CodeWarrior Kernel-Aware Debug API

Size: px
Start display at page:

Download "CodeWarrior Kernel-Aware Debug API"

Transcription

1 CodeWarrior Kernel-Aware Debug API Revised: 17 October 2006

2 Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior is a trademark or registered trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other product or service names are the property of their respective owners. Copyright by Freescale Semiconductor, Inc. All rights reserved. Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typicals, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. How to Contact Us Corporate Headquarters World Wide Web Technical Support Freescale Semiconductor, Inc West Parmer Lane Austin, TX U.S.A.

3 Table of Contents 1 5 Overview Using the GetCurrentThread GetProcesses GetProcessInformation GetProcessThreads GetThreadInformation HasFeature InstallNubMenu NotifyAboutToRun NotifyReturnFromRun NotifyShutDown ProcessExists ReadThreadRegisters WriteThreadRegisters IMWKernelAware2 Interface Reference ThreadHasCurrentRegisterSet Index 17 CodeWarrior 3

4 Table of Contents 4 CodeWarrior

5 1 This chapter shows how to use the Microsoft Component Object Model (COM) API for kernel-aware debugging plug-ins for the CodeWarrior IDE. This document is intended for third party RTOS (Real-Time Operating System) vendors interested in developing kernel-aware debugging support for the CodeWarrior IDE s debugger. This chapter contains the following sections: Overview Using the IMWKernelAware2 Interface Reference Overview The IDE s debugger uses a kernel-aware debugger plug-in to retrieve information about and control a remote embedded system (typically a development board). A kernel-aware debugging plug-in is implemented as a COM object running under the Microsoft Win32/ x86 runtime environment. The methods in a kernel-aware plug-in are called directly from a debugger plug-in; a kernel-aware plug-in is never called directly by the IDE s debugger. A kernel-aware plugin does not (typically) communicate directly to the target board's debug monitor (or hardware debug device). Instead, it uses the IMWPluginNub interface to get information from a development board. The kernel-aware plug-in then formats this information into the form expected by the IDE s debugger plug-in. Using the There are two interfaces: IMWKernelAware and IMWKernelAware2. The IMWKernelAware interface is derived from the interface for the IMWDebuggerPlugin class, so kernel-aware plug-ins must implement the same RegisterServices() function as the debugger plug-ins. IMWKernelAware2 is a separate interface containing only one method. CodeWarrior 5

6 Also, the IMWKernelAware interface uses COM (Component Object Model), so kernel-aware plug-ins must implement AddRef(), Release(), and QueryInterface(). A kernel-aware plug-in should export the same function as the debugger plug-ins: DebuggerPluginEntryName. Finally, a kernel-aware plug-in should also export: GetIMWKernelAwareName(char* registedname) GetIMWKernelAwareName() should return the plug-in s unique registered name. TIP For related information on implementing a kernel-aware debugging plug-in, refer to the DebuggerInterface.h head file. This section lists the methods you implement to create a kernel-aware debugging plug-in. Each method s topic has a short description, a prototype to show you its arguments, additional remarks about the method, and a list of related topics. The topics in this section are: GetCurrentThread GetProcesses GetProcessInformation GetProcessThreads GetThreadInformation HasFeature InstallNubMenu NotifyAboutToRun NotifyReturnFromRun NotifyShutDown ProcessExists ReadThreadRegisters WriteThreadRegisters 6 CodeWarrior

7 GetCurrentThread Retrieves the ID of the thread that is currently running. STDMETHOD_(IMWDebugError*, GetCurrentThread)( IMWProcess* processptr, MWThreadID &threadid ) = 0; This method retrieves the ID of the thread that is currently running on the target machine. When called, processptr, a pointer to an object of type IMWProcess, refers to the process for which GetCurrentThread() must retrieve the currently running thread. On return, GetCurrentThread() stores the ID of the currently running thread in threadid. GetProcesses on page 7 GetProcessThreads on page 8 GetThreadInformation on page 9 GetProcesses Returns the processes running on a target machine. STDMETHOD_(IMWDebugError*, GetProcesses)( IMWMachine* machineptr, ProcessID* processidbuffer, long& count, long next) = 0; This method retrieves the IDs of processes running on a target machine. When called, machineptr argument points to the target machine for which GetProcess() must return process IDs. The processidbuffer argument is an array of type ProcessID in which GetProcess() must store process IDs. The debugger allocates 1000 elements for this array. The next argument refers to the element at which to begin storing process IDs in the processidbuffer array. CodeWarrior 7

8 On return, GetProcess() stores the number of process IDs stored in processidbuffer and returns an error result. GetProcessInformation on page 8 GetProcessThreads on page 8 GetCurrentThread on page 7 GetProcessInformation Retrieves information about a process running on a target machine. struct NubProcessInformation { char name[256]; }; STDMETHOD_(IMWDebugError*, GetProcessInformation)( IMWMachine* machineptr, ProcessID processid, NubProcessInformation& info) = 0; This method retrieves information about a process running on a target machine. When called, machineptr argument points to the machine for which GetProcessInformation() must return information. The processid argument refers to the process to retrieve information about. On return, GetProcessInformation() fills out the fields in the info argument about the specified process and returns an error result. GetProcessThreads Retrieves the threads in a process running on a target machine. struct NubThreadPair { MWThreadID threadid; MWThreadKind threadkind; 8 CodeWarrior

9 }; #define kembeddedrtosthread 6 STDMETHOD_(IMWDebugError*, GetProcessThreads)( IMWProcess* processptr, NubThreadPair* buffer, long& count) = 0; This method retrieves a list of threads running under a process on a target machine. When called, processptr, a pointer to an object of type IMWProcess, refers to the process for which GetProcessThreads() must retrieve threads for. The buffer argument is a pointer to an array of type NubThreadPair. GetProcessThreads() fills out this array. The threadkind field for each element in this array should be set to kembeddedrtosthread for kernel-aware plug-ins. On return, GetProcessThreads() fills out the fields in the buffer array, stores the number of threads in the count argument and returns an error result. GetProcesses on page 7 GetThreadInformation on page 9 GetCurrentThread on page 7 GetThreadInformation Retrieves information about a thread running on a target machine. struct NubThreadInformation { charname[256]; shortsuspended; }; STDMETHOD_(IMWDebugError*, GetThreadInformation)( NubThreadInformation& threadinfo, MWThreadID threadid, IMWProcess* processptr) = 0; CodeWarrior 9

