B2.1 Regression. Planning and Optimization. Planning and Optimization. B2.1 Regression. B2.2 Regression Example. B2.3 Regression for STRIPS Tasks

Size: px
Start display at page:

Download "B2.1 Regression. Planning and Optimization. Planning and Optimization. B2.1 Regression. B2.2 Regression Example. B2.3 Regression for STRIPS Tasks"

Transcription

1 Planning and Optimization October 13, 2016 B2. Regression: ntroduction & STRPS Case Planning and Optimization B2. Regression: ntroduction & STRPS Case Malte Helmert and Gabriele Röger Universität Basel October 13, 2016 B2.1 Regression B2.2 Regression Example B2.3 Regression for STRPS Tasks B2.4 Summary M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20 M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20 Forward Search vs. Backward Search B2.1 Regression Searching planning tasks in forward vs. backward direction is not symmetric: forward search starts from a single initial state; backward search starts from a set of goal states when applying an operator o in a state s in forward direction, there is a unique successor state s ; if we just applied operator o and ended up in state s, there can be several possible predecessor states s in most natural representation for backward search in planning, each search state corresponds to a set of world states M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20 M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20

2 Planning by Backward Search: Regression Search Space Representation in Regression Planners Regression: Computing the possible predecessor states regr o (S ) of a set of states S ( subgoal ) given the last operator o that was applied. formal definition in next chapter Regression planners find solutions by backward search: start from set of goal states iteratively pick a previously generated subgoal (state set) and regress it through an operator, generating a new subgoal solution found when a generated subgoal includes initial state identify state sets with logical formulas (again): each search state corresponds to a set of world states ( subgoal ) each search state is represented by a logical formula: ϕ represents {s S s = ϕ} many basic search operations like detecting duplicates are NP-complete or conp-complete pro: can handle many states simultaneously con: basic operations complicated and expensive M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20 M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20 Search Space for Regression Example Search Space for Regression search space for regression in a planning task Π = V,, O, (search states are formulas ϕ describing sets of world states; actions of search space are operators o O) init() is goal(ϕ) succ(ϕ) cost(o) returns tests if = ϕ returns all pairs o, regr o (ϕ) where o O and regr o (ϕ) is defined returns cost(o) as defined in Π h(ϕ) estimates cost from to ϕ ( Parts C and D) B2.2 Regression Example M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20 M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20

3 Example Example M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20 M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20 Example Example = regr () = regr () ϕ 2 ϕ 2 = regr ( ) M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20 M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20

4 Example for STRPS Tasks ϕ 3 = regr () ϕ 2 ϕ 2 = regr ( ) ϕ 3 = regr (ϕ 2 ), = ϕ 3 B2.3 Regression for STRPS Tasks M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20 M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20 for STRPS Tasks Regression for STRPS Planning Tasks for STRPS Tasks STRPS Regression Regression for STRPS planning tasks is much simpler than the general case: Consider subgoal ϕ that is conjunction of atoms a 1 a n (e.g., the original goal of the planning task). First step: Choose an operator o that deletes no a i. Second step: Remove any atoms added by o from ϕ. Third step: Conjoin pre(o) to ϕ. Outcome of this is regression of ϕ w.r.t. o. t is again a conjunction of atoms. optimization: only consider operators adding at least one a i Definition (STRPS Regression) Let ϕ = ϕ n be a conjunction of atoms, and let o be a STRPS operator which adds the atoms a 1,..., a k and deletes the atoms d 1,..., d l. (W.l.o.g., a i d j for all i, j.) The STRPS regression of ϕ with respect to o is { if ϕ i = d j for some i, j sregr o (ϕ) := pre(o) ({,..., ϕ n } \ {a 1,..., a k }) Note: sregr o (ϕ) is again a conjunction of atoms, or. otherwise M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20 M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20

5 for STRPS Tasks Does this Capture the dea of Regression? for STRPS Tasks STRPS Regression Example For our definition to capture the concept of regression, it should satisfy the following property: Regression Property For all sets of states described by a conjunction of atoms ϕ, all states s and all STRPS operators o, s = sregr o (ϕ) iff s o = ϕ. This is indeed true. We do not prove it now because we prove this property for general regression (not just STRPS) later. o 1 o 2 o 3 Note: Predecessor states are in general not unique. This picture is just for illustration purposes. o 1 = on clr, o 2 = on clr clr, o 3 = ont clr clr, on ont clr clr on on clr clr ont on = on on = sregr o3 () = ont clr clr on ϕ 2 = sregr o2 ( ) = on clr clr ont ϕ 3 = sregr o1 (ϕ 2 ) = on clr on ont M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20 M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20 B2. Regression: ntroduction & STRPS Case Summary B2. Regression: ntroduction & STRPS Case Summary Summary B2.4 Summary Regression search proceeds backwards from the goal. Each search state corresponds to a set of world states, for example represented by a formula. Regression is simple for STRPS operators. The theory for general regression is more complex. This is the topic of the following chapters. M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20 M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 13, / 20

