Priority Queues. Outline and Required Reading: The Priority Queue ADT ( 7.1) Implementing a Priority Queue with a Sequence ( 7.2)

Size: px
Start display at page:

Download "Priority Queues. Outline and Required Reading: The Priority Queue ADT ( 7.1) Implementing a Priority Queue with a Sequence ( 7.2)"

Transcription

1 1 Priority Queues Outline and Required Reading: The Priority Queue ADT (.1) Implementing a Priority Queue with a Sequence (.2) COSC 20, Fall 200, Section A Instructor: N. Vlajic

2 Keys 2 Key object / attribute assigned to an element used to identify, rank or weight that element typically assigned by a user or application not necessarily related to the content of corresponding element key element node in data-structure Example 1 [ keys in different applications ] (1) student records: key = student number (2) phone book: key = names () queue of callers on hold : key = assigned priority level [! ] [call ] [ ] [call 2 ] [ ] [call 2 ]

3 Total Order Relations on Keys Key Comparison in order to identify, rank, or weight elements based on their keys, a comparison rule is needed (R) if R(k 1,k 2 )=true k 1 comes before k 2, otherwise k 2 comes before k 2 R must define a total order relation, i.e. it must satisfy the following: (1) reflexive property: R(k,k)=true for every valid k (2) anti-symmetric property: if R(k 1,k 2 )=true & R(k 2,k 1 )=true k 1 =k 2 () transitive property: if R(k 1,k 2 )=true & R(k 2,k )=true R(k 1,k )=true Comparison rule that satisfies these properties will never lead to contradiction; the notion of the greatest (k max ) and smallest (k min ) key will be clearly defined: R(k,k max )=true, for any other key in the collection R(k min,k)=true, for any other key in the collection

4 Total Order Relations on Keys 4 Example 2 [ Total Order Relations ] Let us assume: keys N, R corresponds to. (1) k k is true for every valid k (2) if k 1 k 2 is true & k 2 k 1 is true k 1 =k 2 () if k 1 k 2 is true & k 2 k is true k 1 k is true Is strictly less a total order relation?? Let us assume: keys are words, R corresponds to alphabetically equal or before (@). (1) w is true for every valid w (2) if w 2 is true & w 1 is true w 1 =w 2 () if w w 2 is true & w w is true w w is true

5 Comparator Pattern 5 Comparator object external to the keys supplies a set of methods that implement key-comparison rules each method takes two keys and compares them, or reports an error if they are incomparable comparator approach enables that data container portion of the dictionary be reused k 1 e 1 k 2 e 2 k n e n C class islessthan(k a,k b ) isgreaterthan(k a,k b ) isequalto(k a,k b ) Example [ use of comparator ] C.isComparable(p.k) C.isLessThan(p.k, q.k) C.isGreaterThan(p.k,q.k) Dictionary class

6 Comparator Pattern (cont.) 6 Comparator Interface public boolean islessthan(a,b); /* return true if and only if a is less than b */ public boolean islessthanorequalto(a,b); /* return true if and only if a is less than or equal to b */ public boolean isequalto(a,b); /* return true if a and b are equal */ public boolean isgreaterthan(a,b); /* return true if and only if a is greater than b */ public boolean isgreaterthanorequalto(a,b); /* return true if and only if a is greater than or equal to b */ public boolean iscomparable(a); /* return true if and only if a can be compared */

7 Priority Queue Priority Queue dictionary organized according to the principle smallest key first out key value = priority level (e.g. smallest key = highest priority) if there are several items with smallest keys, one of the following policies can be used: (1) remove any item with smallest key (2) remove the item with smallest key that was first added k=1 e n k=0 e n-1 k=2 e n-2 k=0 e 1 remove first Could a PQ be efficiently implemented using a single (regular) queue???

8 Priority Queue (cont.) 8 Example 4 [ Priority Queues ] Priority levels of Internet traffic: high [0] streaming video normal [1] HTML files (textual Web pages) low [2] traffic computer 1 ( tool) [ 0 ] [ 2 ] [ 1 ] [ 0 ] computer 2 (Web-browser) computer (video-chat) HTML file router priority queue

9 Priority Queue: Interface Priority Queue Interface public int size(); /* return the number of elements in PQ */ public boolean isempty(); /* test whether PQ is empty */ public void insertitem(object k, Object e); /* insert a new element e with key k into PQ */ public Object minelement(); /* return, but do not remove, an element of PQ with smallest key; an error condition occurs if the PQ is empty */ public Object minkey(); /* return the smallest key in P; an error condition occurs if the PQ is empty */ public Object removemin(); /* remove from PQ and return an element with smallest key; an error condition occurs if the priority queue is empty */

10 Priority Queue: Implementation 10 How to choose the optimal implementation of a dictionary? In order to choose the optimal implementation it is important to look at usage pattern. (1) if dictionary is loaded once and then there are numerous searches executed on it we should be concerned with the cost of find method (2) if the number of elements loaded in the dictionary is large, and only a few searches are expected we should be concerned with the cost of insert method How to evaluate implementation of PQ? In PQs: (1) the number of elements can be considerable (2) all inserted elements are eventually removed (1) and (2) the cost of find/remove and insert are equally important!!!

11 Priority Queue: Implementation [1] Implementation of PQ with an Array of Ordinary Queues the number of ordinary queues corresponds to the number of priority levels each item of the PQ is placed in one of the ordinary queues when an item needs to be removed, move down through the ordinary queues, starting from the highest priority, until a nonempty queue is found remove the front item from this nonempty queue k=0 k=1 k=2

12 Priority Queue: Implementation [1] (cont.) 12 Running Times simple array-based implementation of queues is proven ineffective we will assume that ordinary queues are implemented using linked-lists Method insertitem(k,e) removemin() RT O(1) O(q) q = number of priority levels The running time of removemin() could be improved by adding an instance variable which keeps track of the highest priority element currently in the PQ. If the number of possible priorities is large, or unknown, this implementation becomes impractical!