10 This method retrieves information about a thread running under a process on a target machine. When called, the threadid argument specifies the thread to retrieve information for and the processptr argument points to an object of type IMWProcess for the process under which the thread is running. On return, GetThreadInformation() fills out the fields in the threadinfo argument about the specified thread and returns an error result. If the thread specified in threadid is running, then threadinfo s suspended field should be set to a positive value. If the thread is suspended then the suspended field should be set to zero. GetProcessThreads on page 8 GetCurrentThread on page 7 HasFeature Returns information about the kernel-aware plug-in s capabilities. enum KernelAwareNubFeatures { firstkernelnubfeature, nubwritesregisters }; STDMETHOD_(bool, HasFeature)( KernelAwareNubFeature feature) = 0; This function will be used by the debugger plug-ins to allow for future expansion of the kernel-aware interface. The plug-in should return false by default, only returning true if the specific feature is supported by this plug-in. WriteThreadRegisters on page CodeWarrior

11 InstallNubMenu Allows the kernel-aware plug-in to set up a menu. STDMETHOD_(IMWDebugError*, InstallNubMenu) () = 0; The debugger calls this method immediately after a successful call to ProcessExists(). The kernel-aware plug-in should use this notification to use plug-in menu interface to install a plug-in specific menu. NotifyShutDown on page 12 NotifyAboutToRun Tells the kernel-aware plug-in that a thread on the target machine is about to continue execution. STDMETHOD_(void, NotifyAboutToRun)( ProcessID processid, MWThreadID threadid) = 0; The debugger calls this method when the debugger is about to resume a thread s execution. When called, the processid argument contains the ID of the process that is resumed. The threadid argument contain the ID of the thread that is resumed. The kernel-aware plug-in should use this notification to update any user interface items created by the plug-in. NotifyReturnFromRun on page 12 NotifyShutDown on page 12 InstallNubMenu on page 11 CodeWarrior 11

12 NotifyReturnFromRun Tells the kernel-aware plug-in that a thread on the target machine has been stopped. STDMETHOD_(void, NotifyReturnFromRun)( ProcessID processid, MWThreadID threadid) = 0; The debugger calls this method when a thread has stopped because of a breakpoint, exception, or other debugging task. When called, the processid argument contains the ID of the process who s thread has stopped. The threadid argument contain the ID of the thread that has stopped. The kernel-aware plug-in should use this notification to update any user interface items created by the plug-in. NotifyAboutToRun on page 11 NotifyShutDown on page 12 NotifyShutDown Tells the kernel-aware plug-in that the debug session is about to end. STDMETHOD_(void, NotifyShutDown)( ProcessID processid) = 0; The debugger calls this method when it is about to end a debug session. When called, the processid argument contains the ID of the process that is being shut down. The kernel-aware plug-in should use this notification to clean up any user interface items created by the kernel-aware plug-in (including menus). If any COM interface pointers (IMWTarget, IMWProcess, IMWSymbolics, for example) have been referenced, they should be released at this time. 12 CodeWarrior

13 NotifyAboutToRun on page 11 InstallNubMenu on page 11 ProcessExists Determines if the kernel-aware plug-in can be used with a program. STDMETHOD_(bool, ProcessExists)( IMWTarget* targetptr, ProcessID* outprocessid) = 0; This is the first function called by the debugger. Debuggers call this method to determine whether this kernel-aware plug-in should be used to debug a program running on a target machine. When called, the targetptr argument points to an object of type IMWTarget. A kernel-aware plug-in s ProcessExists() method uses the methods provided by targetptr to determine if the kernel-aware plug-in is able to work with the target. For example, using the IMWTarget class s GetSymbolics() method to retrieve symbolic information for the machine. From the symbolic information the kernel-aware plug-in might look for a unique identifier. If the kernel-aware plug-in determines that it is able to work with the application referred to by targetptr, it must store a process ID in outprocessid, logically-or d with EMBEDDED_RTOS_TYPE: processid EMBEDDED_RTOS_TYPE The debugger will use this value on subsequent calls to the kernel-aware plug-in. On return, ProcessExists() returns true and stores the process s ID logically- OR d with EMBEDDED_RTOS_TYPE if the kernel-aware plug-in recognizes the application. ReadThreadRegisters Retrieves the states of a thread s processor registers at the time that a thread was suspended. STDMETHOD_(IMWDebugError*, ReadThreadRegisters)( CodeWarrior 13

14 IMWProcess* processptr, MWThreadID threadid, IMWRegisterInfo* reginfoptr) = 0; This method retrieves information about a thread s registers running under a process on a target machine at the time the thread was suspended by the operating system. The actual processor registers will be retrieved by the debugger for the current thread using a separate mechanism. When called, the processptr argument points to an object of type IMWProcess for the process under which the thread is running and the threadid argument specifies the thread to retrieve register information for. The reginfoptr argument points to an object of type IMWRegisterInfo. On return, ReadThreadRegisters() uses the methods provided by the reginfoptr object to record information about the thread s general purpose registers. WriteThreadRegisters on page 14, HasFeature on page 10 WriteThreadRegisters Sets the states of a thread s processor registers when a thread is suspended. STDMETHOD_(IMWDebugError*, WriteThreadRegisters)( IMWProcess* processptr, MWThreadID threadid, IMWRegisterInfo* reginfoptr) = 0; This method is used to modify the values of this threads saved register state. The actual processor registers will be set by the debugger for the current thread using a separate mechanism. When called, the processptr argument points to an object of type IMWProcess for the process under which the thread is running and the threadid argument specifies the thread to set register information for. The reginfoptr argument points to an object of type IMWRegisterInfo. If the kernel-aware plug-in does not allow registers to be set, it should make sure to return false when its HasFeature() method is called with numwritesregisters. 14 CodeWarrior

15 IMWKernelAware2 Interface Reference On return, WriteThreadRegisters() uses the methods provided by the reginfoptr object to set the thread s general purpose registers. ReadThreadRegisters on page 13 HasFeature on page 10 IMWKernelAware2 Interface Reference This section describes the IMWKernelAware2 Interface and its one method. You do not need to implement this interface in your kernel aware plug-in, but if your operating system manages thread state in such a way that the current chip registers do not necessarily correspond to the current thread, then this interface may be useful. Consider the following scenario, as it is an example of how this interface may be used. When a thread is switched out of context, the General Purpose registers and Floating Point registers are stored on its stack. When the thread is switched back into context, the General Purpose registers from the threads stack will be pushed into the chip registers, but restoration of the Floating Point registers will be delayed until the thread actually executes a floating point instruction that affects those registers. In this type of scenario, the debugger needs to be able to determine when to read the chip s floating point registers through the standard debug protocol and when to read the floating point registers from a thread's stack through the kernel aware plug-in s ReadThreadRegisters() function. IMWKernelAware2::ThreadHasCurrentRegisterSet gives the debugger this ability. ThreadHasCurrentRegisterSet Checks wether a thread is using the current registers for this register set. STDMETHOD_(bool, ThreadHasCurrentRegisterSet)( IMWProcess* inprocessptr, MWThreadID inthreadid, IMWRegisterInfo* reginfoptr) = 0; It is possible that the current thread does not use the chip registers for a given set. For example, a background thread may be using the chip registers. CodeWarrior 15

