Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15

Size: px
Start display at page:

Download "Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15"

Transcription

1 Numerical Methods for PDEs : Video 11: 1D Finite Difference Mappings Theory and Matlab February 15, Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15

2 Idea So far, we ve only considered square and simple 1-D unit domains. What is domain is something other than a square/rectangle/unit line? What if finite difference is not aligned with x and y directions? What if the nodes are along a curved line? So far, the nodes have been equally spaced. What about refining locally to get better answers? How to we setup finite differences with varying node refinement? Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15

3 Idea Define a mapping, T, between a computational and physical domain. Can be mathematical or numerical (computational physical) Transform governing equation from the physical computational. Solve the PDE on the computational domain Map the computational results to the physical domain Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15

4 Let s use the 1-D string example: Let s define the physical and computational domains Computational: Define computational domain: ξ = (0, 1). Define the physical space as follows: The real string is 4 units long. The real string is refined at sides. x(ξ) = 2cos(πξ) Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15

5 We d like to solve: 2 u(x(ξ)) = 2 u x 2 = f on the computational domain rather than physical domain. To do this, we need to recognize that: u(x) = u(x(ξ)) Goal: what is the equivalent equation to solve on the computational domain. ie. What equation can we solve in ξ domain and get the answer? Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15

6 Let s start by expressing ( ) x in the computational domain. The goal is to find the derivatives w.r.t. ξ rather than x. This way, we can perform finite differences w.r.t. ξ. Taking the first derivative: Similarly, we can write: ( ) x = ( ) dξ ξ dx ( ) ξ = ( ) dx x dξ Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15

7 So, the first derivative is: (u) x = (u) dξ ξ dx Now, let s try the second derivative: ( ) 2 u (u) x 2 = x = x ( ) (u) x dξ ξ dx = f Substituting in the first derivative result from above: 2 u x 2 = dξ ( u dx ξ ξ dξ ) = f dx Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15

8 Now, we need to apply the chain rule: 2 u x 2 = dξ ( u dx ξ ξ Continuing by simplification: Continuing: 2 u x 2 = ( ) dξ 2 dx ξ ) dξ dx + dξ u dx ξ ( ) u + dξ u ξ dx ξ 2 u x 2 = 1 2 u ) 2 ξ 2 1 ( dx dξ ( dx dξ ξ ( ) dξ = f dx ( ) 1 = f ξ dx dξ ) 3 2 x ξ 2 u ξ = f Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15

9 Using J to represent the Jacobian of the mapping, J = dx dξ, the equation is : 2 u x 2 = 1 2 u J 2 ξ x u J 3 ξ 2 ξ = f The result is an equivalent equation in the computational domain as that which must be satisfied in the physical domain. The components in blue are those corresponding to the geometry. Those in red correspond to the derivative of the solution in the computational domain Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15

10 To implement the equation in a finite difference solution method in the computational domain: 2 u x 2 = 1 J 2 2 u ξ 2 1 J 3 2 x ξ 2 u ξ = f Substitute the second order, central difference equations for the first and second derivatives: ( 2 ) u x 2 = 1 ( ) ui 1 2u i + u i+1 J 2 ξ ( ) x ui+1 u i 1 J 3 ξ 2 = f i 2 x Now, all that s left is to construct the matrices Numerical Methods for PDEs : Video 11: 1D Finite February Difference 15, Mappings Theory / 15

11 Let s generalize for a given row i of the matrix: ( 2 ) u x 2 = 1 ( ) ui 1 2u i + u i+1 J 2 ξ ( ) x ui+1 u i 1 J 3 ξ 2 = f i = 1 2 x The A-Matrix entries are: ( ) 1 1 A(row i, column i ) = 2 J 2 ξ 2 ( ) 1 1 A(row i, column i + 1) = 1 J 2 ξ 2 1 J 3 2 x ( ) 1 1 A(row i, column i 1) = 1 J 2 ξ J 3 2 x ξ 2 f (row i ) = 1 ( 1 ξ 2 ) 2 ξ ) ( 1 2 ξ Numerical Methods for PDEs : Video 11: 1D Finite February Difference 15, Mappings Theory / 15

