SW-C Description. AUTOSAR SW-C n SW-C 3. Virtual Functional Bus. Deployment tools ECU2 AUTOSAR SW-C 3 AUTOSAR SW-C 2 AUTOSAR SW-C 1 RTE

Size: px
Start display at page:

Download "SW-C Description. AUTOSAR SW-C n SW-C 3. Virtual Functional Bus. Deployment tools ECU2 AUTOSAR SW-C 3 AUTOSAR SW-C 2 AUTOSAR SW-C 1 RTE"

Transcription

1 Architecture SW-C Description SW-C Description SW-C Description SW-C Description SW-C n SW-C 3 SW-C 2 SW-C 1 Virtual Functional Bus ECU Descriptions Deployment tools System Constraint Description ECU1 ECU2 ECU3 SW-C n SW-C 3 SW-C 2 SW-C 1 RTE Basic Software RTE Basic Software RTE Basic Software Gateway

2 Etherogeneous models + separationbetweenthe functionalmodel and and the the architecture model model Functional design System-level Functional design Component model(s) UML/SysML ADL 4.0? Architecture selection Architecture model(s) Function-to-Architecture (deployment) model(s) 4.0? Module design Behavioral model(s) SR models (Simulink) Coding Task model(s) Code implementation

3 and timing SW-C Description SW-C Description SW-C Description SW-C Description SW-C 1 SW-C 2 SW-C 3 periodic periodic AUTOSA R SW-C 1 AUTOSA R SW-C 2 AUTOSA R SW-C 3 AUTOSA R SW-C n 1A 1B 1C 2A 2B 3A 3B Virtual Functional Bus ECU1 ECU2 SW-C 3 SW-C 2 SW-C 1 RTE Basic Software RTE Basic Software Sampling delay periodic BSW RTE 1B periodic CAN msg 1A Interference 1A BSW 1C RTE BSW CAN msg BSW RTE 2A 2B

4 and timing SW-C 1 SW-C 2 SW-C 3 10ms Tasks 50ms 20ms 10ms S1 v1 r11 r12 r13 S2 v2 r21 r22 r23 S3 v3 r31 r32 r33 20ms r11 r12 v1 r21 r31 r32 r22 p3 50ms p3 v1 p3 p1 p2 p3 p4 p5 p6 p7 p8 p9 r13 r23 r33 There may be consistency issues when mapping runnables into tasks: Runnables in the same component share variables in the component s state and are activated at different rates. One runnable makes use of state variables and needs to be executed in response to multiple events at different rates or multiple asynchronous events. There is (data-oriented) communication using ports with non-atomic data between runnables activated at different rates.

5 and timing SW-C 1 SW-C 2 SW-C 3 10ms Tasks 50ms 20ms 10ms S1 v1 r11 r12 r13 S2 v2 r21 r22 r23 S3 v3 r31 r32 r33 20ms r11 r12 v1 r21 r31 r32 r22 p3 50ms p3 v1 p3 p1 p2 p3 p4 p5 p6 p7 p8 p9 r13 r23 r33 Different type of mechanisms to ensure consistency can be used with tradeoffs between time and memory: Use timing analysis to demonstrate safe cooperation Avoid preemption among runnables Use wait-free buffers Use semaphores The best solution may involve a combination of the above

6 Wait-free solutions: RT blocks Rate Transition blocks added buffer space and added latency/delay relax the scheduling problem by allowing to drop the feedthrough precedence constraint The mechanism can only be implemented if the rates of the blocks are harmonic (one multiple of the other) Otherwise, it is possible to make a transition to the gcd of the blocks periods, at the price of additional space and delay

7 RT blocks: High rate/priority to low rate/priority COST space: 1 additional set set of of variables for for each link link time: overhead of of RT RT implement. performance: none Output update only High rate/ priority pri=1 T=1 pri=2 T=2 Low rate/ priority pri=2 T=2 Consistency here is guaranteed by proving there is no preemption

8 RT blocks: Low rate/priority to high rate/priority COST space: 2 additional set set of of variables for for each link link time: overhead of of RT RT implement. performance: 1-1- unit unit delay (low (low rate rate period) Low rate/ priority pri=3 T=2 State update pri=4 T=2 RT-equivalent High rate/ priority pri=1 T=2 pri=2 T=1 Consistency here is guaranteed by proving there is no preemption Output update Output update

9 Limitations in the use of RT blocks (1)

10 Tradeoffs and design cycles RT blocks are not a functional entity but an implementation device RT Blocks are only required because of the selection of the RM scheduling policy in slow to fast transitions because of the possibility of preemption in both cases In both cases, time determinism (of communication) is obtained at the price of additional memory In the case of slow to fast transitions, the RT block also adds a delay equal to the period of the slowest block This is only because of the Rate monotonic scheduling Added delays decrease the performance of controls

11 Consistency issues Consistency issues in the 1-1 communication between blocks with different rates may happen: When blocks are executed in concurrent tasks(activated at different rates or by asynchronous events) When a reader may preempt a writer while updating the communication variables (reader with higher priority than writer) When the writer can preempt the reader while it is reading the communication variables (writer with higher priority). Necessary condition for data inconsistency is the possibility of preemption reader writer or writer reader Also, we may want to enforce time determinism (flow preservation)