16 IMWKernelAware2 Interface Reference If the method returns true, the thread is using the chip registers. If the method returns false, the thread has registers stored in memory (or nowhere). 16 CodeWarrior

17 Index A AddRef() 6 C CodeWarrior IDE 5 COM. See Component Object Model. Component Object Model AddRef() 6 API for kernel-aware plug-ins 5 implementation as 5 implementation requirements 6 QueryInterface() 6 Release() 6 D debugger 5 DebuggerInterface.h 6 DebuggerPluginEntryName() 6 E exporting DebuggerPluginEntryName() 6 GetIMWKernelAwareName() 6 F features checking available 10 G GetCurrentThread() 7 GetIMWKernelAwareName() 6 GetProcesses() 7 GetProcessInformation() 8 GetProcessThreads() 8 GetThreadInformation() 9 H HasFeature() 10 host platform 5 I implementation requirements 6 IMWDebuggerPlugin class 5 IMWKernelAware class 5 IMWKernelAware2 class 5 IMWPluginNub 5 InstallNubMenu() 11 Intel x86 5 M menu when to set up 11 Microsoft 5 Microsoft Win32 5 N NotifyReturnFromRun() 12 NotifyShutDown() 12 P plug-in features 10 installing menu 11 stopping 12 using with processes 13 process available 13 information about 8 running 7 threads in a 8 ProcessExists() 13 Q QueryInterface() 6 R ReadThreadRegisters() 13 Real-Time Operating System vendors 5 registers reading 13 CodeWarrior 17

18 writing 14 RegisterServices() 5 Release() 6 RTOS. See Real-Time Operating System. runtime environment 5 S shutting down 12 stopping 12 T thread ID 7 information about 9 registers, reading 13 registers, writing 14 running 7, 11 stopped 12 suspended 12 ThreadHasCurrentRegisterSet() 15 W Win32 5 WriteThreadRegisters() 14 X x CodeWarrior

CodeWarrior Development Studio

CodeWarrior Development Studio CodeWarrior Development Studio for StarCore and SDMA Architectures Quick Start for Windows Operating Systems and Embedded Cross Trigger This Quick Start explains how to set up a sample project to use the

More information

for ColdFire Architectures V7.2 Quick Start

for ColdFire Architectures V7.2 Quick Start for ColdFire Architectures V7.2 Quick Start CodeWarrior Development Studio for ColdFire Architectures V7.2 Quick Start SYSTEM REQUIREMENTS Hardware Operating System Disk Space 1 GHz Pentium compatible

More information

Controller Continuum. for Microcontrollers V6.3. Quick Start

Controller Continuum. for Microcontrollers V6.3. Quick Start Controller Continuum for Microcontrollers V6.3 Quick Start CodeWarrior Development Studio for Microcontrollers V6.x Quick Start SYSTEM REQUIREMENTS Hardware Operating System Disk Space PC with 1 GHz Intel

More information

CodeWarrior Development Studio for Freescale 68HC12/HCS12/HCS12X/XGATE Microcontrollers Quick Start SYSTEM REQUIREMENTS Hardware Operating System 200

CodeWarrior Development Studio for Freescale 68HC12/HCS12/HCS12X/XGATE Microcontrollers Quick Start SYSTEM REQUIREMENTS Hardware Operating System 200 CodeWarrior Development Studio for Freescale 68HC12/HCS12/HCS12X/XGATE Microcontrollers Quick Start SYSTEM REQUIREMENTS Hardware Operating System 200 MHz Pentium II processor or AMD-K6 class processor,

More information

Installing Service Pack Updater Archive for CodeWarrior Tools (Windows and Linux) Quick Start

Installing Service Pack Updater Archive for CodeWarrior Tools (Windows and Linux) Quick Start Installing Service Pack Updater Archive for CodeWarrior Tools (Windows and Linux) Quick Start SYSTEM REQUIREMENTS Hardware Operating System Disk Space Windows OS: PC with 1 GHz Intel Pentium compatible

More information

CodeWarrior Development Tools mwclearcase Plug-in User s Guide

CodeWarrior Development Tools mwclearcase Plug-in User s Guide CodeWarrior Development Tools mwclearcase Plug-in User s Guide Revised: 29 January 2008 Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior is a trademark or registered

More information

for Freescale MPC55xx/MPC56xx Microcontrollers V2.10 Quick Start

for Freescale MPC55xx/MPC56xx Microcontrollers V2.10 Quick Start for Freescale MPC55xx/MPC56xx Microcontrollers V2.10 Quick Start CodeWarrior Development Studio for MPC55xx/MPC56xx Microcontrollers, version 2.xx Quick Start SYSTEM REQUIREMENTS Hardware Operating System

More information

for StarCore DSP Architectures Quick Start for the Windows Edition

for StarCore DSP Architectures Quick Start for the Windows Edition for StarCore DSP Architectures Quick Start for the Windows Edition CodeWarrior Development Studio for StarCore DSP Architectures Quick Start for the Windows Edition SYSTEM REQUIREMENTS Hardware Operating

More information

CodeWarrior Development Studio for StarCore DSP SC3900FP Architectures Quick Start for the Windows Edition

CodeWarrior Development Studio for StarCore DSP SC3900FP Architectures Quick Start for the Windows Edition CodeWarrior Development Studio for StarCore DSP SC3900FP Architectures Quick Start for the Windows Edition SYSTEM REQUIREMENTS Hardware Operating System Disk Space Intel Pentium 4 processor, 2 GHz or faster,

More information

NOVPEK NetLeap User Guide

NOVPEK NetLeap User Guide NOVPEK NetLeap User Guide Document Number: 001-124-04 Rev. 1.0 1/2017 Property of NovTech, Inc. 2016. All Rights Reserved Contact Information: Home Page: Company: www.novtech.com Modules: www.novsom.com/#/products1/

More information

2005: 0.5 PQ-MDS-PCIEXP

2005: 0.5 PQ-MDS-PCIEXP HW Getting Started Guide PQ-MDS-PCIEXP Adaptor December 2005: Rev 0.5 PQ-MDS-PCIEXP Adaptor HW Getting Started Guide Step 1:Check HW kit contents 1.PQ-MDS-PCIEXP Adaptor 2.PIB (Platform I/O Board) to PCIEXP

More information

CodeWarrior Development Studio for etpu v10.x Quick Start SYSTEM REQUIREMENTS

CodeWarrior Development Studio for etpu v10.x Quick Start SYSTEM REQUIREMENTS CodeWarrior Development Studio for etpu v10.x Quick Start SYSTEM REQUIREMENTS Hardware Operating System Software Disk Space Intel Pentium 4 processor, 2 GHz or faster, Intel Xeon, Intel Core, AMD Athlon

More information

Upgrade the Solution With No Changes 2 Upgrade the Solution With No Changes If a Codebase does not contain updates to its properties, it is possible t