12 For our example: 2 u(x(ξ)) = f x = 2cos(πξ) The mapping coefficients can be analytically computed: dx dξ = 2π sin(πξ) d 2 x dξ 2 = 2π 2 cos(πξ) Alternatively, if we only had the points in the physical domain (ie. not provided with an analytical mapping), we could simply use finite difference formulae to calculate the derivatives, e.g.: dx dξ = x i+1 x i 1 2 ξ Numerical Methods for PDEs : Video 11: 1D Finite February Difference 15, Mappings Theory / 15

13 1-D string example solution (computational vs. physical): Numerical Methods for PDEs : Video 11: 1D Finite February Difference 15, Mappings Theory / 15

14 Let s check our infinity-norm convergence (max error) : The convergence is second order (i.e., the solution converges as expected) Numerical Methods for PDEs : Video 11: 1D Finite February Difference 15, Mappings Theory / 15

15 What have we learned? We can transform an equation from a tricky physical domain to a simpler reference computational domain. We need to develop a new governing equation for the computational domain that represents the physical domain equation but on a uniform grid/spacing. Once we have the mapping & new equation, the solution to the finite difference problem is identical to what was done before. The mapping can be computed numerically or analytically (depending on complexity) Numerical Methods for PDEs : Video 11: 1D Finite February Difference 15, Mappings Theory / 15

Numerical Methods for PDEs : Video 9: 2D Finite Difference February 14, Equations / 29

Numerical Methods for PDEs : Video 9: 2D Finite Difference February 14, Equations / 29 22.520 Numerical Methods for PDEs Video 9 2D Finite Difference Equations February 4, 205 22.520 Numerical Methods for PDEs Video 9 2D Finite Difference February 4, Equations 205 / 29 Thought Experiment

More information

AMS527: Numerical Analysis II

AMS527: Numerical Analysis II AMS527: Numerical Analysis II A Brief Overview of Finite Element Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao SUNY Stony Brook AMS527: Numerical Analysis II 1 / 25 Overview Basic concepts Mathematical

More information

Introduction to Computational Mathematics

Introduction to Computational Mathematics Introduction to Computational Mathematics Introduction Computational Mathematics: Concerned with the design, analysis, and implementation of algorithms for the numerical solution of problems that have

More information

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss Robot Mapping Least Squares Approach to SLAM Cyrill Stachniss 1 Three Main SLAM Paradigms Kalman filter Particle filter Graphbased least squares approach to SLAM 2 Least Squares in General Approach for

More information

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General Robot Mapping Three Main SLAM Paradigms Least Squares Approach to SLAM Kalman filter Particle filter Graphbased Cyrill Stachniss least squares approach to SLAM 1 2 Least Squares in General! Approach for

More information

Jacobian of Point Coordinates w.r.t. Parameters of General Calibrated Projective Camera

Jacobian of Point Coordinates w.r.t. Parameters of General Calibrated Projective Camera Jacobian of Point Coordinates w.r.t. Parameters of General Calibrated Projective Camera Karel Lebeda, Simon Hadfield, Richard Bowden Introduction This is a supplementary technical report for ACCV04 paper:

More information

Journal of Engineering Research and Studies E-ISSN

Journal of Engineering Research and Studies E-ISSN Journal of Engineering Research and Studies E-ISS 0976-79 Research Article SPECTRAL SOLUTIO OF STEADY STATE CODUCTIO I ARBITRARY QUADRILATERAL DOMAIS Alavani Chitra R 1*, Joshi Pallavi A 1, S Pavitran

More information

Isogeometric Collocation Method

Isogeometric Collocation Method Chair for Computational Analysis of Technical Systems Faculty of Mechanical Engineering, RWTH Aachen University Isogeometric Collocation Method Seminararbeit By Marko Blatzheim Supervisors: Dr. Stefanie

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 24 So in today s class, we will look at quadrilateral elements; and we will

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (2000/2001)

An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (2000/2001) An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (000/001) Summary The objectives of this project were as follows: 1) Investigate iterative

More information

Maple as an Instructional Tool

Maple as an Instructional Tool Maple as an Instructional Tool Terence A. Weigel 1 Abstract Computer algebra software such as Maple is an important component of the engineer s toolkit, much as are Matlib, MathCAD and Excel. However,

More information

Fast marching methods

Fast marching methods 1 Fast marching methods Lecture 3 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Metric discretization 2 Approach I:

More information

2. Use elementary row operations to rewrite the augmented matrix in a simpler form (i.e., one whose solutions are easy to find).