12 Consistency issues b 1 b 3 b 2 T=1 T=2 Also, a relaxed form of time determinism may be required Input coherency: when inputs are coming from multiple blocks, we want to read inputs produced by instances activated by the same event

13 Guaranteeing data consistency Demonstrate impossibility of preemption between readers and writers Appropriate scheduling of blocks into tasks, priority assignment, activation offsets and using worst-case response time analysis Avoid preemptionbetween readers and writers Disabling preemption explicitly among tasks (blocks) (condividere RES_SCHEDULER in OSEK) Allow preemption and protect communication variables Protect all the critical sections by Disabling interrupts Using (immediate) priority ceiling (semaphores/osek resources) Problem: we need to protect each instance of use of a communication variable. Advantage (does not require extra buffer memory, but only the additional memory of the protection mechanism) Lock-free/Wait-free communication: multiple buffers with protected copy instructions: Typically w. interrupt disabling Or kernel-level code - Problem:requires additional buffer memory (How much?). Advantage: it is possible to cluster the write/read operations at the end/beginning of a task, with limited change to existing code. - The best policy may be a mix of all the previous, depending on the timing contraints of the application and on the communication configuration.

14 Demonstrating impossibility of preemption Assign priorities and offsets and use timing analysis to guarantee absence of preemption Input data: Mapping of functional blocks into tasks Order of functional blocks inside tasks Worst-case execution time of blocks (tasks) Priorities assigned to tasks Task periods (relative) Offset in the activation of periodic tasks (o wr = minimum offset between writer and reader activations, O wr maximum offset between the activations) Computed data Worst case response time of tasks/blocks (considering interferences and preemptions) R r for the writer R w for the reader Two cases: Priority writer > priority reader Priority reader > priority writer

15 Absence of preemption/high to low priority Condition for avoiding preemptionwriter reader (no assumptions about relative rates of reader/writer) High priority Low priority w r O wr T w R r R rr T w -O -O wr wr

16 Absence of preemption/low to high priority Condition guaranteeing absence of preemption or reader to writer (reader writer) Low priority High priority w w r r R w o wr o wr wr R w R w O wr wr =o =o wr wr =0 =0 T r R w T rr Both conditions are unlikely in in practice

17 Absence of preemption/low to high priority These conditions are ultimately used by the Rate Transition block mechanisms!! Low priority High priority pri=3 T=2 pri=4 T=2 pri=1 T=2 pri=2 T=1 Output update Output update w r O wr =o wr =o wr =0 wr =0 R w R R w T w T r r T r

18 Avoiding preemption Disabling preemption High priority Low priority Low priority High priority The response time of of the high priority block/task is is affected, need to to check real-time properties

Simulink, simulation, code generation and tasks. Marco Di Natale Associate Professor, Scuola S. Anna - Italy, UTRC Visiting Fellow

Simulink, simulation, code generation and tasks. Marco Di Natale Associate Professor, Scuola S. Anna - Italy, UTRC Visiting Fellow Simulink, simulation, code generation and tasks Marco Di Natale Associate Professor, Scuola S. Anna - Italy, UTRC Visiting Fellow Simulink model Many things A network of blocks Workspace variables Type

More information

Mechanisms for Guaranteeing Data Consistency and Flow Preservation in AUTOSAR Software on Multi-core Platforms

Mechanisms for Guaranteeing Data Consistency and Flow Preservation in AUTOSAR Software on Multi-core Platforms Mechanisms for Guaranteeing Data Consistency and Flow Preservation in AUTOSAR Software on Multi-core Platforms Haibo Zeng General Motors R&D, haibo.zeng@gm.com Marco Di Natale Scuola Superiore S. Anna,

More information

Concurrency: Deadlock and Starvation

Concurrency: Deadlock and Starvation Concurrency: Deadlock and Starvation Chapter 6 E&CE 354: Processes 1 Deadlock Deadlock = situation in which every process from a set is permanently blocked, i.e. cannot proceed with execution Common cause:

More information

Operating Systems: William Stallings. Starvation. Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall

Operating Systems: William Stallings. Starvation. Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 6 Concurrency: Deadlock and Starvation Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall Deadlock

More information

What s An OS? Cyclic Executive. Interrupts. Advantages Simple implementation Low overhead Very predictable

What s An OS? Cyclic Executive. Interrupts. Advantages Simple implementation Low overhead Very predictable What s An OS? Provides environment for executing programs Process abstraction for multitasking/concurrency scheduling Hardware abstraction layer (device drivers) File systems Communication Do we need an

More information

Exam Review TexPoint fonts used in EMF.

Exam Review TexPoint fonts used in EMF. Exam Review Generics Definitions: hard & soft real-time Task/message classification based on criticality and invocation behavior Why special performance measures for RTES? What s deadline and where is

More information

Deadlock. Concurrency: Deadlock and Starvation. Reusable Resources

Deadlock. Concurrency: Deadlock and Starvation. Reusable Resources Concurrency: Deadlock and Starvation Chapter 6 Deadlock Permanent blocking of a set of processes that either compete for system resources or communicate with each other No efficient solution Involve conflicting

More information

Handling Challenges of Multi-Core Technology in Automotive Software Engineering

Handling Challenges of Multi-Core Technology in Automotive Software Engineering Model Based Development Tools for Embedded Multi-Core Systems Handling Challenges of Multi-Core Technology in Automotive Software Engineering VECTOR INDIA CONFERENCE 2017 Timing-Architects Embedded Systems