13 Priority Queue: Implementation [2] 1 Implementation of PQ with Unsorted Sequence S is a general sequence; elements of S are pairs (k,e) new item p=(k,e) is always added at the end of S, by means of insertlast(p) to perform removemin(), element p with min key must be found, which requires that all elements in S be inspected removemin k=1 e n k=0 e n-1 k=2 e n-2 k=4 e 1 insertitem Which implementation of Sequence (array or DLL) is better, in this case?

14 Priority Queue: Implementation [2] (cont.) 14 Running Times the cost of insertlast() and findmin(), both in array and DLL based implementation, are O(1) and Θ(n) respectively we can assume either implementation Method insertitem(k,e) removemin() RT O(1) Θ(n) Implementation of PQ with unsorted sequence allows for fast insertion but slow deletion of items. removemin() in the array-based implementation is slightly more costly than in the DLL-implementation. Why?!

15 Priority Queue: Implementation [] 15 Implementation of PQ with Sorted Sequence to add new item p=(k,e) to S, first an appropriate location for p must be found (after the last item with key-value k, when looking from first() to last() ) item with smallest key is always placed at the front of S, therefore removemin() is performed simply as remove(first()) removemin k=4 e 1 k=2 e n-2 k=1 e n k=0 e n-1 insertitem In this implementation of PQ, items end up sorted according to their key-values.

16 Priority Queue: Implementation [] 16 Running Times the cost of findlessthanorequal(k) (i.e. insertitem(k,e)) and remove(first()), both in circular-array and DLL based implementation, are O(n) and O(1) respectively we can assume either implementation Method insertitem(k,e) removemin() RT O(n) O(1) Implementation of PQ with sorted sequence allows for fast deletion but slow insertion of items. insertitem(k,e) in the array-based implementation is slightly more costly than in the DLL-implementation. Why?!

17 Sorting with Priority Queue 1 PriorityQueueSort scheme for sorting S using an auxiliary PQ Phase (1) Put the items of S into an initially empty PQ by means of n insertitem() operations, one for each element. Phase (2) Extract the items from PQ in non-decreasing order by means of n removemin() operations, putting them back into S S [1,e n ] [0,e n-1 ] [2,e n-2 ] [4,e n-2 ] a=s.remove(first()) Q.insertItem(a.k,a.e) Q [1,e n ] [0,e n-1 ] [2,e n-2 ] [4,e n-2 ] b=q.minkey() c=q.removemin() p=(b,c) S.insertLast(p) S [4,e n-2 ] [2,e n-2 ] [1,e n ] [0,e n-1 ]

18 Sorting with Priority Queue (cont.) 18 Selection-Sort Algorithm = PriorityQueueSort with Unsorted Seq. Phase (1) Put the items of S into an initially empty PQ by means of n insertitem() operations. complexity: Θ(n) + Θ(n) = Θ(n) Phase (2) Repeatedly select (and remove) the item with smallest key in PQ and insert it at the end end of S. complexity: Θ(n+(n-1)+..+1) + Θ(n) = Θ(n 2 ) Selection from PQ is the bottleneck in the k th iteration all (n-k+1) keys of PQ need to be scanned in order to find the min key.

19 Sorting with Priority Queue (cont.) 1 Insertion-Sort Algorithm = PriorityQueueSort with Sorted Seq. Phase (1) Repeatedly remove the first item p=(k,e) from S and insert it at the appropriate location in PQ, i.e. after the last item in PQ with key-value k. Complexity: Θ(n) + O( (n-1)) = O(n 2 ). Phase (2) Remove the first item from PQ and place it at the back of S. Complexity: Θ(n) + Θ(n) = Θ(n) Insertion in PQ is the bottleneck in the k th iteration keys of at most (k-1) items in PQ need to be examined in order to find the right place for the new element. Which of the two sort algorithms provides a better performance, overall!?

20 1 st iteration 2 nd iteration In-Place Selection and Insertion Sort 20 In-Place Sort the 2 nd data-structure is not used all steps are performed directly on the original data-structure In-Place Selection Sort k th iteration: (1) find the smallest element (A) in the range [k,n] of S; (2) remove A; () shift-down all elements in the range [k,a.before()] (4) place A in the new (empty) location, i.e. k th location;

21 In-Place Selection and Insertion Sort (cont.) 21 In-Place Insertion Sort k th iteration: (1) remove the (k+1) th elements of S (B); (2) shift the above elements down, as long as they are larger than B () place B at the new (empty) location 1 st iteration 2 nd iteration

22 Priority Queues: Questions 22 Q.1 Implement insertitem(k,e) method of the priority queue, using the concepts of Implementation [1]. Assume that ordinary queues form an array of queues (Queue[ ] ordinaryqueues = new Queue[noOfPriorities]). Verify for yourself that the complexity of this method is O(1). Q.2 Suppose you know that the number of priorities that will be used in a PQ application is small, but you do not know what the actual priorities will be. For example, suppose you know that the priorities can be any integer value in the range 0 to , but you also know that there will at most 25 different numbers used. How might you implement the priority queue as an array of ordinary Queues in such a way that the array size is much smaller than ?

Priority Queues. Priority Queue. Keys and Total Order Relations. The Priority Queue ADT

Priority Queues. Priority Queue. Keys and Total Order Relations. The Priority Queue ADT Priority Queues Priority Queue The priority queue ADT Implementing a priority queue with a Elementary sorting using a Priority Queue Issues in sorting Queue where we can insert in any order. When we remove

More information

Priority Queues. Reading: 7.1, 7.2

Priority Queues. Reading: 7.1, 7.2 Priority Queues Reading: 7.1, 7.2 Generalized sorting Sometimes we need to sort but The data type is not easily mapped onto data we can compare (numbers, strings, etc) The sorting criteria changes depending

More information

Subject : Computer Science. Paper: Data Structures. Module: Priority Queue and Applications. Module No: CS/DS/14

Subject : Computer Science. Paper: Data Structures. Module: Priority Queue and Applications. Module No: CS/DS/14 e-pg Pathshala Subject : Computer Science Paper: Data Structures Module: Priority Queue and Applications Module No: CS/DS/14 Quadrant 1- e-text Welcome to the e-pg Pathshala Lecture Series on Data Structures.