2. Use elementary row operations to rewrite the augmented matrix in a simpler form (i.e., one whose solutions are easy to find). Section. Gaussian Elimination Our main focus in this section is on a detailed discussion of a method for solving systems of equations. In the last section, we saw that the general procedure for solving

More information

MA 162: Finite Mathematics - Sections 2.6

MA 162: Finite Mathematics - Sections 2.6 MA 162: Finite Mathematics - Sections 2.6 Fall 2014 Ray Kremer University of Kentucky September 24, 2014 Announcements: Homework 2.6 due next Tuesday at 6pm. Multiplicative Inverses If a is a non-zero

More information

Contents. Implementing the QR factorization The algebraic eigenvalue problem. Applied Linear Algebra in Geoscience Using MATLAB

Contents. Implementing the QR factorization The algebraic eigenvalue problem. Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

Finite Element Analysis Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology Madras. Module - 01 Lecture - 15

Finite Element Analysis Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology Madras. Module - 01 Lecture - 15 Finite Element Analysis Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology Madras Module - 01 Lecture - 15 In the last class we were looking at this 3-D space frames; let me summarize

More information

2D Object Definition (1/3)

2D Object Definition (1/3) 2D Object Definition (1/3) Lines and Polylines Lines drawn between ordered points to create more complex forms called polylines Same first and last point make closed polyline or polygon Can intersect itself

More information

Adaptive numerical methods

Adaptive numerical methods METRO MEtallurgical TRaining On-line Adaptive numerical methods Arkadiusz Nagórka CzUT Education and Culture Introduction Common steps of finite element computations consists of preprocessing - definition

More information

Boundary element quadrature schemes for multi- and many-core architectures

Boundary element quadrature schemes for multi- and many-core architectures Boundary element quadrature schemes for multi- and many-core architectures Jan Zapletal, Michal Merta, Lukáš Malý IT4Innovations, Dept. of Applied Mathematics VŠB-TU Ostrava jan.zapletal@vsb.cz Intel MIC

More information

Iterative Methods for Linear Systems

Iterative Methods for Linear Systems Iterative Methods for Linear Systems 1 the method of Jacobi derivation of the formulas cost and convergence of the algorithm a Julia function 2 Gauss-Seidel Relaxation an iterative method for solving linear

More information

Harmonic Spline Series Representation of Scaling Functions

Harmonic Spline Series Representation of Scaling Functions Harmonic Spline Series Representation of Scaling Functions Thierry Blu and Michael Unser Biomedical Imaging Group, STI/BIO-E, BM 4.34 Swiss Federal Institute of Technology, Lausanne CH-5 Lausanne-EPFL,

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 36 In last class, we have derived element equations for two d elasticity problems

More information

Lab - Introduction to Finite Element Methods and MATLAB s PDEtoolbox

Lab - Introduction to Finite Element Methods and MATLAB s PDEtoolbox Scientific Computing III 1 (15) Institutionen för informationsteknologi Beräkningsvetenskap Besöksadress: ITC hus 2, Polacksbacken Lägerhyddsvägen 2 Postadress: Box 337 751 05 Uppsala Telefon: 018 471

More information

AMSC/CMSC 460 Final Exam, Fall 2007

AMSC/CMSC 460 Final Exam, Fall 2007 AMSC/CMSC 460 Final Exam, Fall 2007 Show all work. You may leave arithmetic expressions in any form that a calculator could evaluate. By putting your name on this paper, you agree to abide by the university

More information

Lecture 3.2 Methods for Structured Mesh Generation

Lecture 3.2 Methods for Structured Mesh Generation Lecture 3.2 Methods for Structured Mesh Generation 1 There are several methods to develop the structured meshes: Algebraic methods, Interpolation methods, and methods based on solving partial differential

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT:

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT: CALCULUS WITH PARAMETERIZED CURVES In calculus I we learned how to differentiate and integrate functions. In the chapter covering the applications of the integral, we learned how to find the length of