More information

Global shared variables. Message passing paradigm. Communication Ports. Port characteristics. Sending a message 07/11/2018

Global shared variables. Message passing paradigm. Communication Ports. Port characteristics. Sending a message 07/11/2018 Global shared variables In most RT applications, tasks exchange data through global shared variables. Advantages High efficiency Low run-time overhead Schedulability analysis is available Disadvantages

More information

Concurrency, Mutual Exclusion and Synchronization C H A P T E R 5

Concurrency, Mutual Exclusion and Synchronization C H A P T E R 5 Concurrency, Mutual Exclusion and Synchronization C H A P T E R 5 Multiple Processes OS design is concerned with the management of processes and threads: Multiprogramming Multiprocessing Distributed processing

More information

Non-Blocking Write Protocol NBW:

Non-Blocking Write Protocol NBW: Non-Blocking Write Protocol NBW: A Solution to a Real-Time Synchronization Problem By: Hermann Kopetz and Johannes Reisinger Presented By: Jonathan Labin March 8 th 2005 Classic Mutual Exclusion Scenario

More information

Models, tasks, RT operating systems and schedulability. Marco Di Natale Associate Professor, Scuola S. Anna - Italy, UTRC Visiting Fellow

Models, tasks, RT operating systems and schedulability. Marco Di Natale Associate Professor, Scuola S. Anna - Italy, UTRC Visiting Fellow Models, tasks, RT operating systems and schedulability Marco Di Natale Associate Professor, Scuola S. Anna - Italy, UTRC Visiting Fellow A development cycle Model-based design On On August August 19, 19,

More information

Concurrency: Deadlock and Starvation. Chapter 6

Concurrency: Deadlock and Starvation. Chapter 6 Concurrency: Deadlock and Starvation Chapter 6 Deadlock Permanent blocking of a set of processes that either compete for system resources or communicate with each other Involve conflicting needs for resources

More information

AUTOBEST: A United AUTOSAR-OS And ARINC 653 Kernel. Alexander Züpke, Marc Bommert, Daniel Lohmann

AUTOBEST: A United AUTOSAR-OS And ARINC 653 Kernel. Alexander Züpke, Marc Bommert, Daniel Lohmann AUTOBEST: A United AUTOSAR-OS And ARINC 653 Kernel Alexander Züpke, Marc Bommert, Daniel Lohmann alexander.zuepke@hs-rm.de, marc.bommert@hs-rm.de, lohmann@cs.fau.de Motivation Automotive and Avionic industry

More information

Two-Version-Based Concurrency Control and Recovery in Real-Time Client/Server Databases

Two-Version-Based Concurrency Control and Recovery in Real-Time Client/Server Databases Two-Version-Based Concurrency Control and Recovery in Real-Time Client/Server Databases Tei-Wei Kuo, Yuan-Ting Kao, and Chin-Fu Kuo Department of Computer Science and Information Engineering National Taiwan

More information

CS A331 Programming Language Concepts

CS A331 Programming Language Concepts CS A331 Programming Language Concepts Lecture 12 Alternative Language Examples (General Concurrency Issues and Concepts) March 30, 2014 Sam Siewert Major Concepts Concurrent Processing Processes, Tasks,

More information

Chapter 5 Asynchronous Concurrent Execution

Chapter 5 Asynchronous Concurrent Execution Chapter 5 Asynchronous Concurrent Execution Outline 5.1 Introduction 5.2 Mutual Exclusion 5.2.1 Java Multithreading Case Study 5.2.2 Critical Sections 5.2.3 Mutual Exclusion Primitives 5.3 Implementing

More information

Operating Systems. Deadlock. Lecturer: William Fornaciari Politecnico di Milano Homel.deib.polimi.

Operating Systems. Deadlock. Lecturer: William Fornaciari Politecnico di Milano Homel.deib.polimi. Politecnico di Milano Operating Systems Lecturer: William Fornaciari Politecnico di Milano william.fornaciari@elet.polimi.it Homel.deib.polimi.it/fornacia Summary What is a resource Conditions for deadlock

More information

Chapter 5 Concurrency: Mutual Exclusion. and. Synchronization. Operating Systems: Internals. and. Design Principles

Chapter 5 Concurrency: Mutual Exclusion. and. Synchronization. Operating Systems: Internals. and. Design Principles Operating Systems: Internals and Design Principles Chapter 5 Concurrency: Mutual Exclusion and Synchronization Seventh Edition By William Stallings Designing correct routines for controlling concurrent

More information

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy Operating Systems Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng.. AL-AZHAR University Website : eaymanelshenawy.wordpress.com Email : eaymanelshenawy@yahoo.com Reference

More information

ISO meets AUTOSAR - First Lessons Learned Dr. Günther Heling

ISO meets AUTOSAR - First Lessons Learned Dr. Günther Heling ISO 26262 meets AUTOSAR - First Lessons Learned Dr. Günther Heling Agenda 1. ISO 26262 and AUTOSAR Two Basic Contradictions Top-Down vs. Reuse Concentration vs. Distribution 2. Approach Mixed ASIL System

More information

Concurrent Control with "Readers" and "Writers"