Principles of AI Planning. Principles of AI Planning. 7.1 How to obtain a heuristic. 7.2 Relaxed planning tasks. 7.1 How to obtain a heuristic

Principles of AI Planning. Principles of AI Planning. 7.1 How to obtain a heuristic. 7.2 Relaxed planning tasks. 7.1 How to obtain a heuristic Principles of AI Planning June 8th, 2010 7. Planning as search: relaxed planning tasks Principles of AI Planning 7. Planning as search: relaxed planning tasks Malte Helmert and Bernhard Nebel 7.1 How to

More information

Planning and Optimization

Planning and Optimization Planning and Optimization F3. Post-hoc Optimization & Operator Counting Malte Helmert and Gabriele Röger Universität Basel December 6, 2017 Post-hoc Optimization Heuristic Content of this Course: Heuristic

More information

Acknowledgements. Outline

Acknowledgements. Outline Acknowledgements Heuristic Search for Planning Sheila McIlraith University of Toronto Fall 2010 Many of the slides used in today s lecture are modifications of slides developed by Malte Helmert, Bernhard

More information

Search Algorithms for Planning

Search Algorithms for Planning Search Algorithms for Planning Sheila McIlraith University of Toronto Fall 2010 S. McIlraith Search Algorithms 1 / 50 Acknowledgements Many of the slides used in today s lecture are modifications of slides

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 39. Automated Planning: Landmark Heuristics Malte Helmert and Gabriele Röger University of Basel May 10, 2017 Automated Planning: Overview Chapter overview: planning

More information

Heuristic Search for Planning

Heuristic Search for Planning Heuristic Search for Planning Sheila McIlraith University of Toronto Fall 2010 S. McIlraith Heuristic Search for Planning 1 / 50 Acknowledgements Many of the slides used in today s lecture are modifications

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 5. State-Space Search: State Spaces Malte Helmert Universität Basel February 29, 2016 State-Space Search Problems Classical State-Space Search Problems Informally

More information

8.1 Introduction. 8.1 Introduction. Foundations of Artificial Intelligence. 8.2 Search Nodes. 8.3 Open Lists. 8.4 Closed Lists. 8.

8.1 Introduction. 8.1 Introduction. Foundations of Artificial Intelligence. 8.2 Search Nodes. 8.3 Open Lists. 8.4 Closed Lists. 8. Foundations of Artificial Intelligence March 7, 2016 8. State-Space Search: Data Structures for Search Algorithms Foundations of Artificial Intelligence 8. State-Space Search: Data Structures for Search

More information

Global Optimization. Lecture Outline. Global flow analysis. Global constant propagation. Liveness analysis. Local Optimization. Global Optimization

Global Optimization. Lecture Outline. Global flow analysis. Global constant propagation. Liveness analysis. Local Optimization. Global Optimization Lecture Outline Global Optimization Global flow analysis Global constant propagation Liveness analysis Compiler Design I (2011) 2 Local Optimization Recall the simple basic-block optimizations Constant

More information

Theory of Computer Science. Theory of Computer Science. D4.1 Introduction. D4.2 Basic Functions and Composition. D4.3 Primitive Recursion

Theory of Computer Science. Theory of Computer Science. D4.1 Introduction. D4.2 Basic Functions and Composition. D4.3 Primitive Recursion Theory of Computer Science April 27, 2016 D4. Primitive Recursion and µ-recursion Theory of Computer Science D4. Primitive Recursion and µ-recursion Malte Helmert University of Basel April 27, 2016 D4.1

More information

Metis: Arming Fast Downward with Pruning and Incremental Computation

Metis: Arming Fast Downward with Pruning and Incremental Computation Metis: Arming Fast Downward with Pruning and Incremental Computation Yusra Alkhazraji University of Freiburg, Germany alkhazry@informatik.uni-freiburg.de Florian Pommerening University of Basel, Switzerland

More information

Lecture Notes on Monadic Logic Programming

Lecture Notes on Monadic Logic Programming Lecture Notes on Monadic Logic Programming 15-816: Linear Logic Frank Pfenning Lecture 20 We have discussed both forward and backward chaining at length; in this lecture we address the question how they

More information

Situation Calculus and YAGI

Situation Calculus and YAGI Situation Calculus and YAGI Institute for Software Technology 1 Progression another solution to the projection problem does a sentence hold for a future situation used for automated reasoning and planning

More information

Principles of AI Planning. Principles of AI Planning. 8.1 Parallel plans. 8.2 Relaxed planning graphs. 8.3 Relaxation heuristics. 8.