More information

Heaps Outline and Required Reading: Heaps ( 7.3) COSC 2011, Fall 2003, Section A Instructor: N. Vlajic

Heaps Outline and Required Reading: Heaps ( 7.3) COSC 2011, Fall 2003, Section A Instructor: N. Vlajic 1 Heaps Outline and Required Reading: Heaps (.3) COSC 2011, Fall 2003, Section A Instructor: N. Vlajic Heap ADT 2 Heap binary tree (T) that stores a collection of keys at its internal nodes and satisfies

More information

1/27/2005 2:03 AM Priority Queues 1. Outline and Reading

1/27/2005 2:03 AM Priority Queues 1. Outline and Reading Priority Queues Sell 100 $122 Sell 300 $120 Buy 500 $119 Buy 400 $118 Priority Queues 1 Outline and Reading PriorityQueue ADT ( 2.4.1) Total order relation ( 2.4.1) Comparator ADT ( 2.4.1) Sorting with

More information

Algorithms and Data Structures

Algorithms and Data Structures Priority Queues and Heaps Page 1 BFH-TI: Softwareschule Schweiz Priority Queues and Heaps Dr. CAS SD01 Priority Queues and Heaps Page 2 Outline Priority Queues Heaps Heap-Based Priority Queues Priority

More information

Data Structures and Algorithms

Data Structures and Algorithms Berner Fachhochschule - Technik und Informatik Data Structures and Algorithms Heaps and Priority Queues Philipp Locher FS 2018 Heaps and Priority Queues Page 1 Outline Heaps Heap-Sort Priority Queues Heaps

More information

Priority Queues and Heaps. More Data Structures. Priority Queue ADT ( 2.4.1) Total Order Relation. Sorting with a Priority Queue ( 2.4.

Priority Queues and Heaps. More Data Structures. Priority Queue ADT ( 2.4.1) Total Order Relation. Sorting with a Priority Queue ( 2.4. More Data Structures Priority Queues and Heaps Priority Queues, Comparators, Locators, Dictionaries More Data Structures v. More Data Structures v. Priority Queue ADT (.4.) Total Order Relation A priority

More information

Sorting. Outline. Sorting with a priority queue Selection-sort Insertion-sort Heap Sort Quick Sort

Sorting. Outline. Sorting with a priority queue Selection-sort Insertion-sort Heap Sort Quick Sort Sorting Hiroaki Kobayashi 1 Outline Sorting with a priority queue Selection-sort Insertion-sort Heap Sort Quick Sort Merge Sort Lower Bound on Comparison-Based Sorting Bucket Sort and Radix Sort Hiroaki

More information

Priority Queues and Heaps. Heaps and Priority Queues 1

Priority Queues and Heaps. Heaps and Priority Queues 1 Priority Queues and Heaps 2 5 6 9 7 Heaps and Priority Queues 1 Priority Queue ADT A priority queue stores a collection of items An item is a pair (key, element) Main methods of the Priority Queue ADT

More information

Priority Queue ADT ( 7.1) Heaps and Priority Queues 2. Comparator ADT ( 7.1.4) Total Order Relation. Using Comparators in C++

Priority Queue ADT ( 7.1) Heaps and Priority Queues 2. Comparator ADT ( 7.1.4) Total Order Relation. Using Comparators in C++ Heaps and Priority Queues Priority Queue ADT (.) A priority queue stores a collection of items An item is a pair (key, element) Main methods of the Priority Queue ADT insertitem(k, o) inserts an item ith

More information

Elementary Data Structures 2

Elementary Data Structures 2 Elementary Data Structures Priority Queues, & Dictionaries Priority Queues Sell 00 IBM $ Sell 300 IBM $0 Buy 00 IBM $9 Buy 400 IBM $8 Priority Queue ADT A priority queue stores a collection of items An

More information

Stores a collection of elements each with an associated key value

Stores a collection of elements each with an associated key value CH9. PRIORITY QUEUES ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 201) PRIORITY QUEUES Stores a collection

More information

Priority Queues Goodrich, Tamassia. Priority Queues 1

Priority Queues Goodrich, Tamassia. Priority Queues 1 Priority Queues Priority Queues 1 Priority Queue ADT A priority queue stores a collection of entries Each entry is a pair (key, value) Main methods of the Priority Queue ADT insert(k, x) inserts an entry

More information

CH 8. HEAPS AND PRIORITY QUEUES

CH 8. HEAPS AND PRIORITY QUEUES CH 8. HEAPS AND PRIORITY QUEUES ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM NANCY

More information

CH. 8 PRIORITY QUEUES AND HEAPS

CH. 8 PRIORITY QUEUES AND HEAPS CH. 8 PRIORITY QUEUES AND HEAPS ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM NANCY

More information

CS2 Algorithms and Data Structures Note 6

CS2 Algorithms and Data Structures Note 6 CS Algorithms and Data Structures Note 6 Priority Queues and Heaps In this lecture, we will discuss priority queues, another important ADT. As stacks and queues, priority queues store arbitrary collections

More information

Heaps. 2/13/2006 Heaps 1

Heaps. 2/13/2006 Heaps 1 Heaps /13/00 Heaps 1 Outline and Reading What is a heap ( 8.3.1) Height of a heap ( 8.3.) Insertion ( 8.3.3) Removal ( 8.3.3) Heap-sort ( 8.3.) Arraylist-based implementation ( 8.3.) Bottom-up construction