Upgrade the Solution With No Changes 2 Upgrade the Solution With No Changes If a Codebase does not contain updates to its properties, it is possible t Freescale Semiconductor Application Note Document Number: AN3819 Rev. 0.0, 02/2009 Methods for Upgrading Freescale BeeStack Codebases 1 Introduction This note describes how to upgrade an existing Freescale

More information

CodeWarrior Development Studio for Power Architecture Processors Version 10.x Quick Start

CodeWarrior Development Studio for Power Architecture Processors Version 10.x Quick Start CodeWarrior Development Studio for Power Architecture Processors Version 10.x Quick Start SYSTEM REQUIREMENTS Hardware Operating System Intel Pentium 4 processor, 2 GHz or faster, Intel Xeon, Intel Core,

More information

Figure 1. Power Barrel Connector Requirements

Figure 1. Power Barrel Connector Requirements Freescale Semiconductor Quick Start Guide Rev. 0.1, 06/29/2004 DEMO9S12NE64 Demo Quick Start Guide Introduction This kit and guide contains everything you need to get started. You will connect the board

More information

Software Defined Radio API Release Notes

Software Defined Radio API Release Notes Software Defined Radio API Release Notes SDRplay Limited. Software Defined Radio API Release Notes Applications Revision History Revision Release Date: Reason for Change: Originator 1.0 03/Jun/2013 First

More information

Component Development Environment Installation Guide

Component Development Environment Installation Guide Freescale Semiconductor Document Number: PEXCDEINSTALLUG Rev. 1, 03/2012 Component Development Environment Installation Guide 1. Introduction The Component Development Environment (CDE) is available as

More information

MPC5200(b) ATA MDMA, UDMA Functionality BestComm Setup Recommendations

MPC5200(b) ATA MDMA, UDMA Functionality BestComm Setup Recommendations Freescale Semiconductor Engineering Bulletin Document Number: EB711 Rev. 0, 05/2009 MPC5200(b) ATA MDMA, UDMA Functionality BestComm Setup Recommendations by: Peter Kardos Application Engineer, Roznov

More information

PCB Layout Guidelines for the MC1321x

PCB Layout Guidelines for the MC1321x Freescale Semiconductor Application Note Document Number: AN3149 Rev. 0.0, 03/2006 PCB Layout Guidelines for the MC1321x 1 Introduction This application note describes Printed Circuit Board (PCB) footprint

More information

MC56F825x/MC56F824x (2M53V) Chip Errata

MC56F825x/MC56F824x (2M53V) Chip Errata Freescale Semiconductor MC56F825XE_2M53V Chip Errata Rev. 1, 05/2012 MC56F825x/MC56F824x (2M53V) Chip Errata The following errata items apply to devices of the maskset 2M53V. 2012 Freescale Semiconductor,

More information

Electrode Graphing Tool IIC Driver Errata Microcontroller Division

Electrode Graphing Tool IIC Driver Errata Microcontroller Division Freescale Semiconductor User Guide Addendum TSSEGTUGAD Rev. 1, 03/2010 Electrode Graphing Tool IIC Driver Errata by: Microcontroller Division This errata document describes corrections to the Electrode

More information

MTIM Driver for the MC9S08GW64

MTIM Driver for the MC9S08GW64 Freescale Semiconductor Application Note Document Number: AN4160 Rev. 0, 8/2010 MTIM Driver for the MC9S08GW64 by: Tanya Malik Reference Design and Applications Group India IDC MSG NOIDA 1 Introduction

More information

Design Recommendations to Implement Compatibility Between the MC13783VK and the MC13783VK5

Design Recommendations to Implement Compatibility Between the MC13783VK and the MC13783VK5 Freescale Semiconductor Application Note Document Number: AN3417 Rev. 0.1, 01/2010 Design Recommendations to Implement Compatibility Between the MC13783VK and the MC13783VK5 by: Power Management and Audio

More information

SDR API Linux Installation

SDR API Linux Installation Mirics Limited. Applications Revision History Revision Release Date: Reason for Change: Originator 1.0 15 th May 2014 Pre-Release 0.0.1 APC 1.1 3 rd August 2014 Update for 1.1 build APC 1.2 28 th May 2015

More information

SGTL5000 I 2 S DSP Mode

SGTL5000 I 2 S DSP Mode Freescale Semiconductor Application Note Document Number: AN3664 Rev. 2, 11/2008 SGTL5000 I 2 S DSP Mode by Name of Group Freescale Semiconductor, Inc. Austin, TX 1 Description SGTL5000 supports multiple

More information

Updating the Firmware on USB SPI Boards (KITUSBSPIEVME, KITUSBSPIDGLEVME)

Updating the Firmware on USB SPI Boards (KITUSBSPIEVME, KITUSBSPIDGLEVME) Freescale Semiconductor User s Guide Document Number: KTUSBSPIPRGUG Rev. 1.0, 7/2010 Updating the Firmware on USB SPI Boards (KITUSBSPIEVME, KITUSBSPIDGLEVME) Figure 1. KITUSBSPIEVME and KITUSBSPIDGLEVME

More information

PQ-MDS-QOC3 Module. HW Getting Started Guide. Contents. About This Document. Required Reading. Definitions, Acronyms, and Abbreviations

PQ-MDS-QOC3 Module. HW Getting Started Guide. Contents. About This Document. Required Reading. Definitions, Acronyms, and Abbreviations HW Getting Started Guide PQ-MDS-QOC3 Module July 2006: Rev. A Contents Contents........................................................................................ 1 About This Document..............................................................................

More information

Using the Project Board LCD Display at 3.3 volts

Using the Project Board LCD Display at 3.3 volts Freescale Semiconductor SLK0100AN Application Note Rev. 0, 1/2007 By: John McLellan Applications Engineering Austin, TX 1 Introduction This document guides you through the steps necessary to use the LCD

More information

Model-Based Design Toolbox

Model-Based Design Toolbox Model-Based Design Toolbox Quick-Start An Embedded Target for the S32K1xx Family of Processors Version 3.0.0 Target Based Automatic Code Generation Tools For MATLAB /Simulink /Stateflow Models working

More information

MPC7410 RISC Microprocessor Hardware Specifications Addendum for the MPC7410TxxnnnLE Series

MPC7410 RISC Microprocessor Hardware Specifications Addendum for the MPC7410TxxnnnLE Series Freescale Semiconductor Technical Data Document Number: MPC7410ECS08AD Rev. 1, 11/2010 MPC7410 RISC Microprocessor Hardware Specifications Addendum for the MPC7410TxxnnnLE Series This document describes

More information

MC33696MODxxx Kit. 1 Overview. Freescale Semiconductor Quick Start Guide. Document Number: MC33696MODUG Rev. 0, 05/2007