Concurrent Control with Readers and Writers Concurrent Control with "Readers" and "Writers" P. J. Courtois, F. Heymans and D. L. Parnas Communication of the ACM, 14, 10 (Oct. 1971) Presenters: Prashant Agrawal Vineet Bansal Main Paper Critical section

More information

Midterm 1, CSE 451, Winter 2001 (Prof. Steve Gribble)

Midterm 1, CSE 451, Winter 2001 (Prof. Steve Gribble) Midterm 1, CSE 451, Winter 2001 (Prof. Steve Gribble) Problem 1: (15 points) Which of the following require assistance from hardware to implement correctly and/or safely? For those that do, circle them,

More information

An FPGA Implementation of Wait-Free Data Synchronization Protocols

An FPGA Implementation of Wait-Free Data Synchronization Protocols An FPGA Implementation of Wait-Free Data Synchronization Protocols Benjamin Nahill 1, Ari Ramdial 1, Haibo Zeng 1, Marco Di Natale 2, Zeljko Zilic 1 1 McGill University, email: {benjaminnahill, ariramdial}@mailmcgillca,

More information

Real-Time Component Software. slide credits: H. Kopetz, P. Puschner

Real-Time Component Software. slide credits: H. Kopetz, P. Puschner Real-Time Component Software slide credits: H. Kopetz, P. Puschner Overview OS services Task Structure Task Interaction Input/Output Error Detection 2 Operating System and Middleware Application Software

More information

Computer Systems Assignment 4: Scheduling and I/O

Computer Systems Assignment 4: Scheduling and I/O Autumn Term 018 Distributed Computing Computer Systems Assignment : Scheduling and I/O Assigned on: October 19, 018 1 Scheduling The following table describes tasks to be scheduled. The table contains

More information

Utilizing Linux Kernel Components in K42 K42 Team modified October 2001

Utilizing Linux Kernel Components in K42 K42 Team modified October 2001 K42 Team modified October 2001 This paper discusses how K42 uses Linux-kernel components to support a wide range of hardware, a full-featured TCP/IP stack and Linux file-systems. An examination of the

More information

Optimal Implementation of Simulink Models on Multicore Architectures with Partitioned Fixed Priority Scheduling

Optimal Implementation of Simulink Models on Multicore Architectures with Partitioned Fixed Priority Scheduling The 39th IEEE Real-Time Systems Symposium (RTSS 18) Optimal Implementation of Simulink Models on Multicore Architectures with Partitioned Fixed Priority Scheduling Shamit Bansal, Yecheng Zhao, Haibo Zeng,

More information

Chapters 5 and 6 Concurrency

Chapters 5 and 6 Concurrency Operating Systems: Internals and Design Principles, 6/E William Stallings Chapters 5 and 6 Concurrency Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall Concurrency When several processes/threads

More information

Answer to exercises chap 13.2

Answer to exercises chap 13.2 Answer to exercises chap 13.2 The advantage of supporting memory-mapped I/O to device-control registers is that it eliminates the need for special I/O instructions from the instruction set and therefore

More information

(b) External fragmentation can happen in a virtual memory paging system.

(b) External fragmentation can happen in a virtual memory paging system. Alexandria University Faculty of Engineering Electrical Engineering - Communications Spring 2015 Final Exam CS333: Operating Systems Wednesday, June 17, 2015 Allowed Time: 3 Hours Maximum: 75 points Note:

More information

FCM 710: Architecture of Secure Operating Systems

FCM 710: Architecture of Secure Operating Systems FCM 710: Architecture of Secure Operating Systems Practice Exam, Spring 2010 Email your answer to ssengupta@jjay.cuny.edu March 16, 2010 Instructor: Shamik Sengupta Multiple-Choice 1. operating systems

More information

Threading and Synchronization. Fahd Albinali

Threading and Synchronization. Fahd Albinali Threading and Synchronization Fahd Albinali Parallelism Parallelism and Pseudoparallelism Why parallelize? Finding parallelism Advantages: better load balancing, better scalability Disadvantages: process/thread

More information

CSC Operating Systems Spring Lecture - XII Midterm Review. Tevfik Ko!ar. Louisiana State University. March 4 th, 2008.

CSC Operating Systems Spring Lecture - XII Midterm Review. Tevfik Ko!ar. Louisiana State University. March 4 th, 2008. CSC 4103 - Operating Systems Spring 2008 Lecture - XII Midterm Review Tevfik Ko!ar Louisiana State University March 4 th, 2008 1 I/O Structure After I/O starts, control returns to user program only upon

More information

Multiprocessors and Locking

Multiprocessors and Locking Types of Multiprocessors (MPs) Uniform memory-access (UMA) MP Access to all memory occurs at the same speed for all processors. Multiprocessors and Locking COMP9242 2008/S2 Week 12 Part 1 Non-uniform memory-access

More information

Introduction to Embedded Systems

Introduction to Embedded Systems Introduction to Embedded Systems Sanjit A. Seshia UC Berkeley EECS 9/9A Fall 0 008-0: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia. All rights reserved. Chapter : Operating Systems, Microkernels,

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 1018 L10 Synchronization Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Development project: You

More information

CSC 4320 Test 1 Spring 2017

CSC 4320 Test 1 Spring 2017 CSC 4320 Test 1 Spring 2017 Name 1. What are the three main purposes of an operating system? 2. Which of the following instructions should be privileged? a. Set value of timer. b. Read the clock. c. Clear