More information

Priority Queues 3/19/14

Priority Queues 3/19/14 Presentation for use with the textbook Data Structures and Algorithms in Java, 6 th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014 Priority Queues Priority Queues 1 Priority

More information

csci 210: Data Structures Priority Queues and Heaps

csci 210: Data Structures Priority Queues and Heaps csci 210: Data Structures Priority Queues and Heaps Summary Topics the Priority Queue ADT Priority Queue vs Dictionary and Queues implementation of PQueue linked lists binary search trees heaps Heaps READING:

More information

Heaps Goodrich, Tamassia. Heaps 1

Heaps Goodrich, Tamassia. Heaps 1 Heaps Heaps 1 Recall Priority Queue ADT A priority queue stores a collection of entries Each entry is a pair (key, value) Main methods of the Priority Queue ADT insert(k, x) inserts an entry with key k

More information

Priority queues. Priority queues. Priority queue operations

Priority queues. Priority queues. Priority queue operations Priority queues March 30, 018 1 Priority queues The ADT priority queue stores arbitrary objects with priorities. An object with the highest priority gets served first. Objects with priorities are defined

More information

CSE 214 Computer Science II Heaps and Priority Queues

CSE 214 Computer Science II Heaps and Priority Queues CSE 214 Computer Science II Heaps and Priority Queues Spring 2018 Stony Brook University Instructor: Shebuti Rayana shebuti.rayana@stonybrook.edu http://www3.cs.stonybrook.edu/~cse214/sec02/ Introduction

More information

Heaps and Priority Queues

Heaps and Priority Queues Heaps and Priority Queues Lecture delivered by: Venkatanatha Sarma Y Assistant Professor MSRSAS-Bangalore 11 Objectives To introduce Priority Queue ADT To discuss and illustrate Priority Queues for sorting

More information

Priority Queues. Outline. COMP9024: Data Structures and Algorithms. Priority Queue ADT. Total Order Relations. Entry ADT

Priority Queues. Outline. COMP9024: Data Structures and Algorithms. Priority Queue ADT. Total Order Relations. Entry ADT COMP0: Data Structures and Algorithms Week Seven: Priority Queues Hui Wu Outline Priority Queues Heaps Adaptable Priority Queues Session, 0 http://www.cse.unsw.edu.au/~cs0 Priority Queue ADT Priority Queues

More information

CS 234. Module 8. November 15, CS 234 Module 8 ADT Priority Queue 1 / 22

CS 234. Module 8. November 15, CS 234 Module 8 ADT Priority Queue 1 / 22 CS 234 Module 8 November 15, 2018 CS 234 Module 8 ADT Priority Queue 1 / 22 ADT Priority Queue Data: (key, element pairs) where keys are orderable but not necessarily distinct, and elements are any data.

More information

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 20, March 24, 2016

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 20, March 24, 2016 Winter 201 COMP-250: Introduction to Computer Science Lecture 20, March 2, 201 Public Announcement Public Announcement In order to have your exam printed by the Exam Office, it must be submitted by: Course

More information

Heaps 2. Recall Priority Queue ADT. Heaps 3/19/14

Heaps 2. Recall Priority Queue ADT. Heaps 3/19/14 Heaps 3// Presentation for use with the textbook Data Structures and Algorithms in Java, th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 0 Heaps Heaps Recall Priority Queue ADT

More information

COMP250: Priority queue ADT, Heaps. Lecture 23 Jérôme Waldispühl School of Computer Science McGill University

COMP250: Priority queue ADT, Heaps. Lecture 23 Jérôme Waldispühl School of Computer Science McGill University COMP250: Priority queue ADT, Heaps Lecture 23 Jérôme Waldispühl School of Computer Science McGill University Priority queue ADT Like a dictionary, a priority queue stores a set of pairs (key, info) The

More information

Data Structures and Algorithms " Priority Queues!

Data Structures and Algorithms  Priority Queues! Data Structures and Algorithms " Priority Queues! Outline" Priority Queues! Heaps! Adaptable Priority Queues! Priority Queues" Priority Queue ADT" A priority queue stores a collection of entries! Each

More information

DO NOT. UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. P. N.

DO NOT. UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. P. N. CS61B Fall 2013 UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division Test #2 Solutions DO NOT P. N. Hilfinger REPRODUCE 1 Test #2 Solution 2 Problems

More information

Priority Queues Heaps Heapsort

Priority Queues Heaps Heapsort Priority Queues Heaps Heapsort Complete the Doublets partner(s) evaluation by tonight. Use your individual log to give them useful feedback! Like 230 and have workstudy funding? We are looking for CSSE230

More information

Priority Queues. Lecture15: Heaps. Priority Queue ADT. Sequence based Priority Queue

Priority Queues. Lecture15: Heaps. Priority Queue ADT. Sequence based Priority Queue Priority Queues (0F) Lecture: Heaps Bohyung Han CSE, POSTECH bhhan@postech.ac.kr Queues Stores items (keys) in a linear list or array FIFO (First In First Out) Stored items do not have priorities. Priority

More information

Priority Queues Heaps Heapsort

Priority Queues Heaps Heapsort Priority Queues Heaps Heapsort After this lesson, you should be able to apply the binary heap insertion and deletion algorithms by hand implement the binary heap insertion and deletion algorithms explain

More information

HEAPS: IMPLEMENTING EFFICIENT PRIORITY QUEUES

HEAPS: IMPLEMENTING EFFICIENT PRIORITY QUEUES HEAPS: IMPLEMENTING EFFICIENT PRIORITY QUEUES 2 5 6 9 7 Presentation for use with the textbook Data Structures and Algorithms in Java, 6 th edition, by M. T. Goodrich, R. Tamassia, and M. H., Wiley, 2014