Principles of AI Planning. Principles of AI Planning. 8.1 Parallel plans. 8.2 Relaxed planning graphs. 8.3 Relaxation heuristics. 8. Principles of AI Planning June th, 8. Planning as search: relaxation heuristics Principles of AI Planning 8. Planning as search: relaxation heuristics alte Helmert and Bernhard Nebel Albert-Ludwigs-Universität

More information

Fast Downward Cedalion

Fast Downward Cedalion Fast Downward Cedalion Jendrik Seipp and Silvan Sievers Universität Basel Basel, Switzerland {jendrik.seipp,silvan.sievers}@unibas.ch Frank Hutter Universität Freiburg Freiburg, Germany fh@informatik.uni-freiburg.de

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 45. AlphaGo and Outlook Malte Helmert and Gabriele Röger University of Basel May 22, 2017 Board Games: Overview chapter overview: 40. Introduction and State of the

More information

Theory of Computer Science

Theory of Computer Science Theory of Computer Science D4. Primitive Recursion and µ-recursion Malte Helmert University of Basel April 26, 2017 Overview: Computability Theory Computability Theory imperative models of computation:

More information

LTCS Report. Concept Descriptions with Set Constraints and Cardinality Constraints. Franz Baader. LTCS-Report 17-02

LTCS Report. Concept Descriptions with Set Constraints and Cardinality Constraints. Franz Baader. LTCS-Report 17-02 Technische Universität Dresden Institute for Theoretical Computer Science Chair for Automata Theory LTCS Report Concept Descriptions with Set Constraints and Cardinality Constraints Franz Baader LTCS-Report

More information

Finite Model Generation for Isabelle/HOL Using a SAT Solver

Finite Model Generation for Isabelle/HOL Using a SAT Solver Finite Model Generation for / Using a SAT Solver Tjark Weber webertj@in.tum.de Technische Universität München Winterhütte, März 2004 Finite Model Generation for / p.1/21 is a generic proof assistant: Highly

More information

Symbolic Trajectory Evaluation - A Survey

Symbolic Trajectory Evaluation - A Survey Automated Verification Symbolic Trajectory Evaluation - A Survey by Mihaela Gheorghiu Department of Computer Science University of Toronto Instructor: Prof. Marsha Chechik January 3, 24 Motivation Simulation

More information

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2013

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2013 Set 9: Planning Classical Planning Systems ICS 271 Fall 2013 Outline: Planning Classical Planning: Situation calculus PDDL: Planning domain definition language STRIPS Planning Planning graphs Readings:

More information

Scalable Web Service Composition with Partial Matches

Scalable Web Service Composition with Partial Matches Scalable Web Service Composition with Partial Matches Adina Sirbu and Jörg Hoffmann Digital Enterprise Research Institute (DERI) University of Innsbruck, Austria firstname.lastname@deri.org Abstract. We

More information

CSP- and SAT-based Inference Techniques Applied to Gnomine

CSP- and SAT-based Inference Techniques Applied to Gnomine CSP- and SAT-based Inference Techniques Applied to Gnomine Bachelor Thesis Faculty of Science, University of Basel Department of Computer Science Artificial Intelligence ai.cs.unibas.ch Examiner: Prof.

More information

Computational problems. Lecture 2: Combinatorial search and optimisation problems. Computational problems. Examples. Example

Computational problems. Lecture 2: Combinatorial search and optimisation problems. Computational problems. Examples. Example Lecture 2: Combinatorial search and optimisation problems Different types of computational problems Examples of computational problems Relationships between problems Computational properties of different

More information

Algorithms in Systems Engineering ISE 172. Lecture 16. Dr. Ted Ralphs

Algorithms in Systems Engineering ISE 172. Lecture 16. Dr. Ted Ralphs Algorithms in Systems Engineering ISE 172 Lecture 16 Dr. Ted Ralphs ISE 172 Lecture 16 1 References for Today s Lecture Required reading Sections 6.5-6.7 References CLRS Chapter 22 R. Sedgewick, Algorithms

More information

Propositional Logic Formal Syntax and Semantics. Computability and Logic

Propositional Logic Formal Syntax and Semantics. Computability and Logic Propositional Logic Formal Syntax and Semantics Computability and Logic Syntax and Semantics Syntax: The study of how expressions are structured (think: grammar) Semantics: The study of the relationship

More information

KI-Programmierung. Planning

KI-Programmierung. Planning KI-Programmierung Planning Bernhard Beckert UNIVERSITÄT KOBLENZ-LANDAU Winter Term 2007/2008 B. Beckert: KI-Programmierung p.1 Outline Search vs. planning STRIPS operators Partial-order planning The real

More information

An Annotated Language

An Annotated Language Hoare Logic An Annotated Language State and Semantics Expressions are interpreted as functions from states to the corresponding domain of interpretation Operators have the obvious interpretation Free of

More information

W4231: Analysis of Algorithms

W4231: Analysis of Algorithms W4231: Analysis of Algorithms 11/23/99 NP-completeness of 3SAT, Minimum Vertex Cover, Maximum Independent Set, Boolean Formulae A Boolean formula is an expression that we can build starting from Boolean