More information

MODERN FACTOR ANALYSIS

MODERN FACTOR ANALYSIS MODERN FACTOR ANALYSIS Harry H. Harman «ö THE pigj UNIVERSITY OF CHICAGO PRESS Contents LIST OF ILLUSTRATIONS GUIDE TO NOTATION xv xvi Parti Foundations of Factor Analysis 1. INTRODUCTION 3 1.1. Brief

More information

COMP 4601 Hubs and Authorities

COMP 4601 Hubs and Authorities COMP 4601 Hubs and Authorities 1 Motivation PageRank gives a way to compute the value of a page given its position and connectivity w.r.t. the rest of the Web. Is it the only algorithm: No! It s just one

More information

Examples from Section 7.1: Integration by Parts Page 1

Examples from Section 7.1: Integration by Parts Page 1 Examples from Section 7.: Integration by Parts Page Questions Example Determine x cos x dx. Example e θ cos θ dθ Example You may wonder why we do not add a constant at the point where we integrate for

More information

Matrix Inverse 2 ( 2) 1 = 2 1 2

Matrix Inverse 2 ( 2) 1 = 2 1 2 Name: Matrix Inverse For Scalars, we have what is called a multiplicative identity. This means that if we have a scalar number, call it r, then r multiplied by the multiplicative identity equals r. Without

More information

Parallel Implementations of Gaussian Elimination

Parallel Implementations of Gaussian Elimination s of Western Michigan University vasilije.perovic@wmich.edu January 27, 2012 CS 6260: in Parallel Linear systems of equations General form of a linear system of equations is given by a 11 x 1 + + a 1n

More information

521493S Computer Graphics Exercise 2 Solution (Chapters 4-5)

521493S Computer Graphics Exercise 2 Solution (Chapters 4-5) 5493S Computer Graphics Exercise Solution (Chapters 4-5). Given two nonparallel, three-dimensional vectors u and v, how can we form an orthogonal coordinate system in which u is one of the basis vectors?

More information

Variational Methods II

Variational Methods II Mathematical Foundations of Computer Graphics and Vision Variational Methods II Luca Ballan Institute of Visual Computing Last Lecture If we have a topological vector space with an inner product and functionals

More information

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3 6 Iterative Solvers Lab Objective: Many real-world problems of the form Ax = b have tens of thousands of parameters Solving such systems with Gaussian elimination or matrix factorizations could require

More information

Name of student. Personal number. Teaching assistant. Optimisation: Stereo correspondences for fundamental matrix estimation.

Name of student. Personal number. Teaching assistant. Optimisation: Stereo correspondences for fundamental matrix estimation. Version: March 23, 2018 c Computer Vision Laboratory Linköping University Name of student Personal number Date Teaching assistant Optimisation: Stereo correspondences for fundamental matrix estimation

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46 Polar Coordinates Polar Coordinates: Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ)

More information

x = 12 x = 12 1x = 16

x = 12 x = 12 1x = 16 2.2 - The Inverse of a Matrix We've seen how to add matrices, multiply them by scalars, subtract them, and multiply one matrix by another. The question naturally arises: Can we divide one matrix by another?

More information

Anisotropic quality measures and adaptation for polygonal meshes

Anisotropic quality measures and adaptation for polygonal meshes Anisotropic quality measures and adaptation for polygonal meshes Yanqiu Wang, Oklahoma State University joint work with Weizhang Huang Oct 2015, POEMs, Georgia Tech. 1 / 23 Consider the following function

More information

Objectives and Homework List

Objectives and Homework List MAC 1140 Objectives and Homework List Each objective covered in MAC1140 is listed below. Along with each objective is the homework list used with MyMathLab (MML) and a list to use with the text (if you

More information

QUADRATIC UNIFORM B-SPLINE CURVE REFINEMENT

QUADRATIC UNIFORM B-SPLINE CURVE REFINEMENT On-Line Geometric Modeling Notes QUADRATIC UNIFORM B-SPLINE CURVE REFINEMENT Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview

More information

Parallel Performance Studies for COMSOL Multiphysics Using Scripting and Batch Processing

Parallel Performance Studies for COMSOL Multiphysics Using Scripting and Batch Processing Parallel Performance Studies for COMSOL Multiphysics Using Scripting and Batch Processing Noemi Petra and Matthias K. Gobbert Department of Mathematics and Statistics, University of Maryland, Baltimore

More information

Integrated Math I. IM1.1.3 Understand and use the distributive, associative, and commutative properties.

