COMP 322: Principles of Parallel Programming Lecture 11: Parallel Programming Issues (Chapter 6) Fall 2009

Size: px
Start display at page:

Download "COMP 322: Principles of Parallel Programming Lecture 11: Parallel Programming Issues (Chapter 6) Fall 2009"

Transcription

1 COMP 322: Principles of Parallel Programming Lecture 11: Parallel Programming Issues (Chapter 6) Fall 2009 Vivek Sarkar Department of Computer Science Rice University COMP 322 Lecture September 2009

2 Summary of Previous Lecture!! Example of Pipeline Parallelism with HJ Phasers! Overview of POSIX Threads (Chapter 6)! Question for you to think about:!which POSIX Threads examples in the lecture or book cannot be expressed using HJ constructs? 2

3 Acknowledgments for Today"s Lecture!! Course text: Principles of Parallel Programming, Calvin Lin & Lawrence Snyder!Includes resources available at 0,3110, ,00.html! Phasers: a Unified Deadlock-Free Construct for Collective and Point-topoint Synchronization, Jun Shirako, David M. Peixotto, Vivek Sarkar, William N. Scherer III! Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit! 3

4 Pthreads Issues: Fairness!! Consider three POSIX threads (0, 1, 2) that repeatedly execute the following loop: while (true) { pthread_mutex_lock(&lock); printf( Hello from thread %d\n, pthread_self()); pthread_mutex_unlock(&lock); }! What is the relative number of print statements that you might expect from threads 0, 1, 2?! What is the minimum number of print statements that might be guaranteed from threads 0, 1, 2? 4! No guarantee of fairness in the POSIX threads standard! Order in which locks are acquired is not guaranteed to match the order in which the threads attempt to acquire the locks

5 Pthreads Issues: Serializability!! A concurrent execution is serializable if the execution is guaranteed to correspond to some serial execution of those threads. Consider /* threads compete to update global variable best_cost */ if (my_cost < best_cost)!!two threads best_cost = my_cost;!!initial value of best_cost is 100!values of my_cost are 50 and 75 for threads t1 and t2! After execution, best_cost could be 50 or 75! 75 does not correspond to any serialization of the threads! Use mutex to make the parallel program serializable 5

6 Pthreads Issues: Deadlock! Figure 6.7 Deadlock example. Threads T1 and T2 hold locks L1 and L2, respectively, and each thread attempts to acquire the other lock, which cannot be granted." 6

7 Lock Hierarchies!! A simple way to prevent deadlocks is to prevent cycles in the resource allocation graph.! Impose an order on the locks, and require that all threads acquire their locks in the same order!!lock hierarchy!! What if a thread doesn t know a priori which locks it needs to acquire? 1.# On learning of a new lock, it can release all its existing locks and then reacquire all locks in the proper order 2.# Use pthread_mutex_trylock() on the new lock. If that fails then revert to option 1. above. 7

8 Counter Implementation! public class Counter { private long value; } public long getandincrement() { return value++; } 8

9 Counter Implementation! public class Counter { private long value; } public long getandincrement() { return value++; } OK for single thread, not for concurrent threads 9

10 What It Means! public class Counter { private long value; } public long getandincrement() { return value++; } 10

11 What It Means! public class Counter { private long value; } public long getandincrement() { return value++; temp = value; } value = temp + 1; return temp; 11

12 Not so good! Value read 1 write 2 read 2 write 3 read 1 write 2 time 12

13 Is this problem inherent?!!!!! read write write read If we could only glue reads and writes together 13

14 Challenge! public class Counter { private long value; } public long getandincrement() { temp = value; value = temp + 1; return temp; } 14

15 Challenge! public class Counter { private long value; } public long getandincrement() { temp = value; value = temp + 1; return temp; } Make these steps atomic (isolated) 15

16 Hardware Solution! public class Counter { private long value; 16 public long getandincrement() { temp = value; value = temp + 1; return temp; } } ReadModifyWrite() instruction