MC33696MODxxx Kit. 1 Overview. Freescale Semiconductor Quick Start Guide. Document Number: MC33696MODUG Rev. 0, 05/2007 Freescale Semiconductor Quick Start Guide Document Number: MC33696MODUG Rev. 0, 05/2007 MC33696MODxxx Kit by: Laurent Gauthier Toulouse, France 1 Overview This document provides introductory information

More information

Apollo2 EVB Quick Start Guide

Apollo2 EVB Quick Start Guide Apollo2 EVB Quick Start Guide Doc ID: QS-A2-1p00 Revision 1.0 June 2017 QS-A2-1p00 Page 1 of 11 2017 Ambiq Micro, Inc. Table of Content 1. Introduction...3 2. Documentation Revision History...3 3. Overview

More information

Keil uvision 4 Kinetis Support for Freescale MQX RTOS Release Notes

Keil uvision 4 Kinetis Support for Freescale MQX RTOS Release Notes Keil uvision 4 Kinetis Support for Freescale MQX RTOS 3.7.0 Release Notes PRODUCT: Keil uvision 4 Kinetis Support for Freescale MQX RTOS 3.7.0 PRODUCT VERSION: 1.0 DESCRIPTION: Adding support for Keil

More information

56F8300 BLDC Motor Control Application

56F8300 BLDC Motor Control Application 56F8300 BLDC Motor Control Application with Quadrature Encoder using Processor Expert TM Targeting Document 56F8300 16-bit Digital Signal Controllers 8300BLDCQETD Rev. 2 08/2005 freescale.com Document

More information

MPC8349E-mITX-GP Board Errata

MPC8349E-mITX-GP Board Errata Freescale Semiconductor Document Number: MPC8349EMITX-GPBE Rev. 2, 01/2007 MPC8349E-mITX-GP Board Errata This document describes the known errata and limitations of the MPC8349E-mITX-GP reference platform.

More information

Device Errata MPC860ADS Application Development System Board Versions ENG, PILOT, REV A

Device Errata MPC860ADS Application Development System Board Versions ENG, PILOT, REV A nc. Microprocessor and Memory Technologies Group Errata Number: E2 Device Errata MPC860ADS Application Development System Board Versions ENG, PILOT, REV A February 5, 1997 1. Failures bursting to EDO DRAM.

More information

Utilizing Extra FC Credits for PCI Express Inbound Posted Memory Write Transactions in PowerQUICC III Devices

Utilizing Extra FC Credits for PCI Express Inbound Posted Memory Write Transactions in PowerQUICC III Devices Freescale Semiconductor Application Note Document Number: AN3781 Rev. 0, 06/2009 Utilizing Extra FC Credits for PCI Express Inbound Posted Memory Write Transactions in PowerQUICC III Devices This application

More information

Converting Earlier Versions of CodeWarrior for StarCore DSPs Projects to Version

Converting Earlier Versions of CodeWarrior for StarCore DSPs Projects to Version Freescale Semiconductor Document Number: AN4253 Application Note Rev. 1, 01/2011 Converting Earlier Versions of CodeWarrior for StarCore DSPs Projects to Version 10.1.8 by DevTech Customer Engineering

More information

Pad Configuration and GPIO Driver for MPC5500 Martin Kaspar, EMEAGTM, Roznov Daniel McKenna, MSG Applications, East Kilbride

Pad Configuration and GPIO Driver for MPC5500 Martin Kaspar, EMEAGTM, Roznov Daniel McKenna, MSG Applications, East Kilbride Freescale Semiconductor Application Note Document Number: AN2855 Rev. 0, 2/2008 Pad Configuration and GPIO Driver for MPC5500 by: Martin Kaspar, EMEAGTM, Roznov Daniel McKenna, MSG Applications, East Kilbride

More information

Quick Start Guide for TWR-S08MM128-KIT TOWER SYSTEM MC9S08MM128. The industry s most complete solution for portable medical applications

Quick Start Guide for TWR-S08MM128-KIT TOWER SYSTEM MC9S08MM128. The industry s most complete solution for portable medical applications Quick Start Guide for TWR-S08MM128-KIT TOWER SYSTEM MC9S08MM128 The industry s most complete solution for portable medical applications TOWER SYSTEM Get to Know the TWR-S08MM128-KIT BDM Interface for MC9S08MM128

More information

M68CPA08QF Programming Adapter. User s Manual. Freescale Semiconductor, I. User s Manual. M68CPA08QF324448UM/D Version 1.

M68CPA08QF Programming Adapter. User s Manual. Freescale Semiconductor, I. User s Manual. M68CPA08QF324448UM/D Version 1. nc. User s Manual M68CPA08QF324448UM/D Version 1.0 June 24, 2003 M68CPA08QF324448 Programming Adapter User s Manual Motorola, Inc., 2003 nc. Important Notice to Users While every effort has been made to

More information

Model Based Development Toolbox MagniV for S12ZVC Family of Processors

Model Based Development Toolbox MagniV for S12ZVC Family of Processors Freescale Semiconductor Release Notes Document Number: MBDTB-ZVC-RN Model Based Development Toolbox MagniV for S12ZVC Family of Processors Version 1.0.0 Freescale Semiconductor, Inc. 1. Revision History

More information

Mechanical Differences Between the 196-pin MAP-BGA and 196-pin PBGA Packages

Mechanical Differences Between the 196-pin MAP-BGA and 196-pin PBGA Packages Freescale Semiconductor Engineering Bulletin EB360 Rev. 1, 10/2005 Mechanical Differences Between the 196-pin MAP-BGA and 196-pin PBGA Packages This document describes the differences between the 196-pin

More information

MPR121 Jitter and False Touch Detection

MPR121 Jitter and False Touch Detection Freescale Semiconductor Application Note Rev 1, 03/2010 MPR121 Jitter and False Touch Detection INTRODUCTION Touch acquisition takes a few different parts of the system in order to detect touch. The baseline

More information

USB Bootloader GUI User s Guide

USB Bootloader GUI User s Guide Freescale Semiconductor User s Guide Document Number: MC9S08JS16UG Rev. 0, 10/2008 USB Bootloader GUI User s Guide by: Derek Liu Applications Engineering China 1 Overview The MC9S08JS16 (JS16) supports

More information

PQ-MDS-PIB. HW Getting Started Guide 12,13. January 2006: Rev Check kit contents

PQ-MDS-PIB. HW Getting Started Guide 12,13. January 2006: Rev Check kit contents HW Getting Started Guide PQ-MDS-PIB January 2006: Rev. 0.4 Step 1: Check kit contents 1. PQ- MDS- PIB (Platform I/O Board, or PIB ) 2. Power cable extension with on-off switch 3. 25 Pin IEEE 1284 Parallel

More information

Using the PowerQUICC II Auto-Load Feature

Using the PowerQUICC II Auto-Load Feature Freescale Semiconductor Application Note Document Number: AN3352 Rev. 0, 01/2007 Using the PowerQUICC II Auto-Load Feature by David Smith/Patrick Billings Field Application Engineering/DSD Applications

More information

PAS08QF80 User s Manual

PAS08QF80 User s Manual PAS08QF80 User s Manual HC(S)08 Programming Adapter PAS08QF80UM Revision 0., June 00 User s Manual PAS08QF80 HC(S)08 Programming Adapter PAS08QF80 Quick Start Guide The PAS08QF80 is a low-cost universal

More information

M68CPA08W1628T20. Programming Adapter. User s Manual. Freescale Semiconductor, I. User s Manual. M68CPA08W1628T20UM/D Version 1.