More information

Operating Systems. Lecture 4 - Concurrency and Synchronization. Master of Computer Science PUF - Hồ Chí Minh 2016/2017

Operating Systems. Lecture 4 - Concurrency and Synchronization. Master of Computer Science PUF - Hồ Chí Minh 2016/2017 Operating Systems Lecture 4 - Concurrency and Synchronization Adrien Krähenbühl Master of Computer Science PUF - Hồ Chí Minh 2016/2017 Mutual exclusion Hardware solutions Semaphores IPC: Message passing

More information

Chapter 6 Concurrency: Deadlock and Starvation

Chapter 6 Concurrency: Deadlock and Starvation Operating Systems: Internals and Design Principles Chapter 6 Concurrency: Deadlock and Starvation Seventh Edition By William Stallings Operating Systems: Internals and Design Principles When two trains

More information

Dept. of CSE, York Univ. 1

Dept. of CSE, York Univ. 1 EECS 3221.3 Operating System Fundamentals No.5 Process Synchronization(1) Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University Background: cooperating processes with shared

More information

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University CS 571 Operating Systems Midterm Review Angelos Stavrou, George Mason University Class Midterm: Grading 2 Grading Midterm: 25% Theory Part 60% (1h 30m) Programming Part 40% (1h) Theory Part (Closed Books):

More information

Semaphore. Originally called P() and V() wait (S) { while S <= 0 ; // no-op S--; } signal (S) { S++; }

Semaphore. Originally called P() and V() wait (S) { while S <= 0 ; // no-op S--; } signal (S) { S++; } Semaphore Semaphore S integer variable Two standard operations modify S: wait() and signal() Originally called P() and V() Can only be accessed via two indivisible (atomic) operations wait (S) { while

More information

Intro to Transactions

Intro to Transactions Reading Material CompSci 516 Database Systems Lecture 14 Intro to Transactions [RG] Chapter 16.1-16.3, 16.4.1 17.1-17.4 17.5.1, 17.5.3 Instructor: Sudeepa Roy Acknowledgement: The following slides have

More information

Design Patterns for Real-Time Computer Music Systems

Design Patterns for Real-Time Computer Music Systems Design Patterns for Real-Time Computer Music Systems Roger B. Dannenberg and Ross Bencina 4 September 2005 This document contains a set of design patterns for real time systems, particularly for computer

More information

CHAPTER NO - 1 : Introduction:

CHAPTER NO - 1 : Introduction: Sr. No L.J. Institute of Engineering & Technology Semester: IV (26) Subject Name: Operating System Subject Code:21402 Faculties: Prof. Saurin Dave CHAPTER NO - 1 : Introduction: TOPIC:1 Basics of Operating

More information

1 Multiprocessors. 1.1 Kinds of Processes. COMP 242 Class Notes Section 9: Multiprocessor Operating Systems

1 Multiprocessors. 1.1 Kinds of Processes. COMP 242 Class Notes Section 9: Multiprocessor Operating Systems COMP 242 Class Notes Section 9: Multiprocessor Operating Systems 1 Multiprocessors As we saw earlier, a multiprocessor consists of several processors sharing a common memory. The memory is typically divided

More information

Multimedia Systems 2011/2012

Multimedia Systems 2011/2012 Multimedia Systems 2011/2012 System Architecture Prof. Dr. Paul Müller University of Kaiserslautern Department of Computer Science Integrated Communication Systems ICSY http://www.icsy.de Sitemap 2 Hardware

More information

Chapter 2 Processes and Threads

Chapter 2 Processes and Threads MODERN OPERATING SYSTEMS Third Edition ANDREW S. TANENBAUM Chapter 2 Processes and Threads The Process Model Figure 2-1. (a) Multiprogramming of four programs. (b) Conceptual model of four independent,

More information

Real-Time Operating Systems Issues. Realtime Scheduling in SunOS 5.0

Real-Time Operating Systems Issues. Realtime Scheduling in SunOS 5.0 Real-Time Operating Systems Issues Example of a real-time capable OS: Solaris. S. Khanna, M. Sebree, J.Zolnowsky. Realtime Scheduling in SunOS 5.0. USENIX - Winter 92. Problems with the design of general-purpose

More information

1995 Paper 10 Question 7

1995 Paper 10 Question 7 995 Paper 0 Question 7 Why are multiple buffers often used between producing and consuming processes? Describe the operation of a semaphore. What is the difference between a counting semaphore and a binary

More information

EMERALDS: a small-memory real-time microkernel

EMERALDS: a small-memory real-time microkernel EMERALDS: a small-memory real-time microkernel By Khawar M. Zuberi, Padmanabhan Pillai, and Kang G. Shin 4/28/2005 CMSC 691S Real-Time Systems 1 Outline Introduction Requirements EMERALDS Overview CSD

More information

Operating Systems CMPSCI 377 Spring Mark Corner University of Massachusetts Amherst

Operating Systems CMPSCI 377 Spring Mark Corner University of Massachusetts Amherst Operating Systems CMPSCI 377 Spring 2017 Mark Corner University of Massachusetts Amherst Last Class: Intro to OS An operating system is the interface between the user and the architecture. User-level Applications

More information

CHAPTER 6: PROCESS SYNCHRONIZATION

CHAPTER 6: PROCESS SYNCHRONIZATION CHAPTER 6: PROCESS SYNCHRONIZATION The slides do not contain all the information and cannot be treated as a study material for Operating System. Please refer the text book for exams. TOPICS Background

More information

Multiprocessor System. Multiprocessor Systems. Bus Based UMA. Types of Multiprocessors (MPs) Cache Consistency. Bus Based UMA. Chapter 8, 8.