17 HJ Solution! public class Counter { private long value; } public long getandincrement() { isolated { temp = value; value = temp + 1; } return temp; } 17

18 Mutual Exclusion or Alice & Bob share a pond! A B 18

19 Alice has a pet! A B 19

20 Bob has a pet! A B 20

21 The Problem! A B The pets don t get along 21

22 Formalizing the Problem!! Two types of formal properties in asynchronous computation:! Safety Properties!Nothing bad happens ever! Liveness Properties!Something good happens eventually 22

23 Formalizing our Problem!! Mutual Exclusion!Both pets never in pond simultaneously!this is a safety property! No Deadlock!if only one wants in, it gets in!if both want in, one gets in.!this is a liveness property 23

24 ! Idea!Just look at the pond! Gotcha!Not atomic!trees obscure the view Simple Protocol! 24

25 Interpretation!! Threads can t see what other threads are doing! Explicit communication required for coordination 25

26 ! Idea!Bob calls Alice (or vice-versa)! Gotcha!Bob takes shower!alice recharges battery Cell Phone Protocol!!Bob out shopping for pet food 26

27 ! Message-passing doesn t work! Recipient might not be!listening!there at all! Communication must be!persistent (like writing)!not transient (like speaking) Interpretation! 27

28 Can Protocol! cola cola 28

29 Bob conveys a bit! A B cola 29

30 Bob conveys a bit! A B cola 30

31 ! Idea!Cans on Alice s windowsill Can Protocol!!Strings lead to Bob s house!bob pulls strings, knocks over cans! Gotcha!Cans cannot be reused!bob runs out of cans 31

32 Interpretation!! Cannot solve mutual exclusion with interrupts!sender sets fixed bit in receiver s space!receiver resets bit when ready!requires unbounded number of interrupt bits 32

33 Flag Protocol! A B 33

34 Alice"s Protocol (sort of)! A B 34

35 Bob"s Protocol (sort of)! A B 35

36 Alice"s Protocol!! Raise flag! Wait until Bob s flag is down! Unleash pet! Lower flag when pet returns 36 Art of Multiprocessor Programming 36

37 Bob"s Protocol!! Raise flag! Wait until Alice s flag is down! Unleash pet! Lower flag when pet returns 37

38 Bob"s Protocol (2 nd try)!! Raise flag! While Alice s flag is up!lower flag!wait for Alice s flag to go down!raise flag! Unleash pet! Lower flag when pet returns 38

39 Remarks!! Protocol is unfair!bob s pet might never get in! Protocol uses waiting!if Bob is eaten by his pet, Alice s pet might never get in 39

40 Moral of Story!! Mutual Exclusion cannot be solved by!transient communication (cell phones)!interrupts (cans)! It can be solved by! one-bit shared variables! that can be read or written 40

41 The Fable Continues!! Alice and Bob fall in love & marry 41

42 The Fable Continues!! Alice and Bob fall in love & marry! Then they fall out of love & divorce!she gets the pets!he has to feed them 42

43 The Fable Continues!! Alice and Bob fall in love & marry! Then they fall out of love & divorce!she gets the pets!he has to feed them! Leading to a new coordination problem: Producer-Consumer 43

44 Bob Puts Food in the Pond! A 44

45 Alice releases her pets to Feed! mmm mmm B 45

46 Producer/Consumer!! Alice and Bob can t meet!each has restraining order on other!so he puts food in the pond!and later, she releases the pets! Avoid!Releasing pets when there s no food!putting out food if uneaten food remains 46

47 Producer/Consumer!! Need a mechanism so that!bob lets Alice know when food has been put out!alice lets Bob know when to put out more food 47

48 Surprise Solution! A B cola 48

49 Bob puts food in Pond! A B cola 49

50 Bob knocks over Can! A B cola 50

51 Alice Releases Pets! A yum yum B cola 51

52 Alice Resets Can when Pets are Fed! A B cola 52

53 Pseudocode! while (true) { while (can.isup()){}; pet.release(); pet.recapture(); can.reset(); } Alice s code 53 Art of Multiprocessor Programming 53