More information

28.1 Decomposition Methods

28.1 Decomposition Methods Foundations of Artificial Intelligence April 23, 2018 28. Constraint Satisfaction Problems: Decomposition Methods Foundations of Artificial Intelligence 28. Constraint Satisfaction Problems: Decomposition

More information

1.1 Constraint satisfaction problems

1.1 Constraint satisfaction problems Seminar: Search and Optimization September 18, 2014 1. Organization, Seminar Schedule & Topics Seminar: Search and Optimization 1. Organization, Seminar Schedule & Topics Gabi Röger Universität Basel September

More information

15.1 Introduction. Foundations of Artificial Intelligence Introduction Best-first Search Algorithm Details. 15.

15.1 Introduction. Foundations of Artificial Intelligence Introduction Best-first Search Algorithm Details. 15. Foundations of Artificial Intelligence March 26, 2018 15. State-Space Search: Best-first Graph Search Foundations of Artificial Intelligence 15. State-Space Search: Best-first Graph Search Malte Helmert

More information

Chapter 2 & 3: Representations & Reasoning Systems (2.2)

Chapter 2 & 3: Representations & Reasoning Systems (2.2) Chapter 2 & 3: A Representation & Reasoning System & Using Definite Knowledge Representations & Reasoning Systems (RRS) (2.2) Simplifying Assumptions of the Initial RRS (2.3) Datalog (2.4) Semantics (2.5)

More information

Motivation. CS389L: Automated Logical Reasoning. Lecture 5: Binary Decision Diagrams. Historical Context. Binary Decision Trees

Motivation. CS389L: Automated Logical Reasoning. Lecture 5: Binary Decision Diagrams. Historical Context. Binary Decision Trees Motivation CS389L: Automated Logical Reasoning Lecture 5: Binary Decision Diagrams Işıl Dillig Previous lectures: How to determine satisfiability of propositional formulas Sometimes need to efficiently

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 10. Action Planning Solving Logically Specified Problems using a General Problem Solver Joschka Boedecker and Wolfram Burgard and Frank Hutter and Bernhard Nebel

More information

SAT-CNF Is N P-complete

SAT-CNF Is N P-complete SAT-CNF Is N P-complete Rod Howell Kansas State University November 9, 2000 The purpose of this paper is to give a detailed presentation of an N P- completeness proof using the definition of N P given

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 11. Action Planning Solving Logically Specified Problems using a General Problem Solver Joschka Boedecker and Wolfram Burgard and Bernhard Nebel Albert-Ludwigs-Universität

More information

An IPS for TQBF Intro to Approximability

An IPS for TQBF Intro to Approximability An IPS for TQBF Intro to Approximability Outline Proof that TQBF (the language of true (valid) quantified Boolean formulas) is in the class IP Introduction to approximation algorithms for NP optimization

More information

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs Computational Optimization ISE 407 Lecture 16 Dr. Ted Ralphs ISE 407 Lecture 16 1 References for Today s Lecture Required reading Sections 6.5-6.7 References CLRS Chapter 22 R. Sedgewick, Algorithms in

More information

CS 151 Complexity Theory Spring Final Solutions. L i NL i NC 2i P.

CS 151 Complexity Theory Spring Final Solutions. L i NL i NC 2i P. CS 151 Complexity Theory Spring 2017 Posted: June 9 Final Solutions Chris Umans 1. (a) The procedure that traverses a fan-in 2 depth O(log i n) circuit and outputs a formula runs in L i this can be done

More information

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch]

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch] NP Completeness Andreas Klappenecker [partially based on slides by Jennifer Welch] Overview We already know the following examples of NPC problems: SAT 3SAT We are going to show that the following are

More information

Accelerated Precalculus 1.2 (Intercepts and Symmetry) Day 1 Notes. In 1.1, we discussed using t-charts to help graph functions. e.g.

Accelerated Precalculus 1.2 (Intercepts and Symmetry) Day 1 Notes. In 1.1, we discussed using t-charts to help graph functions. e.g. Accelerated Precalculus 1.2 (Intercepts and Symmetry) Day 1 Notes In 1.1, we discussed using t-charts to help graph functions. e.g., Graph: y = x 3 What are some other strategies that can make graphing

More information

Semantic Errors in Database Queries

Semantic Errors in Database Queries Semantic Errors in Database Queries 1 Semantic Errors in Database Queries Stefan Brass TU Clausthal, Germany From April: University of Halle, Germany Semantic Errors in Database Queries 2 Classification

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Lecturer 7 - Planning Lecturer: Truong Tuan Anh HCMUT - CSE 1 Outline Planning problem State-space search Partial-order planning Planning graphs Planning with propositional logic

More information

Compiler Structure. Data Flow Analysis. Control-Flow Graph. Available Expressions. Data Flow Facts