More information

Lecture Notes on Priority Queues

Lecture Notes on Priority Queues Lecture Notes on Priority Queues 15-122: Principles of Imperative Computation Frank Pfenning Lecture 16 October 18, 2012 1 Introduction In this lecture we will look at priority queues as an abstract type

More information

Chapter 2: Basic Data Structures

Chapter 2: Basic Data Structures Chapter 2: Basic Data Structures Basic Data Structures Stacks Queues Vectors, Linked Lists Trees (Including Balanced Trees) Priority Queues and Heaps Dictionaries and Hash Tables Spring 2014 CS 315 2 Two

More information

10/1/2018 Data Structure & Algorithm. Circularly Linked List Doubly Linked List Priority queues Heaps

10/1/2018 Data Structure & Algorithm. Circularly Linked List Doubly Linked List Priority queues Heaps 10/1/2018 Data Structure & Algorithm Circularly Linked List Doubly Linked List Priority queues Heaps 1 Linked list: Head and Tail NULL Element Next 1. Head 2. Tail 3. Size 2 Make SinglyLinkedList implements

More information

CS2 Algorithms and Data Structures Note 6

CS2 Algorithms and Data Structures Note 6 CS Algorithms and Data Structures Note 6 Priority Queues and Heaps In this lecture, we will discuss another important ADT: PriorityQueue. Like stacks and queues, priority queues store arbitrary collections

More information

The smallest element is the first one removed. (You could also define a largest-first-out priority queue)

The smallest element is the first one removed. (You could also define a largest-first-out priority queue) Priority Queues Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-first-out The smallest element is the first one removed (You could also define a largest-first-out

More information

CSCI 136 Data Structures & Advanced Programming. Lecture 22 Fall 2018 Instructor: Bills

CSCI 136 Data Structures & Advanced Programming. Lecture 22 Fall 2018 Instructor: Bills CSCI 136 Data Structures & Advanced Programming Lecture 22 Fall 2018 Instructor: Bills Last Time Lab 7: Two Towers Array Representations of (Binary) Trees Application: Huffman Encoding 2 Today Improving

More information

Priority Queues. 04/10/03 Lecture 22 1

Priority Queues. 04/10/03 Lecture 22 1 Priority Queues It is a variant of queues Each item has an associated priority value. When inserting an item in the queue, the priority value is also provided for it. The data structure provides a method

More information

Priority Queues. INFO0902 Data Structures and Algorithms. Priority Queues (files à priorités) Keys. Priority Queues

Priority Queues. INFO0902 Data Structures and Algorithms. Priority Queues (files à priorités) Keys. Priority Queues Priority Queues INFO0902 Data Structures and Algorithms Priority Queues Justus H. Piater Priority Queues (files à priorités) Keys Extract the top-priority element at any time. No notion of order, positions,

More information

Merge Sort Goodrich, Tamassia Merge Sort 1

Merge Sort Goodrich, Tamassia Merge Sort 1 Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 2004 Goodrich, Tamassia Merge Sort 1 Review of Sorting Selection-sort: Search: search through remaining unsorted elements for min Remove: remove

More information

Implementations. Priority Queues. Heaps and Heap Order. The Insert Operation CS206 CS206

Implementations. Priority Queues. Heaps and Heap Order. The Insert Operation CS206 CS206 Priority Queues An internet router receives data packets, and forwards them in the direction of their destination. When the line is busy, packets need to be queued. Some data packets have higher priority

More information

Priority Queue Sorting

Priority Queue Sorting Priority Queue Sorting We can use a priority queue to sort a list of comparable elements 1. Insert the elements one by one with a series of insert operations 2. Remove the elements in sorted order with

More information

Lecture 19 Sorting Goodrich, Tamassia

Lecture 19 Sorting Goodrich, Tamassia Lecture 19 Sorting 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 2004 Goodrich, Tamassia Outline Review 3 simple sorting algorithms: 1. selection Sort (in previous course) 2. insertion Sort (in previous

More information

Readings. Priority Queue ADT. FindMin Problem. Priority Queues & Binary Heaps. List implementation of a Priority Queue

Readings. Priority Queue ADT. FindMin Problem. Priority Queues & Binary Heaps. List implementation of a Priority Queue Readings Priority Queues & Binary Heaps Chapter Section.-. CSE Data Structures Winter 00 Binary Heaps FindMin Problem Quickly find the smallest (or highest priority) item in a set Applications: Operating

More information

Programming and Data Structures Prof. N.S. Narayanaswamy Department of Computer Science and Engineering Indian Institute of Technology, Madras

Programming and Data Structures Prof. N.S. Narayanaswamy Department of Computer Science and Engineering Indian Institute of Technology, Madras Programming and Data Structures Prof. N.S. Narayanaswamy Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 13 Merging using Queue ADT and Queue types In the

More information

FINALTERM EXAMINATION Fall 2009 CS301- Data Structures Question No: 1 ( Marks: 1 ) - Please choose one The data of the problem is of 2GB and the hard

FINALTERM EXAMINATION Fall 2009 CS301- Data Structures Question No: 1 ( Marks: 1 ) - Please choose one The data of the problem is of 2GB and the hard FINALTERM EXAMINATION Fall 2009 CS301- Data Structures Question No: 1 The data of the problem is of 2GB and the hard disk is of 1GB capacity, to solve this problem we should Use better data structures

More information

Computer Science 302 Spring 2007 Practice Final Examination: Part I

Computer Science 302 Spring 2007 Practice Final Examination: Part I Computer Science 302 Spring 2007 Practice Final Examination: Part I Name: This practice examination is much longer than the real final examination will be. If you can work all the problems here, you will

More information

CS 240 Data Structures and Data Management. Module 2: Priority Queues

CS 240 Data Structures and Data Management. Module 2: Priority Queues CS 240 Data Structures and Data Management Module 2: Priority Queues A. Biniaz A. Jamshidpey É. Schost Based on lecture notes by many previous cs240 instructors David R. Cheriton School of Computer Science,