Integrated Math I. IM1.1.3 Understand and use the distributive, associative, and commutative properties. Standard 1: Number Sense and Computation Students simplify and compare expressions. They use rational exponents and simplify square roots. IM1.1.1 Compare real number expressions. IM1.1.2 Simplify square

More information

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not.

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not. AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 2: Spline Approximations Dianne P O Leary c 2001, 2002, 2007 Piecewise polynomial interpolation Piecewise polynomial interpolation Read: Chapter 3 Skip:

More information

) 2 + (y 2. x 1. y c x2 = y

) 2 + (y 2. x 1. y c x2 = y Graphing Parabola Parabolas A parabola is a set of points P whose distance from a fixed point, called the focus, is equal to the perpendicular distance from P to a line, called the directrix. Since this

More information

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6 Math background 2D Geometric Transformations CS 4620 Lecture 6 Read: Chapter 2: Miscellaneous Math Chapter 5: Linear Algebra Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector

More information

CHAPTER 5 SYSTEMS OF EQUATIONS. x y

CHAPTER 5 SYSTEMS OF EQUATIONS. x y page 1 of Section 5.1 CHAPTER 5 SYSTEMS OF EQUATIONS SECTION 5.1 GAUSSIAN ELIMINATION matrix form of a system of equations The system 2x + 3y + 4z 1 5x + y + 7z 2 can be written as Ax where b 2 3 4 A [

More information

DEPARTMENT - Mathematics. Coding: N Number. A Algebra. G&M Geometry and Measure. S Statistics. P - Probability. R&P Ratio and Proportion

DEPARTMENT - Mathematics. Coding: N Number. A Algebra. G&M Geometry and Measure. S Statistics. P - Probability. R&P Ratio and Proportion DEPARTMENT - Mathematics Coding: N Number A Algebra G&M Geometry and Measure S Statistics P - Probability R&P Ratio and Proportion YEAR 7 YEAR 8 N1 Integers A 1 Simplifying G&M1 2D Shapes N2 Decimals S1

More information

Robot Mapping. A Short Introduction to Homogeneous Coordinates. Gian Diego Tipaldi, Wolfram Burgard

Robot Mapping. A Short Introduction to Homogeneous Coordinates. Gian Diego Tipaldi, Wolfram Burgard Robot Mapping A Short Introduction to Homogeneous Coordinates Gian Diego Tipaldi, Wolfram Burgard 1 Motivation Cameras generate a projected image of the world Euclidian geometry is suboptimal to describe

More information

Mathematics 96 (3581) CA (Class Addendum) 2: Associativity Mt. San Jacinto College Menifee Valley Campus Spring 2013

Mathematics 96 (3581) CA (Class Addendum) 2: Associativity Mt. San Jacinto College Menifee Valley Campus Spring 2013 Mathematics 96 (3581) CA (Class Addendum) 2: Associativity Mt. San Jacinto College Menifee Valley Campus Spring 2013 Name This class addendum is worth a maximum of five (5) points. It is due no later than

More information

Using Arrays and Vectors to Make Graphs In Mathcad Charles Nippert

Using Arrays and Vectors to Make Graphs In Mathcad Charles Nippert Using Arrays and Vectors to Make Graphs In Mathcad Charles Nippert This Quick Tour will lead you through the creation of vectors (one-dimensional arrays) and matrices (two-dimensional arrays). After that,

More information

Multidimensional scaling

Multidimensional scaling Multidimensional scaling Lecture 5 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Cinderella 2.0 2 If it doesn t fit,

More information

(Creating Arrays & Matrices) Applied Linear Algebra in Geoscience Using MATLAB

(Creating Arrays & Matrices) Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB (Creating Arrays & Matrices) Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional

More information

Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms

Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms By:- Nitin Kamra Indian Institute of Technology, Delhi Advisor:- Prof. Ulrich Reude 1. Introduction to Linear

More information

An idea which can be used once is a trick. If it can be used more than once it becomes a method

An idea which can be used once is a trick. If it can be used more than once it becomes a method An idea which can be used once is a trick. If it can be used more than once it becomes a method - George Polya and Gabor Szego University of Texas at Arlington Rigid Body Transformations & Generalized