Compiler Structure. Data Flow Analysis. Control-Flow Graph. Available Expressions. Data Flow Facts Compiler Structure Source Code Abstract Syntax Tree Control Flow Graph Object Code CMSC 631 Program Analysis and Understanding Fall 2003 Data Flow Analysis Source code parsed to produce AST AST transformed

More information

Safe Stratified Datalog With Integer Order Does not Have Syntax

Safe Stratified Datalog With Integer Order Does not Have Syntax Safe Stratified Datalog With Integer Order Does not Have Syntax Alexei P. Stolboushkin Department of Mathematics UCLA Los Angeles, CA 90024-1555 aps@math.ucla.edu Michael A. Taitslin Department of Computer

More information

36.1 Relaxed Planning Graphs

36.1 Relaxed Planning Graphs Foundations of Artificial Intelligence ay 9, 26 6. Automated Planning: Delete Relaxation Heuristics Foundations of Artificial Intelligence 6. Automated Planning: Delete Relaxation Heuristics artin Wehrle

More information

Syntax-directed model checking of sequential programs

Syntax-directed model checking of sequential programs The Journal of Logic and Algebraic Programming 52 53 (2002) 129 162 THE JOURNAL OF LOGIC AND ALGEBRAIC PROGRAMMING www.elsevier.com/locate/jlap Syntax-directed model checking of sequential programs Karen

More information

Counterexample-guided Cartesian Abstraction Refinement

Counterexample-guided Cartesian Abstraction Refinement Counterexample-guided Cartesian Abstraction Refinement Jendrik Seipp and Malte Helmert Universität Basel Basel, Switzerland {jendrik.seipp,malte.helmert}@unibas.ch Abstract Counterexample-guided abstraction

More information

Decision Procedures in the Theory of Bit-Vectors

Decision Procedures in the Theory of Bit-Vectors Decision Procedures in the Theory of Bit-Vectors Sukanya Basu Guided by: Prof. Supratik Chakraborty Department of Computer Science and Engineering, Indian Institute of Technology, Bombay May 1, 2010 Sukanya

More information

CSCE750 Analysis of Algorithms Fall 2017 NP-Complete Problems

CSCE750 Analysis of Algorithms Fall 2017 NP-Complete Problems CSCE750 Analysis of Algorithms Fall 2017 NP-Complete Problems This document contains slides from the lecture, formatted to be suitable for printing or individual reading, and with some supplemental explanations

More information

Theory of Computer Science. D2.1 Introduction. Theory of Computer Science. D2.2 LOOP Programs. D2.3 Syntactic Sugar. D2.

Theory of Computer Science. D2.1 Introduction. Theory of Computer Science. D2.2 LOOP Programs. D2.3 Syntactic Sugar. D2. Theory of Computer Science April 20, 2016 D2. LOOP- and WHILE-Computability Theory of Computer Science D2. LOOP- and WHILE-Computability Malte Helmert University of Basel April 20, 2016 D2.1 Introduction

More information

Principles of AI Planning

Principles of AI Planning Principles of AI Planning 8. Planning as search: relaxation Albert-Ludwigs-Universität Freiburg Bernhard Nebel and Robert Mattmüller November 9th, 4 Plan steps Plan steps, serializations and parallel Forward

More information

A Comparison of Cost Partitioning Algorithms for Optimal Classical Planning

A Comparison of Cost Partitioning Algorithms for Optimal Classical Planning A Comparison of Cost Partitioning Algorithms for Optimal Classical Planning Jendrik Seipp Thomas Keller Malte Helmert University of Basel June 21, 2017 Setting optimal classical planning A search + admissible

More information

CSC2542 SAT-Based Planning. Sheila McIlraith Department of Computer Science University of Toronto Summer 2014

CSC2542 SAT-Based Planning. Sheila McIlraith Department of Computer Science University of Toronto Summer 2014 CSC2542 SAT-Based Planning Sheila McIlraith Department of Computer Science University of Toronto Summer 2014 1 Acknowledgements Some of the slides used in this course are modifications of Dana Nau s lecture

More information

Compiler Optimisation

Compiler Optimisation Compiler Optimisation 4 Dataflow Analysis Hugh Leather IF 1.18a hleather@inf.ed.ac.uk Institute for Computing Systems Architecture School of Informatics University of Edinburgh 2018 Introduction This lecture:

More information

Planning. Introduction

Planning. Introduction Planning Introduction Planning vs. Problem-Solving Representation in Planning Systems Situation Calculus The Frame Problem STRIPS representation language Blocks World Planning with State-Space Search Progression

More information

Pattern Database Heuristics for Fully Observable Nondeterministic Planning

Pattern Database Heuristics for Fully Observable Nondeterministic Planning Pattern Database Heuristics for Fully Observable Nondeterministic Planning Robert Mattmüller 1, Manuela Ortlieb 1, Malte Helmert 1, and Pascal ercher 2 1 University of Freiburg 2 Ulm University May 14,