54 Pseudocode! while (true) { while (can.isup()){}; Bob s code pet.release(); pet.recapture(); can.reset(); while (true) { } while (can.isdown()){}; pond.stockwithfood(); can.knockover(); } Alice s code 54

55 Correctness!! Mutual Exclusion!Pets and Bob never together in pond 55

56 Correctness!! Mutual Exclusion!Pets and Bob never together in pond! No Starvation if Bob always willing to feed, and pets always famished, then pets eat infinitely often. 56

57 Correctness!! Mutual Exclusion!Pets and Bob never together in pond safety liveness! No Starvation if Bob always willing to feed, and pets always famished, then pets eat infinitely often. safety! Producer/Consumer The pets never enter pond unless there is food, and Bob never provides food if there is unconsumed food. 57

58 Could Also Solve Using Flags! A B 58

59 Figure 6.1! A bounded buffer with producers and consumers. The Put and Get cursors indicate where the producers will insert the next item and where the consumers will remove its next item. 59

60 Figure 6.3 Bounded buffer example using condition variables nonempty and nonfull.! 60

61 Bound option in phasers!! Constructor!phaser(mode m, int bound_size);! next operation!a task registered in SIG mode will block if it is >= bound_size phases past the current phase 61

62 finish {! }! Single-Producer Single-Consumer Bounded Buffer! final phaser ph = new phaser(<sig_wait>, bound_size);! async phased (ph<sig>)! while ( ) { insert(); next; } // producer! async phased (ph<wait>)! while ( ) { next; remove(); } // consumer! 62

63 Summary of Today"s Lecture!! POSIX Threads as an illustration of parallel programming issues:!fairness!serializability!deadlock!safety!liveness!bounded buffer example! Many of these issues arise in other parallel programming languages, but constructs in higher level languages such as HJ can help (async, finish, isolated, phasers) 63

Introduction. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit. Art of Multiprocessor Programming

Introduction. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit. Art of Multiprocessor Programming Introduction Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Art of Multiprocessor Programming Moore s Law Transistor count still rising Clock speed flattening

More information

Introduction. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit

Introduction. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Introduction Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Moore s Law Transistor count still rising Clock speed flattening sharply Art of Multiprocessor Programming

More information

Introduction to Concurrent Programming

Introduction to Concurrent Programming Introduction to Concurrent Programming Based on the companion slides for the book The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit, 2008 From the New York Times SAN FRANCISCO, 7 May

More information

Programming Paradigms for Concurrency Introduction

Programming Paradigms for Concurrency Introduction Programming Paradigms for Concurrency Introduction Based on companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Modified by Thomas Wies New York University Moore

More information

Introduction to Concurrent Programming

Introduction to Concurrent Programming Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γλώσσες Προγραμματισμού ΙΙ Διδάσκοντες: Νικόλαος Παπασπύρου, Κωστής Σαγώνας

More information

Introduction to Multiprocessor Synchronization

Introduction to Multiprocessor Synchronization Introduction to Multiprocessor Synchronization Maurice Herlihy http://cs.brown.edu/courses/cs176/lectures.shtml Moore's Law Transistor count still rising Clock speed flattening sharply Art of Multiprocessor

More information

Introduction. Chapter 1

Introduction. Chapter 1 Chapter 1 Introduction Every year, processors get faster and cheaper: processor speeds double roughly every two years. This remarkable rate of improvement will probably continue for a while, but eventually,

More information

Lecture 7: Mutual Exclusion 2/16/12. slides adapted from The Art of Multiprocessor Programming, Herlihy and Shavit

Lecture 7: Mutual Exclusion 2/16/12. slides adapted from The Art of Multiprocessor Programming, Herlihy and Shavit Principles of Concurrency and Parallelism Lecture 7: Mutual Exclusion 2/16/12 slides adapted from The Art of Multiprocessor Programming, Herlihy and Shavit Time Absolute, true and mathematical time, of