More information

Control Volume Finite Difference On Adaptive Meshes

Control Volume Finite Difference On Adaptive Meshes Control Volume Finite Difference On Adaptive Meshes Sanjay Kumar Khattri, Gunnar E. Fladmark, Helge K. Dahle Department of Mathematics, University Bergen, Norway. sanjay@mi.uib.no Summary. In this work

More information

MEI STRUCTURED MATHEMATICS METHODS FOR ADVANCED MATHEMATICS, C3. Practice Paper C3-B

MEI STRUCTURED MATHEMATICS METHODS FOR ADVANCED MATHEMATICS, C3. Practice Paper C3-B MEI Mathematics in Education and Industry MEI STRUCTURED MATHEMATICS METHODS FOR ADVANCED MATHEMATICS, C3 Practice Paper C3-B Additional materials: Answer booklet/paper Graph paper List of formulae (MF)

More information

An Introduction to Numerical Analysis

An Introduction to Numerical Analysis Weimin Han AMCS & Dept of Math University of Iowa MATH:38 Example 1 Question: What is the area of the region between y = e x 2 and the x-axis for x 1? Answer: Z 1 e x 2 dx = : 1.9.8.7.6.5.4.3.2.1 1.5.5

More information

10/26/ Solving Systems of Linear Equations Using Matrices. Objectives. Matrices

10/26/ Solving Systems of Linear Equations Using Matrices. Objectives. Matrices 6.1 Solving Systems of Linear Equations Using Matrices Objectives Write the augmented matrix for a linear system. Perform matrix row operations. Use matrices and Gaussian elimination to solve systems.

More information

Motivation Patch tests Numerical examples Conclusions

Motivation Patch tests Numerical examples Conclusions Weakening the tight coupling between geometry and simulation in isogeometric analysis: from sub- and super- geometric analysis to Geometry Independent Field approximation (GIFT) Elena Atroshchenko, Gang

More information

3. Replace any row by the sum of that row and a constant multiple of any other row.

3. Replace any row by the sum of that row and a constant multiple of any other row. Math Section. Section.: Solving Systems of Linear Equations Using Matrices As you may recall from College Algebra or Section., you can solve a system of linear equations in two variables easily by applying

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute (3 pts) Compare the testing methods for testing path segment and finding first

More information

COMPUTER AIDED ENGINEERING DESIGN (BFF2612)

COMPUTER AIDED ENGINEERING DESIGN (BFF2612) COMPUTER AIDED ENGINEERING DESIGN (BFF2612) BASIC MATHEMATICAL CONCEPTS IN CAED by Dr. Mohd Nizar Mhd Razali Faculty of Manufacturing Engineering mnizar@ump.edu.my COORDINATE SYSTEM y+ y+ z+ z+ x+ RIGHT

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Structure Computation Lecture 18 March 22, 2005 2 3D Reconstruction The goal of 3D reconstruction

More information

When implementing FEM for solving two-dimensional partial differential equations, integrals of the form

When implementing FEM for solving two-dimensional partial differential equations, integrals of the form Quadrature Formulas in Two Dimensions Math 57 - Finite Element Method Section, Spring Shaozhong Deng, PhD (shaodeng@unccedu Dept of Mathematics and Statistics, UNC at Charlotte When implementing FEM for

More information

What you will learn today

What you will learn today What you will learn today Tangent Planes and Linear Approximation and the Gradient Vector Vector Functions 1/21 Recall in one-variable calculus, as we zoom in toward a point on a curve, the graph becomes

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45 : Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ) Chapter 10: Parametric Equations

More information

Direct Rendering. Direct Rendering Goals

Direct Rendering. Direct Rendering Goals May 2, 2005 Goals General Goals Small memory footprint Fast rendering High-quality results identical to those of Saffron V1 using distance-based anti-aliasing and alignment zones Goals Specific Goals Avoid

More information

Continuity and Tangent Lines for functions of two variables

Continuity and Tangent Lines for functions of two variables Continuity and Tangent Lines for functions of two variables James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 4, 2014 Outline 1 Continuity

More information

1 Projective Geometry

1 Projective Geometry CIS8, Machine Perception Review Problem - SPRING 26 Instructions. All coordinate systems are right handed. Projective Geometry Figure : Facade rectification. I took an image of a rectangular object, and