More information

Theory of Computer Science

Theory of Computer Science Theory of Computer Science D3. GOTO-Computability Malte Helmert University of Basel April 25, 2016 Overview: Computability Theory Computability Theory imperative models of computation: D1. Turing-Computability

More information

SAT Solver. CS 680 Formal Methods Jeremy Johnson

SAT Solver. CS 680 Formal Methods Jeremy Johnson SAT Solver CS 680 Formal Methods Jeremy Johnson Disjunctive Normal Form A Boolean expression is a Boolean function Any Boolean function can be written as a Boolean expression s x 0 x 1 f Disjunctive normal

More information

Database Theory VU , SS Introduction: Relational Query Languages. Reinhard Pichler

Database Theory VU , SS Introduction: Relational Query Languages. Reinhard Pichler Database Theory Database Theory VU 181.140, SS 2018 1. Introduction: Relational Query Languages Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 6 March,

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 28. Constraint Satisfaction Problems: Decomposition Methods Malte Helmert University of Basel April 23, 2018 Constraint Satisfaction Problems: Overview Chapter overview:

More information

Algorithms, Games, and Networks February 21, Lecture 12

Algorithms, Games, and Networks February 21, Lecture 12 Algorithms, Games, and Networks February, 03 Lecturer: Ariel Procaccia Lecture Scribe: Sercan Yıldız Overview In this lecture, we introduce the axiomatic approach to social choice theory. In particular,

More information

Logic: TD as search, Datalog (variables)

Logic: TD as search, Datalog (variables) Logic: TD as search, Datalog (variables) Computer Science cpsc322, Lecture 23 (Textbook Chpt 5.2 & some basic concepts from Chpt 12) June, 8, 2017 CPSC 322, Lecture 23 Slide 1 Lecture Overview Recap Top

More information

Virtual views. Incremental View Maintenance. View maintenance. Materialized views. Review of bag algebra. Bag algebra operators (slide 1)

Virtual views. Incremental View Maintenance. View maintenance. Materialized views. Review of bag algebra. Bag algebra operators (slide 1) Virtual views Incremental View Maintenance CPS 296.1 Topics in Database Systems A view is defined by a query over base tables Example: CREATE VIEW V AS SELECT FROM R, S WHERE ; A view can be queried just

More information

Datalog Evaluation. Linh Anh Nguyen. Institute of Informatics University of Warsaw

Datalog Evaluation. Linh Anh Nguyen. Institute of Informatics University of Warsaw Datalog Evaluation Linh Anh Nguyen Institute of Informatics University of Warsaw Outline Simple Evaluation Methods Query-Subquery Recursive Magic-Set Technique Query-Subquery Nets [2/64] Linh Anh Nguyen

More information

NP-Completeness. Algorithms

NP-Completeness. Algorithms NP-Completeness Algorithms The NP-Completeness Theory Objective: Identify a class of problems that are hard to solve. Exponential time is hard. Polynomial time is easy. Why: Do not try to find efficient

More information

Vorlesung Grundlagen der Künstlichen Intelligenz

Vorlesung Grundlagen der Künstlichen Intelligenz Vorlesung Grundlagen der Künstlichen Intelligenz Reinhard Lafrenz / Prof. A. Knoll Robotics and Embedded Systems Department of Informatics I6 Technische Universität München www6.in.tum.de lafrenz@in.tum.de

More information

Planning. Planning. What is Planning. Why not standard search?

Planning. Planning. What is Planning. Why not standard search? Based on slides prepared by Tom Lenaerts SWITCH, Vlaams Interuniversitair Instituut voor Biotechnologie Modifications by Jacek.Malec@cs.lth.se Original slides can be found at http://aima.cs.berkeley.edu

More information

9.1 Introduction. Foundations of Artificial Intelligence. 9.1 Introduction. 9.2 Tree Search. 9.3 Graph Search. 9.4 Evaluating Search Algorithms

9.1 Introduction. Foundations of Artificial Intelligence. 9.1 Introduction. 9.2 Tree Search. 9.3 Graph Search. 9.4 Evaluating Search Algorithms Foundations of Artificial Intelligence March 14, 2018 9. State-Space Search: Tree Search and Graph Search Foundations of Artificial Intelligence 9. State-Space Search: Tree Search and Graph Search Malte

More information

CS 6110 S14 Lecture 38 Abstract Interpretation 30 April 2014

CS 6110 S14 Lecture 38 Abstract Interpretation 30 April 2014 CS 6110 S14 Lecture 38 Abstract Interpretation 30 April 2014 1 Introduction to Abstract Interpretation At this point in the course, we have looked at several aspects of programming languages: operational

More information

(How Not To Do) Global Optimizations

(How Not To Do) Global Optimizations (How Not To Do) Global Optimizations #1 One-Slide Summary A global optimization changes an entire method (consisting of multiple basic blocks). We must be conservative and only apply global optimizations