Multiprocessor System. Multiprocessor Systems. Bus Based UMA. Types of Multiprocessors (MPs) Cache Consistency. Bus Based UMA. Chapter 8, 8. Multiprocessor System Multiprocessor Systems Chapter 8, 8.1 We will look at shared-memory multiprocessors More than one processor sharing the same memory A single CPU can only go so fast Use more than

More information

Embedded Software Programming

Embedded Software Programming Embedded Software Programming Computer Science & Engineering Department Arizona State University Tempe, AZ 85287 Dr. Yann-Hang Lee yhlee@asu.edu (480) 727-7507 Event and Time-Driven Threads taskspawn (name,

More information

STUDENT NAME: STUDENT ID: Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Total

STUDENT NAME: STUDENT ID: Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Total University of Minnesota Department of Computer Science & Engineering CSci 5103 - Fall 2018 (Instructor: Tripathi) Midterm Exam 1 Date: October 18, 2018 (1:00 2:15 pm) (Time: 75 minutes) Total Points 100

More information

Verification of Real-Time Systems Resource Sharing

Verification of Real-Time Systems Resource Sharing Verification of Real-Time Systems Resource Sharing Jan Reineke Advanced Lecture, Summer 2015 Resource Sharing So far, we have assumed sets of independent tasks. However, tasks may share resources to communicate

More information

Multiprocessor Systems. COMP s1

Multiprocessor Systems. COMP s1 Multiprocessor Systems 1 Multiprocessor System We will look at shared-memory multiprocessors More than one processor sharing the same memory A single CPU can only go so fast Use more than one CPU to improve

More information

Aperiodic Servers (Issues)

Aperiodic Servers (Issues) Aperiodic Servers (Issues) Interference Causes more interference than simple periodic tasks Increased context switching Cache interference Accounting Context switch time Again, possibly more context switches

More information

Chapter 5: Process Synchronization. Operating System Concepts 9 th Edition

Chapter 5: Process Synchronization. Operating System Concepts 9 th Edition Chapter 5: Process Synchronization Silberschatz, Galvin and Gagne 2013 Chapter 5: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Mutex Locks

More information

Chapter 5 Concurrency: Mutual Exclusion and Synchronization

Chapter 5 Concurrency: Mutual Exclusion and Synchronization Operating Systems: Internals and Design Principles Chapter 5 Concurrency: Mutual Exclusion and Synchronization Seventh Edition By William Stallings Designing correct routines for controlling concurrent

More information

Concurrency Race Conditions and Deadlocks

Concurrency Race Conditions and Deadlocks Concurrency Race Conditions and Deadlocks Kartik Gopalan Chapters 2 (2.3) and 6 Tanenbaum s Modern OS Sequential Loosely, doing many things, but one after another E.g. Finish one assignment, then another

More information

Concept Presentation. MAENAD Analysis Workbench

Concept Presentation. MAENAD Analysis Workbench Concept Presentation MAENAD Analysis Workbench Outline, tooling with EAST-ADL MAENAD Modeling Workbench EAST-ADL profile, implemented in Eclipse/Papyrus UML MAENAD Analysis Workbench Eclipse plugins for

More information

Computer Architecture

Computer Architecture 18-447 Computer Architecture CSCI-564 Advanced Computer Architecture Lecture 29: Consistency & Coherence Lecture 20: Consistency and Coherence Bo Wu Prof. Onur Mutlu Colorado Carnegie School Mellon University

More information

Microkernel/OS and Real-Time Scheduling

Microkernel/OS and Real-Time Scheduling Chapter 12 Microkernel/OS and Real-Time Scheduling Hongwei Zhang http://www.cs.wayne.edu/~hzhang/ Ack.: this lecture is prepared in part based on slides of Lee, Sangiovanni-Vincentelli, Seshia. Outline

More information

MARUTHI SCHOOL OF BANKING (MSB)

MARUTHI SCHOOL OF BANKING (MSB) MARUTHI SCHOOL OF BANKING (MSB) SO IT - OPERATING SYSTEM(2017) 1. is mainly responsible for allocating the resources as per process requirement? 1.RAM 2.Compiler 3.Operating Systems 4.Software 2.Which

More information

Capita Selecta: Software engineering for automotive systems

Capita Selecta: Software engineering for automotive systems Capita Selecta: Software engineering for automotive systems Objective Architecture Description Languages: o Students understand the purpose of an ADL. o Students can use a specific ADL for automotive systems.