More information

Solution: a lock (a/k/a mutex) public: virtual void unlock() =0;

Solution: a lock (a/k/a mutex) public: virtual void unlock() =0; 1 Solution: a lock (a/k/a mutex) class BasicLock { public: virtual void lock() =0; virtual void unlock() =0; ; 2 Using a lock class Counter { public: int get_and_inc() { lock_.lock(); int old = count_;

More information

Mutual Exclusion. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit

Mutual Exclusion. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Mutual Exclusion Companion slides for The by Maurice Herlihy & Nir Shavit Mutual Exclusion Today we will try to formalize our understanding of mutual exclusion We will also use the opportunity to show

More information

Programming Paradigms for Concurrency Lecture 3 Concurrent Objects

Programming Paradigms for Concurrency Lecture 3 Concurrent Objects Programming Paradigms for Concurrency Lecture 3 Concurrent Objects Based on companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Modified by Thomas Wies New York University

More information

CMSC 330: Organization of Programming Languages. Threads Classic Concurrency Problems

CMSC 330: Organization of Programming Languages. Threads Classic Concurrency Problems : Organization of Programming Languages Threads Classic Concurrency Problems The Dining Philosophers Problem Philosophers either eat or think They must have two forks to eat Can only use forks on either

More information

Lecture 29: Java s synchronized statement

Lecture 29: Java s synchronized statement COMP 322: Fundamentals of Parallel Programming Lecture 29: Java s synchronized statement Vivek Sarkar Department of Computer Science, Rice University vsarkar@rice.edu https://wiki.rice.edu/confluence/display/parprog/comp322

More information

Chapter 6: Process Synchronization

Chapter 6: Process Synchronization Chapter 6: Process Synchronization Objectives Introduce Concept of Critical-Section Problem Hardware and Software Solutions of Critical-Section Problem Concept of Atomic Transaction Operating Systems CS

More information

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy Operating Systems Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng.. AL-AZHAR University Website : eaymanelshenawy.wordpress.com Email : eaymanelshenawy@yahoo.com Reference

More information

Operating Systems. Thread Synchronization Primitives. Thomas Ropars.

Operating Systems. Thread Synchronization Primitives. Thomas Ropars. 1 Operating Systems Thread Synchronization Primitives Thomas Ropars thomas.ropars@univ-grenoble-alpes.fr 2017 2 Agenda Week 42/43: Synchronization primitives Week 44: Vacation Week 45: Synchronization

More information

Concurrency. Chapter 5

Concurrency. Chapter 5 Concurrency 1 Chapter 5 2 Concurrency Is a fundamental concept in operating system design Processes execute interleaved in time on a single processor Creates the illusion of simultaneous execution Benefits

More information

Mutual Exclusion: Classical Algorithms for Locks

Mutual Exclusion: Classical Algorithms for Locks Mutual Exclusion: Classical Algorithms for Locks John Mellor-Crummey Department of Computer Science Rice University johnmc@cs.rice.edu COMP 422 Lecture 18 21 March 2006 Motivation Ensure that a block of

More information

The Dining Philosophers Problem CMSC 330: Organization of Programming Languages

The Dining Philosophers Problem CMSC 330: Organization of Programming Languages The Dining Philosophers Problem CMSC 0: Organization of Programming Languages Threads Classic Concurrency Problems Philosophers either eat or think They must have two forks to eat Can only use forks on

More information

Chapter 6: Synchronization. Operating System Concepts 8 th Edition,

Chapter 6: Synchronization. Operating System Concepts 8 th Edition, Chapter 6: Synchronization, Silberschatz, Galvin and Gagne 2009 Outline Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores Classic Problems of Synchronization

More information

CMSC 330: Organization of Programming Languages. The Dining Philosophers Problem

CMSC 330: Organization of Programming Languages. The Dining Philosophers Problem CMSC 330: Organization of Programming Languages Threads Classic Concurrency Problems The Dining Philosophers Problem Philosophers either eat or think They must have two forks to eat Can only use forks