More information

Syrvey on block ciphers

Syrvey on block ciphers Syrvey on block ciphers Anna Rimoldi Department of Mathematics - University of Trento BunnyTn 2012 A. Rimoldi (Univ. Trento) Survey on block ciphers 12 March 2012 1 / 21 Symmetric Key Cryptosystem M-Source

More information

CS 432 Fall Mike Lam, Professor. Data-Flow Analysis

CS 432 Fall Mike Lam, Professor. Data-Flow Analysis CS 432 Fall 2018 Mike Lam, Professor Data-Flow Analysis Compilers "Back end" Source code Tokens Syntax tree Machine code char data[20]; int main() { float x = 42.0; return 7; } 7f 45 4c 46 01 01 01 00

More information

A. Arratia Program Schemes 1. Program Schemes. Reunión MOISES, 3 Septiembre Argimiro Arratia. Universidad de Valladolid

A. Arratia Program Schemes 1. Program Schemes. Reunión MOISES, 3 Septiembre Argimiro Arratia. Universidad de Valladolid A. Arratia Program Schemes 1 Program Schemes Reunión MOISES, 3 Septiembre 2004 Argimiro Arratia Universidad de Valladolid arratia@mac.uva.es A. Arratia Program Schemes 2 A program scheme ρ NPS(τ) involves

More information

Planning. CPS 570 Ron Parr. Some Actual Planning Applications. Used to fulfill mission objectives in Nasa s Deep Space One (Remote Agent)

Planning. CPS 570 Ron Parr. Some Actual Planning Applications. Used to fulfill mission objectives in Nasa s Deep Space One (Remote Agent) Planning CPS 570 Ron Parr Some Actual Planning Applications Used to fulfill mission objectives in Nasa s Deep Space One (Remote Agent) Particularly important for space operations due to latency Also used

More information

Intelligent Agents. State-Space Planning. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 14.

Intelligent Agents. State-Space Planning. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 14. Intelligent Agents State-Space Planning Ute Schmid Cognitive Systems, Applied Computer Science, Bamberg University last change: 14. April 2016 U. Schmid (CogSys) Intelligent Agents last change: 14. April

More information

Repairing Multi-Player Games

Repairing Multi-Player Games Repairing Multi-Player Games Shaull Almagor, Guy Avni, and Orna Kupferman School of Computer Science and Engineering, The Hebrew University, Israel Abstract Synthesis is the automated construction of systems

More information

Relative Information Completeness

Relative Information Completeness Relative Information Completeness Abstract Wenfei Fan University of Edinburgh & Bell Labs wenfei@inf.ed.ac.uk The paper investigates the question of whether a partially closed database has complete information

More information

Incomplete Information: Null Values

Incomplete Information: Null Values Incomplete Information: Null Values Often ruled out: not null in SQL. Essential when one integrates/exchanges data. Perhaps the most poorly designed and the most often criticized part of SQL:... [this]

More information

Register Allocation. Global Register Allocation Webs and Graph Coloring Node Splitting and Other Transformations

Register Allocation. Global Register Allocation Webs and Graph Coloring Node Splitting and Other Transformations Register Allocation Global Register Allocation Webs and Graph Coloring Node Splitting and Other Transformations Copyright 2015, Pedro C. Diniz, all rights reserved. Students enrolled in the Compilers class

More information

Ch9: Exact Inference: Variable Elimination. Shimi Salant, Barak Sternberg

Ch9: Exact Inference: Variable Elimination. Shimi Salant, Barak Sternberg Ch9: Exact Inference: Variable Elimination Shimi Salant Barak Sternberg Part 1 Reminder introduction (1/3) We saw two ways to represent (finite discrete) distributions via graphical data structures: Bayesian

More information

44.1 Introduction Introduction. Foundations of Artificial Intelligence Monte-Carlo Methods Sparse Sampling 44.4 MCTS. 44.

44.1 Introduction Introduction. Foundations of Artificial Intelligence Monte-Carlo Methods Sparse Sampling 44.4 MCTS. 44. Foundations of Artificial ntelligence May 27, 206 44. : ntroduction Foundations of Artificial ntelligence 44. : ntroduction Thomas Keller Universität Basel May 27, 206 44. ntroduction 44.2 Monte-Carlo

More information

Planning (Chapter 10)

Planning (Chapter 10) Planning (Chapter 10) http://en.wikipedia.org/wiki/rube_goldberg_machine Planning Example problem: I m at home and I need milk, bananas, and a drill. What do I do? How is planning different from regular

More information

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2014

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2014 Set 9: Planning Classical Planning Systems ICS 271 Fall 2014 Planning environments Classical Planning: Outline: Planning Situation calculus PDDL: Planning domain definition language STRIPS Planning Planning

More information

ICS 606. Intelligent Autonomous Agents 1

ICS 606. Intelligent Autonomous Agents 1 Intelligent utonomous gents ICS 606 / EE 606 Fall 2011 Nancy E. Reed nreed@hawaii.edu Lecture #4 Practical Reasoning gents Intentions Planning Means-ends reasoning The blocks world References Wooldridge