More information

CS 240 Data Structures and Data Management. Module 2: Priority Queues

CS 240 Data Structures and Data Management. Module 2: Priority Queues CS 240 Data Structures and Data Management Module 2: Priority Queues A. Biniaz A. Jamshidpey É. Schost Based on lecture notes by many previous cs240 instructors David R. Cheriton School of Computer Science,

More information

Heaps and Priority Queues

Heaps and Priority Queues Unit 9, Part Heaps and Priority Queues Computer Science S-111 Harvard University David G. Sullivan, Ph.D. Priority Queue A priority queue (PQ) is a collection in which each item has an associated number

More information

Queues. Lesson 4. CS 32: Data Structures Dept. of Computer Science

Queues. Lesson 4. CS 32: Data Structures Dept. of Computer Science Queues Lesson 4 Outline What is a queue? Straight queue Circular Queue Sequential Implementation Linked Implementation Application: Topological sort Deques Final Notes Outline What is a queue? Straight

More information

Priority Queues 1 / 15

Priority Queues 1 / 15 Priority Queues 1 / 15 Outline 1 API 2 Elementary Implementations 3 Heap Definitions 4 Algorithms on Heaps 5 Heap Sort 6 Heap Sort and Other Sorts 2 / 15 API Many applications require that we process items

More information

Data Structures Lecture 7

Data Structures Lecture 7 Fall 2017 Fang Yu Software Security Lab. Dept. Management Information Systems, National Chengchi University Data Structures Lecture 7 Recap We have talked about object oriented programing Chapter 1, 2,

More information

Heaps. Heaps. A heap is a complete binary tree.

Heaps. Heaps. A heap is a complete binary tree. A heap is a complete binary tree. 1 A max-heap is a complete binary tree in which the value in each internal node is greater than or equal to the values in the children of that node. A min-heap is defined

More information

15.4 Longest common subsequence

15.4 Longest common subsequence 15.4 Longest common subsequence Biological applications often need to compare the DNA of two (or more) different organisms A strand of DNA consists of a string of molecules called bases, where the possible

More information

ADVANCED DATA STRUCTURES USING C++ ( MT-CSE-110 )

ADVANCED DATA STRUCTURES USING C++ ( MT-CSE-110 ) ADVANCED DATA STRUCTURES USING C++ ( MT-CSE-110 ) Unit - 2 By: Gurpreet Singh Dean Academics & H.O.D. (C.S.E. / I.T.) Yamuna Institute of Engineering & Technology, Gadholi What is a Stack? A stack is a

More information

Describe how to implement deque ADT using two stacks as the only instance variables. What are the running times of the methods

Describe how to implement deque ADT using two stacks as the only instance variables. What are the running times of the methods Describe how to implement deque ADT using two stacks as the only instance variables. What are the running times of the methods 1 2 Given : Stack A, Stack B 3 // based on requirement b will be reverse of

More information

Computer Science Spring 2005 Final Examination, May 12, 2005

Computer Science Spring 2005 Final Examination, May 12, 2005 Computer Science 302 00 Spring 2005 Final Examination, May 2, 2005 Name: No books, notes, or scratch paper. Use pen or pencil, any color. Use the backs of the pages for scratch paper. If you need more

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 12: Heaps and Priority Queues MOUNA KACEM mouna@cs.wisc.edu Fall 2018 Heaps and Priority Queues 2 Priority Queues Heaps Priority Queue 3 QueueADT Objects are added and

More information

CSCA48 Winter 2018 Week 3: Priority Queue, Linked Lists. Marzieh Ahmadzadeh, Nick Cheng University of Toronto Scarborough

CSCA48 Winter 2018 Week 3: Priority Queue, Linked Lists. Marzieh Ahmadzadeh, Nick Cheng University of Toronto Scarborough CSCA48 Winter 2018 Week 3: Priority Queue, Linked Lists Marzieh Ahmadzadeh, Nick Cheng University of Toronto Scarborough Administrative Detail Term test # 1 and #2 schedule is now on course website We

More information

Priority queue ADT Heaps. Lecture 21

Priority queue ADT Heaps. Lecture 21 Priority queue ADT Heaps Lecture 21 Priority queue ADT Like a dic9onary, a priority queue stores a set of pairs (key, info) The rank of an object depends on its priority (key) Rear of queue Front of queue

More information

CS/COE 1501

CS/COE 1501 CS/COE 1501 www.cs.pitt.edu/~nlf4/cs1501/ Priority Queues We mentioned priority queues in building Huffman tries Primary operations they needed: Insert Find item with highest priority E.g., findmin() or

More information

CSED233: Data Structures (2017F) Lecture9: Priority Queues and Heaps

CSED233: Data Structures (2017F) Lecture9: Priority Queues and Heaps (2017F) Lecture9: Priority Queues and Heaps Daijin Kim CSE, POSTECH dkim@postech.ac.kr Priority Queue ADT A priority queue stores a coll ection of entries Each entry is a pair (key, value) Main methods

More information

Data Structures and Algorithms Sorting

Data Structures and Algorithms Sorting Data Structures and Algorithms Sorting Chris Brooks Department of Computer Science University of San Francisco Department of Computer Science University of San Francisco p.1/23 12-0: Sorting Sorting is

More information

Dictionaries and Hash Tables

Dictionaries and Hash Tables Dictionaries and Hash Tables 0 1 2 3 025-612-0001 981-101-0002 4 451-229-0004 Dictionaries and Hash Tables 1 Dictionary ADT The dictionary ADT models a searchable collection of keyelement items The main

More information

CSCA48 Summer 2018 Week 3: Priority Queue, Linked Lists. Marzieh Ahmadzadeh University of Toronto Scarborough