More information

A numerical grid and grid less (Mesh less) techniques for the solution of 2D Laplace equation

A numerical grid and grid less (Mesh less) techniques for the solution of 2D Laplace equation Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2014, 5(1):150-155 ISSN: 0976-8610 CODEN (USA): AASRFC A numerical grid and grid less (Mesh less) techniques for

More information

Open and Closed Sets

Open and Closed Sets Open and Closed Sets Definition: A subset S of a metric space (X, d) is open if it contains an open ball about each of its points i.e., if x S : ɛ > 0 : B(x, ɛ) S. (1) Theorem: (O1) and X are open sets.

More information

Linear Equation Systems Iterative Methods

Linear Equation Systems Iterative Methods Linear Equation Systems Iterative Methods Content Iterative Methods Jacobi Iterative Method Gauss Seidel Iterative Method Iterative Methods Iterative methods are those that produce a sequence of successive

More information

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9.

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9. II.4 Surface Simplification 37 II.4 Surface Simplification In applications it is often necessary to simplify the data or its representation. One reason is measurement noise, which we would like to eliminate,

More information

Multiview Stereo COSC450. Lecture 8

Multiview Stereo COSC450. Lecture 8 Multiview Stereo COSC450 Lecture 8 Stereo Vision So Far Stereo and epipolar geometry Fundamental matrix captures geometry 8-point algorithm Essential matrix with calibrated cameras 5-point algorithm Intersect

More information

Image deblurring by multigrid methods. Department of Physics and Mathematics University of Insubria

Image deblurring by multigrid methods. Department of Physics and Mathematics University of Insubria Image deblurring by multigrid methods Marco Donatelli Stefano Serra-Capizzano Department of Physics and Mathematics University of Insubria Outline 1 Restoration of blurred and noisy images The model problem

More information

Computational Fluid Dynamics - Incompressible Flows

Computational Fluid Dynamics - Incompressible Flows Computational Fluid Dynamics - Incompressible Flows March 25, 2008 Incompressible Flows Basis Functions Discrete Equations CFD - Incompressible Flows CFD is a Huge field Numerical Techniques for solving

More information

CDA6530: Performance Models of Computers and Networks. Chapter 8: Statistical Simulation --- Discrete-Time Simulation

CDA6530: Performance Models of Computers and Networks. Chapter 8: Statistical Simulation --- Discrete-Time Simulation CDA6530: Performance Models of Computers and Networks Chapter 8: Statistical Simulation --- Discrete-Time Simulation Simulation Studies Models with analytical formulas Calculate the numerical solutions

More information

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018 CS 395T Lecture 12: Feature Matching and Bundle Adjustment Qixing Huang October 10 st 2018 Lecture Overview Dense Feature Correspondences Bundle Adjustment in Structure-from-Motion Image Matching Algorithm

More information

Chapter 1 BACKGROUND

Chapter 1 BACKGROUND Chapter BACKGROUND. Introduction In many areas of mathematics and in applications of mathematics, it is often necessary to be able to infer information about some function using only a limited set of sample

More information

A MATRIX FORMULATION OF THE CUBIC BÉZIER CURVE

A MATRIX FORMULATION OF THE CUBIC BÉZIER CURVE Geometric Modeling Notes A MATRIX FORMULATION OF THE CUBIC BÉZIER CURVE Kenneth I. Joy Institute for Data Analysis and Visualization Department of Computer Science University of California, Davis Overview

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

Isometries. 1 Identifying Isometries

Isometries. 1 Identifying Isometries Isometries 1 Identifying Isometries 1. Modeling isometries as dynamic maps. 2. GeoGebra files: isoguess1.ggb, isoguess2.ggb, isoguess3.ggb, isoguess4.ggb. 3. Guessing isometries. 4. What can you construct

More information

Finite Element Convergence for Time-Dependent PDEs with a Point Source in COMSOL 4.2

Finite Element Convergence for Time-Dependent PDEs with a Point Source in COMSOL 4.2 Finite Element Convergence for Time-Dependent PDEs with a Point Source in COMSOL 4.2 David W. Trott and Matthias K. Gobbert Department of Mathematics and Statistics, University of Maryland, Baltimore County,

More information

Solve Non-Linear Parabolic Partial Differential Equation by Spline Collocation Method

Solve Non-Linear Parabolic Partial Differential Equation by Spline Collocation Method Solve Non-Linear Parabolic Partial Differential Equation by Spline Collocation Method P.B. Choksi 1 and A.K. Pathak 2 1 Research Scholar, Rai University,Ahemdabad. Email:pinalchoksey@gmail.com 2 H.O.D.