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Bernhard Nebel, Julien Hué, and Stefan Wölfl Albert-Ludwigs-Universität Freiburg April 23, 2012 Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems

More information

16.1 Introduction. Foundations of Artificial Intelligence Introduction Greedy Best-first Search 16.3 A Weighted A. 16.

16.1 Introduction. Foundations of Artificial Intelligence Introduction Greedy Best-first Search 16.3 A Weighted A. 16. Foundations of Artificial Intelligence March 28, 2018 16. State-Space Search: Greedy BFS, A, Weighted A Foundations of Artificial Intelligence 16. State-Space Search: Greedy BFS, A, Weighted A Malte Helmert

More information

8 NP-complete problem Hard problems: demo

8 NP-complete problem Hard problems: demo Ch8 NPC Millennium Prize Problems http://en.wikipedia.org/wiki/millennium_prize_problems 8 NP-complete problem Hard problems: demo NP-hard (Non-deterministic Polynomial-time hard), in computational complexity

More information

Range Restriction for General Formulas

Range Restriction for General Formulas Range Restriction for General Formulas 1 Range Restriction for General Formulas Stefan Brass Martin-Luther-Universität Halle-Wittenberg Germany Range Restriction for General Formulas 2 Motivation Deductive

More information

Incorporating Domain-Independent Planning Heuristics in Hierarchical Planning

Incorporating Domain-Independent Planning Heuristics in Hierarchical Planning Incorporating Domain-Independent Planning Heuristics in Hierarchical Planning Vikas Shivashankar Knexus Research Corporation National Harbor, MD vikas.shivashankar@knexusresearch.com Ron Alford MITRE McLean,

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Look-Back Malte Helmert and Stefan Wölfl Albert-Ludwigs-Universität Freiburg June 5, 2007 S. Wölfl, M. Helmert (Universität Freiburg) Constraint Satisfaction Problems June

More information

On the Hardness of Counting the Solutions of SPARQL Queries

On the Hardness of Counting the Solutions of SPARQL Queries On the Hardness of Counting the Solutions of SPARQL Queries Reinhard Pichler and Sebastian Skritek Vienna University of Technology, Faculty of Informatics {pichler,skritek}@dbai.tuwien.ac.at 1 Introduction

More information

How Good is Almost Perfect?

How Good is Almost Perfect? How Good is Almost Perfect? Malte Helmert and Gabriele Röger Albert-Ludwigs-Universität Freiburg, Germany {helmert,roeger}@informatik.uni-freiburg.de Abstract Heuristic search using algorithms such as

More information

Computability Theory

Computability Theory CS:4330 Theory of Computation Spring 2018 Computability Theory Other NP-Complete Problems Haniel Barbosa Readings for this lecture Chapter 7 of [Sipser 1996], 3rd edition. Sections 7.4 and 7.5. The 3SAT

More information

Artificial Intelligence (part 4a) Problem Solving Using Search: Structures and Strategies for State Space Search

Artificial Intelligence (part 4a) Problem Solving Using Search: Structures and Strategies for State Space Search Artificial Intelligence (part 4a) Problem Solving Using Search: Structures and Strategies for State Space Search Course Contents Again..Selected topics for our course. Covering all of AI is impossible!

More information

Regression Planning. CPSC 322 Lecture 17. February 14, 2007 Textbook 11.2 and Regression Planning CPSC 322 Lecture 17, Slide 1

Regression Planning. CPSC 322 Lecture 17. February 14, 2007 Textbook 11.2 and Regression Planning CPSC 322 Lecture 17, Slide 1 CPSC 322 Lecture 17 February 14, 2007 Textbook 11.2 and 4.0 4.2 CPSC 322 Lecture 17, Slide 1 Lecture Overview 1 Recap 2 CPSC 322 Lecture 17, Slide 2 Forward Planning Idea: search in the state-space graph.

More information

arxiv: v2 [cs.cc] 29 Mar 2010

arxiv: v2 [cs.cc] 29 Mar 2010 On a variant of Monotone NAE-3SAT and the Triangle-Free Cut problem. arxiv:1003.3704v2 [cs.cc] 29 Mar 2010 Peiyush Jain, Microsoft Corporation. June 28, 2018 Abstract In this paper we define a restricted

More information

Inconsistency-tolerant logics

Inconsistency-tolerant logics Inconsistency-tolerant logics CS 157 Computational Logic Autumn 2010 Inconsistent logical theories T 1 = { p(a), p(a) } T 2 = { x(p(x) q(x)), p(a), q(a) } Definition: A theory T is inconsistent if T has

More information

Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15

Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15 22.520 Numerical Methods for PDEs : Video 11: 1D Finite Difference Mappings Theory and Matlab February 15, 2015 22.520 Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings 2015

More information