More information

Ensuring Schedulability of Spacecraft Flight Software

Ensuring Schedulability of Spacecraft Flight Software Ensuring Schedulability of Spacecraft Flight Software Flight Software Workshop 7-9 November 2012 Marek Prochazka & Jorge Lopez Trescastro European Space Agency OUTLINE Introduction Current approach to

More information

Constructing and Verifying Cyber Physical Systems

Constructing and Verifying Cyber Physical Systems Constructing and Verifying Cyber Physical Systems Mixed Criticality Scheduling and Real-Time Operating Systems Marcus Völp Overview Introduction Mathematical Foundations (Differential Equations and Laplace

More information

Developing AUTOSAR Compliant Embedded Software Senior Application Engineer Sang-Ho Yoon

Developing AUTOSAR Compliant Embedded Software Senior Application Engineer Sang-Ho Yoon Developing AUTOSAR Compliant Embedded Software Senior Application Engineer Sang-Ho Yoon 2015 The MathWorks, Inc. 1 Agenda AUTOSAR Compliant Code Generation AUTOSAR Workflows Starting from Software Component

More information

Interprocess Communication By: Kaushik Vaghani

Interprocess Communication By: Kaushik Vaghani Interprocess Communication By: Kaushik Vaghani Background Race Condition: A situation where several processes access and manipulate the same data concurrently and the outcome of execution depends on the

More information

Synchronization. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T.

Synchronization. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. Synchronization Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. L24-1 Reminders All labs must be completed by this Friday, Dec. 7 th to pass the course Any work you intend

More information

ACM SOSP 99 paper by Zuberi et al.

ACM SOSP 99 paper by Zuberi et al. ACM SOSP 99 paper by Zuberi et al. Motivation Overview of EMERALDS Minimizing Code Size Minimizing Execution Overheads Conclusions 11/17/10 2 Small-memory embedded systems used everywhere! automobiles

More information

Remaining Contemplation Questions

Remaining Contemplation Questions Process Synchronisation Remaining Contemplation Questions 1. The first known correct software solution to the critical-section problem for two processes was developed by Dekker. The two processes, P0 and

More information

Work Stealing. in Multiprogrammed Environments. Brice Dobry Dept. of Computer & Information Sciences University of Delaware

Work Stealing. in Multiprogrammed Environments. Brice Dobry Dept. of Computer & Information Sciences University of Delaware Work Stealing in Multiprogrammed Environments Brice Dobry Dept. of Computer & Information Sciences University of Delaware Outline Motivate the issue Describe work-stealing in general Explain the new algorithm

More information

Real Time Operating System: Inter-Process Communication (IPC)

Real Time Operating System: Inter-Process Communication (IPC) ECE3411 Fall 2015 Lecture 6c. Real Time Operating System: Inter-Process Communication (IPC) Marten van Dijk, Syed Kamran Haider Department of Electrical & Computer Engineering University of Connecticut

More information

Last Class: Monitors. Real-world Examples

Last Class: Monitors. Real-world Examples Last Class: Monitors Monitor wraps operations with a mutex Condition variables release mutex temporarily C++ does not provide a monitor construct, but monitors can be implemented by following the monitor

More information

a. A binary semaphore takes on numerical values 0 and 1 only. b. An atomic operation is a machine instruction or a sequence of instructions

a. A binary semaphore takes on numerical values 0 and 1 only. b. An atomic operation is a machine instruction or a sequence of instructions CSE 306 -- Operating Systems Spring 2002 Solutions to Review Questions for the Final Exam 1. [20 points, 1 each] rue or False, circle or F. a. A binary semaphore takes on numerical values 0 and 1 only.

More information

University of Waterloo Midterm Examination Model Solution CS350 Operating Systems

University of Waterloo Midterm Examination Model Solution CS350 Operating Systems University of Waterloo Midterm Examination Model Solution CS350 Operating Systems Fall, 2003 1. (10 total marks) Suppose that two processes, a and b, are running in a uniprocessor system. a has three threads.

More information

Resource management. Real-Time Systems. Resource management. Resource management

Resource management. Real-Time Systems. Resource management. Resource management Real-Time Systems Specification Implementation Verification Mutual exclusion is a general problem that exists at several levels in a real-time system. Shared resources internal to the the run-time system:

More information

Taking the Right Turn with Safe and Modular Solutions for the Automotive Industry

Taking the Right Turn with Safe and Modular Solutions for the Automotive Industry Taking the Right Turn with Safe and Modular Solutions for the Automotive Industry A Time-Triggered Middleware for Safety- Critical Automotive Applications Ayhan Mehmet, Maximilian Rosenblattl, Wilfried

More information

Operating Systems, Fall

Operating Systems, Fall Input / Output & Real-time Scheduling Chapter 5.1 5.4, Chapter 7.5 1 I/O Software Device controllers Memory-mapped mapped I/O DMA & interrupts briefly I/O Content I/O software layers and drivers Disks

More information

Department of Computer Science, Institute for System Architecture, Operating Systems Group. Real-Time Systems '08 / '09. Hardware.

Department of Computer Science, Institute for System Architecture, Operating Systems Group. Real-Time Systems '08 / '09. Hardware. Department of Computer Science, Institute for System Architecture, Operating Systems Group Real-Time Systems '08 / '09 Hardware Marcus Völp Outlook Hardware is Source of Unpredictability Caches Pipeline

More information

NPTEL Course Jan K. Gopinath Indian Institute of Science

NPTEL Course Jan K. Gopinath Indian Institute of Science Storage Systems NPTEL Course Jan 2012 (Lecture 40) K. Gopinath Indian Institute of Science Google File System Non-Posix scalable distr file system for large distr dataintensive applications performance,

More information

Main Points of the Computer Organization and System Software Module

Main Points of the Computer Organization and System Software Module Main Points of the Computer Organization and System Software Module You can find below the topics we have covered during the COSS module. Reading the relevant parts of the textbooks is essential for a