More information

Deadlock and Monitors. CS439: Principles of Computer Systems September 24, 2018

Deadlock and Monitors. CS439: Principles of Computer Systems September 24, 2018 Deadlock and Monitors CS439: Principles of Computer Systems September 24, 2018 Bringing It All Together Processes Abstraction for protection Define address space Threads Share (and communicate) through

More information

Qualifying exam: operating systems, 1/6/2014

Qualifying exam: operating systems, 1/6/2014 Qualifying exam: operating systems, 1/6/2014 Your name please: Part 1. Fun with forks (a) What is the output generated by this program? In fact the output is not uniquely defined, i.e., it is not always

More information

PROCESS SYNCHRONIZATION

PROCESS SYNCHRONIZATION PROCESS SYNCHRONIZATION Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores Classic Problems of Synchronization Monitors Synchronization

More information

More on Synchronization and Deadlock

More on Synchronization and Deadlock Examples of OS Kernel Synchronization More on Synchronization and Deadlock Two processes making system calls to read/write on the same file, leading to possible race condition on the file system data structures

More information

Chapter 6: Process [& Thread] Synchronization. CSCI [4 6] 730 Operating Systems. Why does cooperation require synchronization?

Chapter 6: Process [& Thread] Synchronization. CSCI [4 6] 730 Operating Systems. Why does cooperation require synchronization? Chapter 6: Process [& Thread] Synchronization CSCI [4 6] 730 Operating Systems Synchronization Part 1 : The Basics Why is synchronization needed? Synchronization Language/Definitions:» What are race conditions?»

More information

Synchronization. Race Condition. The Critical-Section Problem Solution. The Synchronization Problem. Typical Process P i. Peterson s Solution

Synchronization. Race Condition. The Critical-Section Problem Solution. The Synchronization Problem. Typical Process P i. Peterson s Solution Race Condition Synchronization CSCI 315 Operating Systems Design Department of Computer Science A race occurs when the correctness of a program depends on one thread reaching point x in its control flow

More information

! Why is synchronization needed? ! Synchronization Language/Definitions: ! How are locks implemented? Maria Hybinette, UGA

! Why is synchronization needed? ! Synchronization Language/Definitions: ! How are locks implemented? Maria Hybinette, UGA Chapter 6: Process [& Thread] Synchronization CSCI [4 6] 730 Operating Systems Synchronization Part 1 : The Basics! Why is synchronization needed?! Synchronization Language/Definitions:» What are race

More information

Concurrent & Distributed Systems Supervision Exercises

Concurrent & Distributed Systems Supervision Exercises Concurrent & Distributed Systems Supervision Exercises Stephen Kell Stephen.Kell@cl.cam.ac.uk November 9, 2009 These exercises are intended to cover all the main points of understanding in the lecture

More information

So far, we've seen situations in which locking can improve reliability of access to critical sections.

So far, we've seen situations in which locking can improve reliability of access to critical sections. Locks Page 1 Using locks Monday, October 6, 2014 9:49 AM So far, we've seen situations in which locking can improve reliability of access to critical sections. In general, how can one use locks? Locks

More information

Synchronising Threads

Synchronising Threads Synchronising Threads David Chisnall March 1, 2011 First Rule for Maintainable Concurrent Code No data may be both mutable and aliased Harder Problems Data is shared and mutable Access to it must be protected

More information

Synchronization. CS 475, Spring 2018 Concurrent & Distributed Systems

Synchronization. CS 475, Spring 2018 Concurrent & Distributed Systems Synchronization CS 475, Spring 2018 Concurrent & Distributed Systems Review: Threads: Memory View code heap data files code heap data files stack stack stack stack m1 m1 a1 b1 m2 m2 a2 b2 m3 m3 a3 m4 m4

More information

Semaphores. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Semaphores. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Semaphores Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3052: Introduction to Operating Systems, Fall 2017, Jinkyu Jeong (jinkyu@skku.edu) Synchronization