M68CPA08W1628T20. Programming Adapter. User s Manual. Freescale Semiconductor, I. User s Manual. M68CPA08W1628T20UM/D Version 1. nc. User s Manual M68CPA08W1628T20UM/D Version 1.1 January 12, 2004 M68CPA08W1628T20 Programming Adapter User s Manual Motorola, Inc., 2004 nc. Important Notice to Users While every effort has been made

More information

Mask Set Errata. Introduction. MCU Device Mask Set Identification. MCU Device Date Codes. MCU Device Part Number Prefixes MSE08AZ32_0J66D 12/2002

Mask Set Errata. Introduction. MCU Device Mask Set Identification. MCU Device Date Codes. MCU Device Part Number Prefixes MSE08AZ32_0J66D 12/2002 Mask Set Errata MSE08AZ32_0J66D 12/2002 Mask Set Errata for MC68HC08AZ32, Mask 0J66D Introduction This mask set errata applies to this MC68HC08AZ32 MCU mask set: 0J66D MCU Device Mask Set Identification

More information

PAS08QF5264 User s Manual

PAS08QF5264 User s Manual PAS08QF6 User s Manual HC(S)08 Programming Adapter PAS08QF6UM Revision 0., June 00 User s Manual PAS08QF6 HC(S)08 Programming Adapter PAS08QF6 Quick Start Guide The PAS08QF6 is a low-cost universal programming

More information

56F805. BLDC Motor Control Application with Quadrature Encoder using Processor Expert TM Targeting Document. 56F bit Digital Signal Controllers

56F805. BLDC Motor Control Application with Quadrature Encoder using Processor Expert TM Targeting Document. 56F bit Digital Signal Controllers 56F805 BLDC Motor Control Application with Quadrature Encoder using Processor Expert TM Targeting Document 56F800 6-bit Digital Signal Controllers 805BLDCQETD Rev. 08/2005 freescale.com BLDC Motor Control

More information

etpu General Function Set (Set 1) David Paterson MCD Applications Engineer

etpu General Function Set (Set 1) David Paterson MCD Applications Engineer Freescale Semiconductor Application Note Document Number: AN2863 Rev. 0, 12/2007 etpu General Function Set (Set 1) by David Paterson MCD Applications Engineer 1 Introduction This application note complements

More information

Lab Tutorial for TWR-S08MM128-KIT TOWER SYSTEM LAB MC9S08MM128. Electrocardiogram (EKG) with Freescale USB stack

Lab Tutorial for TWR-S08MM128-KIT TOWER SYSTEM LAB MC9S08MM128. Electrocardiogram (EKG) with Freescale USB stack Lab Tutorial for TWR-S08MM128-KIT TOWER SYSTEM LAB 1 MC9S08MM128 Electrocardiogram (EKG) with Freescale USB stack TOWER SYSTEM Introduction This lab is a step-by-step guide to run the EKG demo. The EKG

More information

etpu Automotive Function Set (Set 2)

etpu Automotive Function Set (Set 2) Freescale Semiconductor Application Note Document Number: AN3768 Rev. 0, 05/2009 etpu Automotive Function Set (Set 2) by: Geoff Emerson East Kilbride U.K. 1 Introduction This application note complements

More information

ColdFire Convert 1.0 Users Manual by: Ernest Holloway

ColdFire Convert 1.0 Users Manual by: Ernest Holloway Freescale Semiconductor CFCONVERTUG Users Guide Rev.0, 09/2006 ColdFire Convert 1.0 Users Manual by: Ernest Holloway The ColdFire Convert 1.0 (CF) is a free engineering tool developed to generate data

More information

IIC Driver for the MC9S08GW64

IIC Driver for the MC9S08GW64 Freescale Semiconductor Application Note Document Number: AN4158 Rev. 0, 8/2010 IIC Driver for the MC9S08GW64 by: Tanya Malik Reference Design and Applications Group Noida India 1 Introduction This document

More information

EchoRemote Evaluation Software for Windows

EchoRemote Evaluation Software for Windows Freescale Semiconductor Application Note Document Number: AN2953 Rev.1, 05/2007 EchoRemote Evaluation Software for Windows 1 Overview EchoRemote is a Microsoft Windows program that communicates with the

More information

HC912D60A / HC912Dx128A 0.5µ Microcontrollers Mask sets 2K38K, 1L02H/2L02H/3L02H & K91D, 0L05H/1L05H/2L05H

HC912D60A / HC912Dx128A 0.5µ Microcontrollers Mask sets 2K38K, 1L02H/2L02H/3L02H & K91D, 0L05H/1L05H/2L05H Freescale Semiconductor Engineering Bulletin EB664 Rev. 6, 08/2006 HC912D60A / HC912Dx128A 0.5µ Microcontrollers Mask sets 2K38K, 1L02H/2L02H/3L02H & K91D, 0L05H/1L05H/2L05H by: Devaganesan Rajoo HC12

More information

1 Introduction. 2 Problem statement. Freescale Semiconductor Engineering Bulletin. Document Number: EB727 Rev. 0, 01/2010

1 Introduction. 2 Problem statement. Freescale Semiconductor Engineering Bulletin. Document Number: EB727 Rev. 0, 01/2010 Freescale Semiconductor Engineering Bulletin Document Number: EB727 Rev. 0, 01/2010 Enabling and Disabling ECC on MC9S08DE60/MC9S08DE32 Microcontrollers by: Philip Drake, 8-Bit Systems and Applications

More information

NovTech User Guide Chameleon96

NovTech User Guide Chameleon96 NovTech User Guide Chameleon96 Document Name: User Guide Document Number: 001-127-04-05-01 Rev. 1.1 10/2017 Property of NovTech, Inc. 2017. All Rights Reserved Contact Information: Home Page: Company:

More information

KIT34901EFEVB Evaluation Board

KIT34901EFEVB Evaluation Board Freescale Semiconductor, Inc. User s Guide Document Number: KT34901UG Rev. 1.0, 2/2014 KIT34901EFEVB Evaluation Board Featuring the MC34901 High Speed CAN Transceiver Contents Figure 1. KIT34901EFEVB Evaluation

More information

Non-Windows Work Flow

Non-Windows Work Flow Overview This document details the recommended flow for getting started with the RSPs on a non-windows environment. Note that different flavours of non-windows platforms may have specific issues or requirements.