More information

Perspective Projection in Homogeneous Coordinates

Perspective Projection in Homogeneous Coordinates Perspective Projection in Homogeneous Coordinates Carlo Tomasi If standard Cartesian coordinates are used, a rigid transformation takes the form X = R(X t) and the equations of perspective projection are

More information

LAB 4: Introduction to MATLAB PDE Toolbox and SolidWorks Simulation

LAB 4: Introduction to MATLAB PDE Toolbox and SolidWorks Simulation LAB 4: Introduction to MATLAB PDE Toolbox and SolidWorks Simulation Objective: The objective of this laboratory is to introduce how to use MATLAB PDE toolbox and SolidWorks Simulation to solve two-dimensional

More information

Projective geometry for Computer Vision

Projective geometry for Computer Vision Department of Computer Science and Engineering IIT Delhi NIT, Rourkela March 27, 2010 Overview Pin-hole camera Why projective geometry? Reconstruction Computer vision geometry: main problems Correspondence

More information

SYSTEMS OF NONLINEAR EQUATIONS

SYSTEMS OF NONLINEAR EQUATIONS SYSTEMS OF NONLINEAR EQUATIONS Widely used in the mathematical modeling of real world phenomena. We introduce some numerical methods for their solution. For better intuition, we examine systems of two

More information

Linear Interpolating Splines

Linear Interpolating Splines Jim Lambers MAT 772 Fall Semester 2010-11 Lecture 17 Notes Tese notes correspond to Sections 112, 11, and 114 in te text Linear Interpolating Splines We ave seen tat ig-degree polynomial interpolation

More information

1 Exercise: Heat equation in 2-D with FE

1 Exercise: Heat equation in 2-D with FE 1 Exercise: Heat equation in 2-D with FE Reading Hughes (2000, sec. 2.3-2.6 Dabrowski et al. (2008, sec. 1-3, 4.1.1, 4.1.3, 4.2.1 This FE exercise and most of the following ones are based on the MILAMIN

More information

Performing Matrix Operations on the TI-83/84

Performing Matrix Operations on the TI-83/84 Page1 Performing Matrix Operations on the TI-83/84 While the layout of most TI-83/84 models are basically the same, of the things that can be different, one of those is the location of the Matrix key.

More information

Natural Quartic Spline

Natural Quartic Spline Natural Quartic Spline Rafael E Banchs INTRODUCTION This report describes the natural quartic spline algorithm developed for the enhanced solution of the Time Harmonic Field Electric Logging problem As

More information

Modeling Ground Water Problems Using the Complex Polynomial Method

Modeling Ground Water Problems Using the Complex Polynomial Method Modeling Ground Water Problems Using the Complex Polynomial Method A. W. Bohannon and T. V. Hromadka, AS-0020 Abstract Numerical methods for solving the governing partial differential equations involved

More information

To Do. Outline. Translation. Homogeneous Coordinates. Foundations of Computer Graphics. Representation of Points (4-Vectors) Start doing HW 1

To Do. Outline. Translation. Homogeneous Coordinates. Foundations of Computer Graphics. Representation of Points (4-Vectors) Start doing HW 1 Foundations of Computer Graphics Homogeneous Coordinates Start doing HW 1 To Do Specifics of HW 1 Last lecture covered basic material on transformations in 2D Likely need this lecture to understand full

More information

Transfinite Interpolation Based Analysis

Transfinite Interpolation Based Analysis Transfinite Interpolation Based Analysis Nathan Collier 1 V.M. Calo 1 Javier Principe 2 1 King Abdullah University of Science and Technology 2 International Center for Numerical Methods in Engineering

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometry and Camera Calibration 3D Coordinate Systems Right-handed vs. left-handed x x y z z y 2D Coordinate Systems 3D Geometry Basics y axis up vs. y axis down Origin at center vs. corner Will often

More information