More information

r ~ c.. Q.) 0\ 7 < - \1") ::J - ::r 3 ::J,... ::J Q.) 0!:t. !:t. ::J ::J (/') C

r ~ c.. Q.) 0\ 7 < - \1) ::J - ::r 3 ::J,... ::J Q.) 0!:t. !:t. ::J ::J (/') C ~ 0 c.. Q.) < < - V> ::J n -c 3 - ::r m ~ 3 m ::J,... Q.)!:t. 0 ::J - N OJ 0!:t. ::J 0 V, - (/') C m V, ::J ~ r ~ 0\ 7 p )7 L v\ \1") Readers/Writers Lock A common variant for mutual exclusion - One writer

More information

CSE 4/521 Introduction to Operating Systems

CSE 4/521 Introduction to Operating Systems CSE 4/521 Introduction to Operating Systems Lecture 7 Process Synchronization II (Classic Problems of Synchronization, Synchronization Examples) Summer 2018 Overview Objective: 1. To examine several classical

More information

Resource-bound process algebras for Schedulability and Performance Analysis of Real-Time and Embedded Systems

Resource-bound process algebras for Schedulability and Performance Analysis of Real-Time and Embedded Systems Resource-bound process algebras for Schedulability and Performance Analysis of Real-Time and Embedded Systems Insup Lee 1, Oleg Sokolsky 1, Anna Philippou 2 1 RTG (Real-Time Systems Group) Department of

More information

Operating Systems Design Fall 2010 Exam 1 Review. Paul Krzyzanowski

Operating Systems Design Fall 2010 Exam 1 Review. Paul Krzyzanowski Operating Systems Design Fall 2010 Exam 1 Review Paul Krzyzanowski pxk@cs.rutgers.edu 1 Question 1 To a programmer, a system call looks just like a function call. Explain the difference in the underlying

More information

R13 SET - 1 2. Answering the question in Part-A is compulsory 1 a) Define Operating System. List out the objectives of an operating system. [3M] b) Describe different attributes of the process. [4M] c)

More information

Concurrency Control. Chapter 17. Comp 521 Files and Databases Fall

Concurrency Control. Chapter 17. Comp 521 Files and Databases Fall Concurrency Control Chapter 17 Comp 521 Files and Databases Fall 2012 1 Conflict Serializable Schedules Recall conflicts (WR, RW, WW) were the cause of sequential inconsistency Two schedules are conflict

More information

System Building. Events, Co-routines, Continuations and Threads - OS (and application) Execution Models. Event Model. Events

System Building. Events, Co-routines, Continuations and Threads - OS (and application) Execution Models. Event Model. Events s, o-routines, ontinuations and Threads - OS (and application) Execution Models System uilding General purpose systems need to deal with Many activities potentially overlapping may be interdependent ctivities

More information

What is the Race Condition? And what is its solution? What is a critical section? And what is the critical section problem?

What is the Race Condition? And what is its solution? What is a critical section? And what is the critical section problem? What is the Race Condition? And what is its solution? Race Condition: Where several processes access and manipulate the same data concurrently and the outcome of the execution depends on the particular

More information

Concurrent activities in daily life. Real world exposed programs. Scheduling of programs. Tasks in engine system. Engine system

Concurrent activities in daily life. Real world exposed programs. Scheduling of programs. Tasks in engine system. Engine system Real world exposed programs Programs written to interact with the real world, outside the computer Programs handle input and output of data in pace matching the real world processes Necessitates ability

More information

7. Multimedia Operating System. Contents. 7.3 Resource Management. 7.4 Process Management. 7.2 Real Time Systems. 7.5 Prototype Systems. 7.

7. Multimedia Operating System. Contents. 7.3 Resource Management. 7.4 Process Management. 7.2 Real Time Systems. 7.5 Prototype Systems. 7. Contents 7. Overview 7.2 Real Time Systems 7.3 Resource Management Dimensions in Resource Design Reservation Strategies 7.4 Process Management Classification of Real-Time Scheduling Strategies Schedulability

More information

Chapter 5: Process Synchronization. Operating System Concepts Essentials 2 nd Edition

Chapter 5: Process Synchronization. Operating System Concepts Essentials 2 nd Edition Chapter 5: Process Synchronization Silberschatz, Galvin and Gagne 2013 Chapter 5: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Mutex Locks

More information

Multiprocessor Systems. Chapter 8, 8.1

Multiprocessor Systems. Chapter 8, 8.1 Multiprocessor Systems Chapter 8, 8.1 1 Learning Outcomes An understanding of the structure and limits of multiprocessor hardware. An appreciation of approaches to operating system support for multiprocessor

More information

Operating Systems. Synchronisation Part I

Operating Systems. Synchronisation Part I Operating Systems Synchronisation Part I Process Synchronisation How do processes synchronise their operation to perform a task? Key concepts: Critical sections Mutual exclusion Atomic operations Race

More information

AUTOSAR Method. Webinar

AUTOSAR Method. Webinar AUTOSAR Method Webinar 2013-04-17 V2.1 2013-04-16 Agenda >Introduction AUTOSAR Method Exchange Formats Workflows OEM-TIER1 Workflows TIER1 Webinar Series Slide: 2 Introduction Current Workflow (non-autosar)

More information