CSCA48 Summer 2018 Week 3: Priority Queue, Linked Lists. Marzieh Ahmadzadeh University of Toronto Scarborough CSCA48 Summer 2018 Week 3: Priority Queue, Linked Lists Marzieh Ahmadzadeh University of Toronto Scarborough Administrative Detail All practicals are up on course website. Term test # 1 and #2 schedule

More information

COMP Data Structures

COMP Data Structures COMP 2140 - Data Structures Shahin Kamali Topic 5 - Sorting University of Manitoba Based on notes by S. Durocher. COMP 2140 - Data Structures 1 / 55 Overview Review: Insertion Sort Merge Sort Quicksort

More information

INFO1x05 Tutorial 6. Exercise 1: Heaps and Priority Queues

INFO1x05 Tutorial 6. Exercise 1: Heaps and Priority Queues INFO1x05 Tutorial 6 Heaps and Priority Queues Exercise 1: 1. How long would it take to remove the log n smallest elements from a heap that contains n entries, using the operation? 2. Suppose you label

More information

Department of Computer Science and Engineering. CSE 2011: Fundamentals of Data Structures Winter 2009, Section Z

Department of Computer Science and Engineering. CSE 2011: Fundamentals of Data Structures Winter 2009, Section Z Department of omputer Science and Engineering SE 2011: Fundamentals of Data Structures Winter 2009, Section Z Instructor: N. Vlajic Date: pril 14, 2009 Midterm Examination Instructions: Examination time:

More information

CMSC 341 Lecture 14: Priority Queues, Heaps

CMSC 341 Lecture 14: Priority Queues, Heaps CMSC 341 Lecture 14: Priority Queues, Heaps Prof. John Park Based on slides from previous iterations of this course Today s Topics Priority Queues Abstract Data Type Implementations of Priority Queues:

More information

Outline. Computer Science 331. Three Classical Algorithms. The Sorting Problem. Classical Sorting Algorithms. Mike Jacobson. Description Analysis

Outline. Computer Science 331. Three Classical Algorithms. The Sorting Problem. Classical Sorting Algorithms. Mike Jacobson. Description Analysis Outline Computer Science 331 Classical Sorting Algorithms Mike Jacobson Department of Computer Science University of Calgary Lecture #22 1 Introduction 2 3 4 5 Comparisons Mike Jacobson (University of

More information

Computer Science 236 Fall Nov. 11, 2010

Computer Science 236 Fall Nov. 11, 2010 Computer Science 26 Fall Nov 11, 2010 St George Campus University of Toronto Assignment Due Date: 2nd December, 2010 1 (10 marks) Assume that you are given a file of arbitrary length that contains student

More information

Module 2: Priority Queues

Module 2: Priority Queues Module 2: Priority Queues CS 240 Data Structures and Data Management T. Biedl K. Lanctot M. Sepehri S. Wild Based on lecture notes by many previous cs240 instructors David R. Cheriton School of Computer

More information

Module 2: Priority Queues

Module 2: Priority Queues Module 2: Priority Queues CS 240 Data Structures and Data Management T. Biedl K. Lanctot M. Sepehri S. Wild Based on lecture notes by many previous cs240 instructors David R. Cheriton School of Computer

More information

Array Lists Outline and Required Reading: Array Lists ( 7.1) CSE 2011, Winter 2017, Section Z Instructor: N. Vlajic

Array Lists Outline and Required Reading: Array Lists ( 7.1) CSE 2011, Winter 2017, Section Z Instructor: N. Vlajic rray Lists Outline and Required Reading: rray Lists ( 7.) CSE 20, Winter 207, Section Z Instructor: N. Vlajic Lists in Everyday Life 2 List convenient way to organize data examples: score list, to-do list,

More information

Chapter 9: Maps, Dictionaries, Hashing

Chapter 9: Maps, Dictionaries, Hashing Chapter 9: 0 1 025-612-0001 2 981-101-0002 3 4 451-229-0004 Maps, Dictionaries, Hashing Nancy Amato Parasol Lab, Dept. CSE, Texas A&M University Acknowledgement: These slides are adapted from slides provided

More information

Department of Computer Science and Engineering. COSC 4213: Computer Networks II (Fall 2005) Instructor: N. Vlajic Date: November 3, 2005

Department of Computer Science and Engineering. COSC 4213: Computer Networks II (Fall 2005) Instructor: N. Vlajic Date: November 3, 2005 Department of Computer Science and Engineering COSC 4213: Computer Networks II (Fall 2005) Instructor: N. Vlajic Date: November 3, 2005 Midterm Examination Instructions: Examination time: 75 min. Print

More information

In a postorder traversal, a node is visited after its descendants Application: compute space used by files in a directory and its subdirectories 9 1

In a postorder traversal, a node is visited after its descendants Application: compute space used by files in a directory and its subdirectories 9 1 What is a Tree Trees Stock Fraud Make Money Fast! Winning Lotto / Bank Robbery In computer science, a tree is an abstract model of a hierarchical structure A tree consists of nodes ith a parent-child relation

More information

Sequences Outline and Required Reading: Sequences ( 5.3) COSC 2011, Fall 2003, Section A Instructor: N. Vlajic

Sequences Outline and Required Reading: Sequences ( 5.3) COSC 2011, Fall 2003, Section A Instructor: N. Vlajic 1 Sequences Outline and Required Reading: Sequences ( 5.3) COSC 2011, Fall 2003, Section A Instructor: N. Vlajic Sequence ADT 2 Sequence ADT union of Vector ADT and List ADT provides both rank- and position-

More information

Exam Datastrukturer. DIT960 / DIT961, VT-18 Göteborgs Universitet, CSE

Exam Datastrukturer. DIT960 / DIT961, VT-18 Göteborgs Universitet, CSE Exam Datastrukturer DIT960 / DIT961, VT-18 Göteborgs Universitet, CSE Day: 2017-05-31, Time: 8:30-12.30, Place: SB-MU Course responsible Alex Gerdes, tel. 031-772 6154. Will visit at around 9:30 and 11:00.

