need a software layer on top of them, so that heterogeneity

More information

CS454/654 Midterm Exam Fall 2004

CS454/654 Midterm Exam Fall 2004 CS454/654 Midterm Exam Fall 2004 (3 November 2004) Question 1: Distributed System Models (18 pts) (a) [4 pts] Explain two benefits of middleware to distributed system programmers, providing an example

More information

Advanced Distributed Systems

Advanced Distributed Systems Course Plan and Department of Computer Science Indian Institute of Technology New Delhi, India Outline Plan 1 Plan 2 3 Message-Oriented Lectures - I Plan Lecture Topic 1 and Structure 2 Client Server,

More information

Distributed Systems. Definitions. Why Build Distributed Systems? Operating Systems - Overview. Operating Systems - Overview

Distributed Systems. Definitions. Why Build Distributed Systems? Operating Systems - Overview. Operating Systems - Overview Distributed Systems Joseph Spring School of Computer Science Distributed Systems and Security Areas for Discussion Definitions Operating Systems Overview Challenges Heterogeneity Limitations and 2 Definitions

More information

Slides for Chapter 5: Remote Invocation

Slides for Chapter 5: Remote Invocation Slides for Chapter 5: Remote Invocation From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design Edition 5, Addison-Wesley 2012 Text extensions to slides David E. Bakken,

More information

Distributed Systems are Everywhere!" CS162 Operating Systems and Systems Programming Lecture 22 Client-Server" Client-Server" Message Passing"

Distributed Systems are Everywhere! CS162 Operating Systems and Systems Programming Lecture 22 Client-Server Client-Server Message Passing CS162 Operating Systems and Systems Programming Lecture 22 Client- April 18, 2011! Ion Stoica! http://inst.eecs.berkeley.edu/~cs162! Distributed Systems are Everywhere!" We need (want?) to share physical

More information

Interprocess Communication

Interprocess Communication Interprocess Communication Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5 Introduction Applications, services

More information

Internetworking Models The OSI Reference Model

Internetworking Models The OSI Reference Model Internetworking Models When networks first came into being, computers could typically communicate only with computers from the same manufacturer. In the late 1970s, the Open Systems Interconnection (OSI)

More information

Desarrollo de Aplicaciones en Red. El modelo de comunicación. General concepts. Models of communication. Message Passing

Desarrollo de Aplicaciones en Red. El modelo de comunicación. General concepts. Models of communication. Message Passing Desarrollo de Aplicaciones en Red El modelo de comunicación José Rafael Rojano Cáceres http://www.uv.mx/rrojano 1 2 General concepts As we saw in a Distributed System the logical and physical component

More information

6.033 Lecture Fault Tolerant Computing 3/31/2014

6.033 Lecture Fault Tolerant Computing 3/31/2014 6.033 Lecture 14 -- Fault Tolerant Computing 3/31/2014 So far what have we seen: Modularity RPC Processes Client / server Networking Implements client/server Seen a few examples of dealing with faults

More information

L12: end to end layer

L12: end to end layer L12: end to end layer Dina Katabi 6.033 Spring 2007 http://web.mit.edu/6.033 Some slides are from lectures by Nick Mckeown, Ion Stoica, Frans Kaashoek, Hari Balakrishnan, Sam Madden, and Robert Morris

More information

Distributed Systems. The main method of distributed object communication is with remote method invocation

Distributed Systems. The main method of distributed object communication is with remote method invocation Distributed Systems Unit III Syllabus:Distributed Objects and Remote Invocation: Introduction, Communication between Distributed Objects- Object Model, Distributed Object Modal, Design Issues for RMI,

More information