More information

Symphony SoundBite: Quick Start with Symphony Studio. Installation and Configuration

Symphony SoundBite: Quick Start with Symphony Studio. Installation and Configuration Symphony SoundBite: Quick Start with Symphony Studio Installation and Configuration Document Number: DSPB56371UGQS Rev. 2 September 2008 How to Reach Us: Home Page: www.freescale.com E-mail: support@freescale.com

More information

PDB Driver for the MC9S08GW64

PDB Driver for the MC9S08GW64 Freescale Semiconductor Application Note Document Number: AN4163 Rev. 0, 8/2010 PDB Driver for the MC9S08GW64 by: Tanya Malik Reference Design and Applications Group Noida India 1 Introduction This document

More information

MSC8144AMC-S Getting Started Guide

MSC8144AMC-S Getting Started Guide Freescale Semiconductor Hardware Getting Started Guide Document Number: MSC8144AMCSHWGSG Rev. 2, 07/2008 MSC8144AMC-S Getting Started Guide This document describes how to connect the MSC8144AMC-S card

More information

Performance Factors nc. 2 Performance Factors The following sections discuss performance factors. 2.1 MPX vs. 60x Bus Mode One of the main factors tha

Performance Factors nc. 2 Performance Factors The following sections discuss performance factors. 2.1 MPX vs. 60x Bus Mode One of the main factors tha nc. White Paper MPC74XXBUSWP Rev. 1.1, 11/2003 Memory Bus Throughput of the MPC74xx Richie David, CPD Applications risc10@email.mot.com This document compares the memory bus data transfer rate of the MPC7450

More information

i.mx31 PDK Power Measurement with GUI

i.mx31 PDK Power Measurement with GUI Freescale Semiconductor Application Note Document Number: AN4061 Rev. 0, 02/2010 i.mx31 PDK Power Measurement with GUI by Multimedia Application Division Freescale Semiconductor, Inc. Austin, TX This application

More information

Changing the i.mx51 NAND Flash Model for Windows Embedded CE TM 6.0

Changing the i.mx51 NAND Flash Model for Windows Embedded CE TM 6.0 Freescale Semiconductor Application Note Document Number: AN3986 Rev. 0, 02/2010 Changing the i.mx51 NAND Flash Model for Windows Embedded CE TM 6.0 by Multimedia Applications Division Freescale Semiconductor,

More information

MPC8260 IDMA Timing Diagrams

MPC8260 IDMA Timing Diagrams Freescale Semiconductor Application Note Document Number: AN2177 Rev. 4, 07/2006 MPC8260 IDMA Timing Diagrams By DSD Applications, NCSG Freescale Semiconductor, Inc. The MPC8260 PowerQUICC II integrated

More information

Migrating from the MPC852T to the MPC875

Migrating from the MPC852T to the MPC875 Freescale Semiconductor Application Note Document Number: AN2584 Rev. 1, 1/2007 Migrating from the MPC852T to the MPC875 by Ned Reinhold NCSD Applications Freescale Semiconductor, Inc. Austin, TX This

More information

Using the Multi-Axis g-select Evaluation Boards

Using the Multi-Axis g-select Evaluation Boards Freescale Semiconductor Application Note Rev 2, 10/2006 Using the Multi-Axis g-select Evaluation Boards by: Michelle Clifford and John Young Applications Engineers Tempe, AZ INTRODUCTION This application

More information

Using the Knock Window etpu Function

Using the Knock Window etpu Function Freescale Semiconductor Application Note Document Number: AN3772 Rev. 0, 05/2009 Using the Knock Window etpu Function by: David Paterson 1 Introduction This application note provides simple C interface

More information

Differences Between the DSP56301, DSP56311, and DSP56321

Differences Between the DSP56301, DSP56311, and DSP56321 Freescale Semiconductor Engineering Bulletin Document Number: EB724 Rev. 0, 11/2009 Differences Between the DSP56301, DSP56311, and DSP56321 This engineering bulletin discusses the differences between

More information

Introduction to LIN 2.0 Connectivity Using Volcano LTP

Introduction to LIN 2.0 Connectivity Using Volcano LTP Freescale Semiconductor White Paper LIN2VOLCANO Rev. 0, 12/2004 Introduction to LIN 2.0 Connectivity Using Volcano LTP by: Zdenek Kaspar, Jiri Kuhn 8/16-bit Systems Engineering Roznov pod Radhostem, Czech

More information

PowerQUICC HDLC Support and Example Code

PowerQUICC HDLC Support and Example Code Freescale Semiconductor Application Note Document Number: AN3966 Rev. 0, 11/2009 PowerQUICC HDLC Support and Example Code High-level data link control (HDLC) is a bit-oriented protocol that falls within

More information

Using the Asynchronous DMA features of the Kinetis L Series

Using the Asynchronous DMA features of the Kinetis L Series Freescale Semiconductor Document Number:AN4631 Application Note Rev. 0, 12/2012 Using the Asynchronous DMA features of the Kinetis L Series by: Chris Brown 1 Introduction The power consumption of devices

More information

Using DMA to Emulate ADC Flexible Scan Mode on Kinetis K Series

Using DMA to Emulate ADC Flexible Scan Mode on Kinetis K Series Freescale Semiconductor Document Number: AN4590 Application Note Rev 0, 9/2012 Using DMA to Emulate ADC Flexible Scan Mode on Kinetis K Series by: Lukas Vaculik Rožnov pod Radhoštem Czech Republic 1 Introduction

More information

Getting Started with the Student Learning Kit Application Module Using the MC9S12DT256 Microcontroller Application Module

Getting Started with the Student Learning Kit Application Module Using the MC9S12DT256 Microcontroller Application Module Freescale Semiconductor APS12DT256PG Quick Reference Guide Rev. 0, 9/2007 Getting Started with the Student Learning Kit Application Module Using the MC9S12DT256 Microcontroller Application Module For use

More information

16-bit MCU: S12XHY256 Automotive Cluster Demo by: Jose M. Cisneros Steven McLaughlin Applications Engineer Microcontroller Solutions Group, Scotland

16-bit MCU: S12XHY256 Automotive Cluster Demo by: Jose M. Cisneros Steven McLaughlin Applications Engineer Microcontroller Solutions Group, Scotland Freescale Semiconductor Users Guide Document Number: S12XHY256ACDUG Rev. 0, 10/2010 16-bit MCU: S12XHY256 Automotive Cluster Demo by: Jose M. Cisneros Steven McLaughlin Applications Engineer Microcontroller

More information

Vision Toolbox for MATLAB

Vision Toolbox for MATLAB Vision Toolbox for MATLAB Release Notes Embedded Target for the S32V234 Family of Automotive Vision Processors Version 2018.R1.RFP 1-1 Summary 1 What is New... 1-3 2 Vision Toolbox Features... 2-6 2.1