More information

Week 6. Data structures

Week 6. Data structures 1 2 3 4 5 n Week 6 Data structures 6 7 n 8 General remarks We start considering Part III Data Structures from CLRS. As a first example we consider two special of buffers, namely stacks and queues. Reading

More information

Priority Queues and Heaps. Heaps of fun, for everyone!

Priority Queues and Heaps. Heaps of fun, for everyone! Priority Queues and Heaps Heaps of fun, for everyone! Learning Goals After this unit, you should be able to... Provide examples of appropriate applications for priority queues and heaps Manipulate data

More information

CSE 373: Data Structures and Algorithms

CSE 373: Data Structures and Algorithms CSE 373: Data Structures and Algorithms Lecture 12: Binary Heaps Instructor: Lilian de Greef Quarter: Summer 2017 Today Announcements Binary Heaps insert delete Array representation of tree Floyd s Method

More information

10/3/2018 Data Structure & Algorithm. Quiz (30 min, closed-book) Heaps: Array-based Heap Implementation

10/3/2018 Data Structure & Algorithm. Quiz (30 min, closed-book) Heaps: Array-based Heap Implementation 10/3/2018 Data Structure & Algorithm Quiz (30 min, closed-book) Heaps: Array-based Heap Implementation 1 Email - COSC 311 - Assignment 05 The GitHub repo for this week's assignment is at: https://classroom.github.com/a/krbfiths

More information

University of Illinois at Urbana-Champaign Department of Computer Science. Final Examination

University of Illinois at Urbana-Champaign Department of Computer Science. Final Examination University of Illinois at Urbana-Champaign Department of Computer Science Final Examination CS 225 Data Structures and Software Principles Spring 2010 7-10p, Wednesday, May 12 Name: NetID: Lab Section

More information

Heaps in C. CHAN Hou Pong, Ken CSCI2100 Data Structures Tutorial 7

Heaps in C. CHAN Hou Pong, Ken CSCI2100 Data Structures Tutorial 7 Heaps in C CHAN Hou Pong, Ken CSCI2100 Data Structures Tutorial 7 Review on Heaps A heap is implemented as a binary tree It satisfies two properties: MinHeap: parent = child]

More information

Lecture 13: AVL Trees and Binary Heaps

Lecture 13: AVL Trees and Binary Heaps Data Structures Brett Bernstein Lecture 13: AVL Trees and Binary Heaps Review Exercises 1. ( ) Interview question: Given an array show how to shue it randomly so that any possible reordering is equally

More information

a) For the binary tree shown below, what are the preorder, inorder and post order traversals.

a) For the binary tree shown below, what are the preorder, inorder and post order traversals. CS61CS61B Fall 2014 Guerrilla Section 2 Solutions 1. Trees a) For the binary tree shown below, what are the preorder, inorder and post order traversals. 23 / \ 47 0 / / \ 9 15 100 / \ / \ \ 1 935 12 42

More information

9/26/2018 Data Structure & Algorithm. Assignment04: 3 parts Quiz: recursion, insertionsort, trees Basic concept: Linked-List Priority queues Heaps

9/26/2018 Data Structure & Algorithm. Assignment04: 3 parts Quiz: recursion, insertionsort, trees Basic concept: Linked-List Priority queues Heaps 9/26/2018 Data Structure & Algorithm Assignment04: 3 parts Quiz: recursion, insertionsort, trees Basic concept: Linked-List Priority queues Heaps 1 Quiz 10 points (as stated in the first class meeting)

More information

Data Structures and Algorithms Dr. Naveen Garg Department of Computer Science and Engineering Indian Institute of Technology, Delhi

Data Structures and Algorithms Dr. Naveen Garg Department of Computer Science and Engineering Indian Institute of Technology, Delhi Data Structures and Algorithms Dr. Naveen Garg Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture 20 Priority Queues Today we are going to look at the priority

More information

CSE 2123: Collections: Priority Queues. Jeremy Morris

CSE 2123: Collections: Priority Queues. Jeremy Morris CSE 2123: Collections: Priority Queues Jeremy Morris 1 Collections Priority Queue Recall: A queue is a specific type of collection Keeps elements in a particular order We ve seen two examples FIFO queues

More information

Analysis of Algorithms. CS 1037a Topic 13

Analysis of Algorithms. CS 1037a Topic 13 Analysis of Algorithms CS 1037a Topic 13 Overview Time complexity - exact count of operations T(n) as a function of input size n - complexity analysis using O(...) bounds - constant time, linear, logarithmic,

More information

COS 226 Algorithms and Data Structures Practice Design Questions

COS 226 Algorithms and Data Structures Practice Design Questions COS 226 Algorithms & Data Structures p. 1/5 COS 226 Algorithms and Data Structures Practice Design Questions Version: May 1, 2017 Exercise 1 Shortest-Princeton-Path (Final Spring 2011) Consider the following

More information

Priority queues. Priority queues. Priority queue operations

Priority queues. Priority queues. Priority queue operations Priority queues March 8, 08 Priority queues The ADT priority queue stores arbitrary objects with priorities. An object with the highest priority gets served first. Objects with priorities are defined by

More information

CMSC 341. Binary Heaps. Priority Queues

CMSC 341. Binary Heaps. Priority Queues CMSC 341 Binary Heaps Priority Queues Priority Queues Priority: some property of an object that allows it to be prioritized with respect to other objects of the same type Min Priority Queue: homogeneous

More information

This lecture. Iterators ( 5.4) Maps. Maps. The Map ADT ( 8.1) Comparison to java.util.map

This lecture. Iterators ( 5.4) Maps. Maps. The Map ADT ( 8.1) Comparison to java.util.map This lecture Iterators Hash tables Formal coursework Iterators ( 5.4) An iterator abstracts the process of scanning through a collection of elements Methods of the ObjectIterator ADT: object object() boolean

More information