More information

Programming Paradigms for Concurrency Lecture 2 - Mutual Exclusion

Programming Paradigms for Concurrency Lecture 2 - Mutual Exclusion Programming Paradigms for Concurrency Lecture 2 - Mutual Exclusion Based on companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Modified by Thomas Wies New York University

More information

Linked Lists: Locking, Lock-Free, and Beyond. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit

Linked Lists: Locking, Lock-Free, and Beyond. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Linked Lists: Locking, Lock-Free, and Beyond Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Concurrent Objects Adding threads should not lower throughput Contention

More information

CS 153 Design of Operating Systems Winter 2016

CS 153 Design of Operating Systems Winter 2016 CS 153 Design of Operating Systems Winter 2016 Lecture 7: Synchronization Administrivia Homework 1 Due today by the end of day Hopefully you have started on project 1 by now? Kernel-level threads (preemptable

More information

EI 338: Computer Systems Engineering (Operating Systems & Computer Architecture)

EI 338: Computer Systems Engineering (Operating Systems & Computer Architecture) EI 338: Computer Systems Engineering (Operating Systems & Computer Architecture) Dept. of Computer Science & Engineering Chentao Wu wuct@cs.sjtu.edu.cn Download lectures ftp://public.sjtu.edu.cn User:

More information

Lecture 27: Safety and Liveness Properties, Java Synchronizers, Dining Philosophers Problem

Lecture 27: Safety and Liveness Properties, Java Synchronizers, Dining Philosophers Problem COMP 322: Fundamentals of Parallel Programming Lecture 27: Safety and Liveness Properties, Java Synchronizers, Dining Philosophers Problem Mack Joyner and Zoran Budimlić {mjoyner, zoran}@rice.edu http://comp322.rice.edu

More information

Synchronization API of Pthread Mutex: lock, unlock, try_lock CondVar: wait, signal, signal_broadcast. Synchronization

Synchronization API of Pthread Mutex: lock, unlock, try_lock CondVar: wait, signal, signal_broadcast. Synchronization CS341: Operating System Lect20 : 16 th Sept 2014 Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati Synchronization API of Pthread Mutex: lock, unlock, try_lock CondVar: wait,

More information

Lecture 28: Introduction to the Message Passing Interface (MPI) (Start of Module 3 on Distribution and Locality)

Lecture 28: Introduction to the Message Passing Interface (MPI) (Start of Module 3 on Distribution and Locality) COMP 322: Fundamentals of Parallel Programming Lecture 28: Introduction to the Message Passing Interface (MPI) (Start of Module 3 on Distribution and Locality) Mack Joyner and Zoran Budimlić {mjoyner,

More information

Synchronization. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T.

Synchronization. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. Synchronization Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. L24-1 Reminders All labs must be completed by this Friday, Dec. 7 th to pass the course Any work you intend

More information

COMP 322: Fundamentals of Parallel Programming. Lecture 30: Java Synchronizers, Dining Philosophers Problem

COMP 322: Fundamentals of Parallel Programming. Lecture 30: Java Synchronizers, Dining Philosophers Problem COMP 322: Fundamentals of Parallel Programming Lecture 30: Java Synchronizers, Dining Philosophers Problem Vivek Sarkar, Shams Imam Department of Computer Science, Rice University Contact email: vsarkar@rice.edu,

More information

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions CMSC 330: Organization of Programming Languages Multithreaded Programming Patterns in Java CMSC 330 2 Multiprocessors Description Multiple processing units (multiprocessor) From single microprocessor to

More information

Concurrent Processes Rab Nawaz Jadoon

Concurrent Processes Rab Nawaz Jadoon Concurrent Processes Rab Nawaz Jadoon DCS COMSATS Institute of Information Technology Assistant Professor COMSATS Lahore Pakistan Operating System Concepts Concurrent Processes If more than one threads

More information

Process Synchronization

Process Synchronization CSC 4103 - Operating Systems Spring 2007 Lecture - VI Process Synchronization Tevfik Koşar Louisiana State University February 6 th, 2007 1 Roadmap Process Synchronization The Critical-Section Problem

More information

CSCI [4 6] 730 Operating Systems. Example Execution. Process [& Thread] Synchronization. Why does cooperation require synchronization?