More information

MCF5445x Configuration and Boot Options Michael Norman Microcontroller Division

MCF5445x Configuration and Boot Options Michael Norman Microcontroller Division Freescale Semiconductor Application Note Document Number: AN3515 Rev. 1, 04/2008 MCF5445x Configuration and Boot Options by: Michael Norman Microcontroller Division 1 Configuration Modes The Freescale

More information

Using the ColdFire+ Family Enhanced EEPROM Functionality Melissa Hunter Derrick Klotz

Using the ColdFire+ Family Enhanced EEPROM Functionality Melissa Hunter Derrick Klotz Freescale Semiconductor Application Note Document Number: AN4306 Rev. 0, 05/2011 Using the ColdFire+ Family Enhanced EEPROM Functionality by: Melissa Hunter Derrick Klotz 1 Introduction The ColdFire+ family

More information

Programming and Evaluation Tool for Serial EEPROMs

Programming and Evaluation Tool for Serial EEPROMs EasyPro 3.2 Evaluation Board User's Manual EVAL BOARD USER S MANUAL Programming and Evaluation Tool for Serial EEPROMs What is EasyPRO? EasyPRO is an easy-to-use, software-driven device programmer that

More information

Asymmetric C++ Multicore Application for StarCore DSPs

Asymmetric C++ Multicore Application for StarCore DSPs Freescale Semiconductor Document Number: AN4220 Application Note Rev. 0, 01/2011 Asymmetric C++ Multicore Application for StarCore DSPs by Devtech Customer Engineering Freescale Semiconductor, Inc. Austin,

More information

Affected Chips Description Impact and Workaround

Affected Chips Description Impact and Workaround Freescale Semiconductor MC56F8013E Rev. 3, 08/2007 56F8013 Preliminary Chip 56F8013 Digital Signal Controller numbers are in the form n.m, where n is the number of the errata item and m identifies the

More information

Processor Expert Software Microcontroller Driver Suite. Device Initialization User Guide

Processor Expert Software Microcontroller Driver Suite. Device Initialization User Guide Processor Expert Software Microcontroller Driver Suite Device Initialization User Guide Revised: 1 November 2012 Freescale, the Freescale logo, CodeWarrior, ColdFire, Kinetis and Processor Expert are trademarks

More information

Using the Kinetis Family Enhanced EEPROM Functionality

Using the Kinetis Family Enhanced EEPROM Functionality Freescale Semiconductor Application Note Document Number: AN4282 Rev. 1, 03/2015 Using the Kinetis Family Enhanced EEPROM Functionality by: Melissa Hunter Derrick Klotz 1 Introduction Some of the Kinetis

More information

Using an I 2 C EEPROM During MSC8157 Initialization

Using an I 2 C EEPROM During MSC8157 Initialization Freescale Semiconductor Application Note AN4205 Rev. 0, 11/2010 Using an I 2 C EEPROM During MSC8157 Initialization The MSC8157 family allows you to use an I 2 C EEPROM to to initialize the DSP during

More information

Use of PGA on MC56F800x Interaction of PDB, PGA and ADC

Use of PGA on MC56F800x Interaction of PDB, PGA and ADC Freescale Semiconductor Document Number: AN4334 Application Note Rev. 0, 03/2012 Use of PGA on MC56F800x Interaction of PDB, PGA and ADC by: William Jiang System and Application, Microcontroller Solutions

More information

Using IIC to Read ADC Values on MC9S08QG8

Using IIC to Read ADC Values on MC9S08QG8 Freescale Semiconductor Application Note AN3048 Rev. 1.00, 11/2005 Using IIC to Read ADC Values on MC9S08QG8 by Donnie Garcia Application Engineering Microcontroller Division 1 Introduction The MC9S08QG8

More information

However, if an event comes in when the new value is being written to the pulse accumulator counter, that event could be missed. One solution to this p

However, if an event comes in when the new value is being written to the pulse accumulator counter, that event could be missed. One solution to this p Engineering Bulletin 7/2003 HC11 and HC12 Families Pulse Accumulator By Darci Ernst Systems Engineering Austin, TX Introduction and Background Detailed Description The timer module is one of the peripherals

More information

Using the CAU and mmcau in ColdFire, ColdFire+ and Kinetis

Using the CAU and mmcau in ColdFire, ColdFire+ and Kinetis Freescale Semiconductor Document Number: AN4307 Application Note Rev. Rev.0, 5/ 2011 Using the CAU and mmcau in ColdFire, ColdFire+ and Kinetis by: Paolo Alcantara RTAC Americas Mexico 1 Introduction This

More information

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at Is Now Part of To learn more about ON Semiconductor, please visit our website at ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor

More information

Functional Differences Between the DSP56307 and DSP56L307

Functional Differences Between the DSP56307 and DSP56L307 Freescale Semiconductor Engineering Bulletin EB361 Rev. 3, 10/2005 Functional Differences Between the DSP56307 and DSP56L307 The DSP56307 and DSP56L307, two members of the Freescale DSP56300 family of

More information

TLB Translation Setup for MPC745x and MPC744x in Non-Extended Mode

TLB Translation Setup for MPC745x and MPC744x in Non-Extended Mode Freescale Semiconductor Application Note AN2796 Rev. 1, 5/2006 TLB Translation Setup for MPC745x and MPC744x in Non-Extended Mode by Amanuel Belay Computing Platform Division Freescale Semiconductor, Inc.

More information

SCI Driver for the MC9S08GW64

SCI Driver for the MC9S08GW64 Freescale Semiconductor Application Note Document Number: AN4161 Rev. 0,8/2010 SCI Driver for the MC9S08GW64 by: Tanya Malik Reference Design and Applications Group Noida India 1 Introduction This document

More information

MCF5216 Device Errata

MCF5216 Device Errata Freescale Semiconductor Device Errata MCF5216DE Rev. 1.7, 09/2004 MCF5216 Device Errata This document identifies implementation differences between the MCF5216 processor and the description contained in

More information

Freescale BeeStack Documentation Overview Document Number: BSDO Rev /2008

Freescale BeeStack Documentation Overview Document Number: BSDO Rev /2008 Freescale BeeStack Documentation Overview Document Number: BSDO Rev. 1.0 04/2008 How to Reach Us: Home Page: www.freescale.com E-mail: support@freescale.com USA/Europe or Locations Not Listed: Freescale

More information

56F805. Digital Power Factor Correction using Processor Expert TM Targeting Document. 56F bit Digital Signal Controllers. freescale.

56F805. Digital Power Factor Correction using Processor Expert TM Targeting Document. 56F bit Digital Signal Controllers. freescale. 56F805 Digital Power Factor Correction using Processor Expert TM Targeting Document 56F800 6-bit Digital Signal Controllers 805DPFCTD Rev. 0 08/2005 freescale.com Digital Power Factor Correction This

More information