CSCI [4 6] 730 Operating Systems. Example Execution. Process [& Thread] Synchronization. Why does cooperation require synchronization? Process [& Thread] Synchronization CSCI [4 6] 730 Operating Systems Synchronization Part 1 : The Basics Why is synchronization needed? Synchronization Language/Definitions: What are race conditions? What

More information

Process Synchronisation (contd.) Deadlock. Operating Systems. Spring CS5212

Process Synchronisation (contd.) Deadlock. Operating Systems. Spring CS5212 Operating Systems Spring 2009-2010 Outline Process Synchronisation (contd.) 1 Process Synchronisation (contd.) 2 Announcements Presentations: will be held on last teaching week during lectures make a 20-minute

More information

High Performance Computing Lecture 21. Matthew Jacob Indian Institute of Science

High Performance Computing Lecture 21. Matthew Jacob Indian Institute of Science High Performance Computing Lecture 21 Matthew Jacob Indian Institute of Science Semaphore Examples Semaphores can do more than mutex locks Example: Consider our concurrent program where process P1 reads

More information

Threading and Synchronization. Fahd Albinali

Threading and Synchronization. Fahd Albinali Threading and Synchronization Fahd Albinali Parallelism Parallelism and Pseudoparallelism Why parallelize? Finding parallelism Advantages: better load balancing, better scalability Disadvantages: process/thread

More information

Page 1. Goals for Today" Atomic Read-Modify-Write instructions" Examples of Read-Modify-Write "

Page 1. Goals for Today Atomic Read-Modify-Write instructions Examples of Read-Modify-Write Goals for Today" CS162 Operating Systems and Systems Programming Lecture 5 Semaphores, Conditional Variables" Atomic instruction sequence Continue with Synchronization Abstractions Semaphores, Monitors

More information

Chapter 5 Concurrency: Mutual Exclusion. and. Synchronization. Operating Systems: Internals. and. Design Principles

Chapter 5 Concurrency: Mutual Exclusion. and. Synchronization. Operating Systems: Internals. and. Design Principles Operating Systems: Internals and Design Principles Chapter 5 Concurrency: Mutual Exclusion and Synchronization Seventh Edition By William Stallings Designing correct routines for controlling concurrent

More information

Remaining Contemplation Questions

Remaining Contemplation Questions Process Synchronisation Remaining Contemplation Questions 1. The first known correct software solution to the critical-section problem for two processes was developed by Dekker. The two processes, P0 and

More information

Concurrency: Mutual Exclusion and Synchronization

Concurrency: Mutual Exclusion and Synchronization Concurrency: Mutual Exclusion and Synchronization 1 Needs of Processes Allocation of processor time Allocation and sharing resources Communication among processes Synchronization of multiple processes

More information

Operating systems and concurrency (B08)

Operating systems and concurrency (B08) Operating systems and concurrency (B08) David Kendall Northumbria University David Kendall (Northumbria University) Operating systems and concurrency (B08) 1 / 20 Introduction Semaphores provide an unstructured

More information

Roadmap. Tevfik Ko!ar. CSC Operating Systems Fall Lecture - XI Deadlocks - II. Louisiana State University

Roadmap. Tevfik Ko!ar. CSC Operating Systems Fall Lecture - XI Deadlocks - II. Louisiana State University CSC 4103 - Operating Systems Fall 2009 Lecture - XI Deadlocks - II Tevfik Ko!ar Louisiana State University September 29 th, 2009 1 Roadmap Classic Problems of Synchronization Bounded Buffer Readers-Writers

More information

Process Synchronization. Mehdi Kargahi School of ECE University of Tehran Spring 2008

Process Synchronization. Mehdi Kargahi School of ECE University of Tehran Spring 2008 Process Synchronization Mehdi Kargahi School of ECE University of Tehran Spring 2008 Producer-Consumer (Bounded Buffer) Producer Consumer Race Condition Producer Consumer Critical Sections Structure of

More information

College of Computer & Information Science Spring 2010 Northeastern University 26 January 2010

College of Computer & Information Science Spring 2010 Northeastern University 26 January 2010 College of Computer & Information Science Spring 2010 Northeastern University 26 January 2010 CS 7600: Intensive Computer Systems Scribe: Eric Miles In this lecture, we covered some of the (unwanted) behavior

More information

Roadmap. Bounded-Buffer Problem. Classical Problems of Synchronization. Bounded Buffer 1 Semaphore Soln. Bounded Buffer 1 Semaphore Soln. Tevfik Ko!

Roadmap. Bounded-Buffer Problem. Classical Problems of Synchronization. Bounded Buffer 1 Semaphore Soln. Bounded Buffer 1 Semaphore Soln. Tevfik Ko! CSC 4103 - Operating Systems Fall 2009 Lecture - XI Deadlocks - II Roadmap Classic Problems of Synchronization Bounded Buffer Readers-Writers Dining Philosophers Sleeping Barber Deadlock Prevention Tevfik

More information

Semaphore. Originally called P() and V() wait (S) { while S <= 0 ; // no-op S--; } signal (S) { S++; }

Semaphore. Originally called P() and V() wait (S) { while S <= 0 ; // no-op S--; } signal (S) { S++; } Semaphore Semaphore S integer variable Two standard operations modify S: wait() and signal() Originally called P() and V() Can only be accessed via two indivisible (atomic) operations wait (S) { while

More information

CHAPTER 6: PROCESS SYNCHRONIZATION

CHAPTER 6: PROCESS SYNCHRONIZATION CHAPTER 6: PROCESS SYNCHRONIZATION The slides do not contain all the information and cannot be treated as a study material for Operating System. Please refer the text book for exams. TOPICS Background

More information

Deadlock and Monitors. CS439: Principles of Computer Systems February 7, 2018

Deadlock and Monitors. CS439: Principles of Computer Systems February 7, 2018 Deadlock and Monitors CS439: Principles of Computer Systems February 7, 2018 Last Time Terminology Safety and liveness Atomic Instructions, Synchronization, Mutual Exclusion, Critical Sections Synchronization

More information

The Dining Philosophers with Pthreads

The Dining Philosophers with Pthreads The Dining Philosophers with Pthreads Dr. Douglas Niehaus Michael Jantz Dr. Prasad Kulkarni EECS 678 Dining Philosophers 1 Introduction The Dining Philosophers canonical problem illustrates a number of

More information

IV. Process Synchronisation

IV. Process Synchronisation IV. Process Synchronisation Operating Systems Stefan Klinger Database & Information Systems Group University of Konstanz Summer Term 2009 Background Multiprogramming Multiple processes are executed asynchronously.

More information

Solving the Producer Consumer Problem with PThreads

Solving the Producer Consumer Problem with PThreads Solving the Producer Consumer Problem with PThreads Michael Jantz Dr. Prasad Kulkarni Dr. Douglas Niehaus EECS 678 Pthreads: Producer-Consumer 1 Introduction This lab is an extension of last week's lab.

More information

Concurrent Computing

Concurrent Computing Concurrent Computing Introduction SE205, P1, 2017 Administrivia Language: (fr)anglais? Lectures: Fridays (15.09-03.11), 13:30-16:45, Amphi Grenat Web page: https://se205.wp.imt.fr/ Exam: 03.11, 15:15-16:45

More information

Lecture 32: Volatile variables, Java memory model

Lecture 32: Volatile variables, Java memory model COMP 322: Fundamentals of Parallel Programming Lecture 32: Volatile variables, Java memory model Vivek Sarkar Department of Computer Science, Rice University vsarkar@rice.edu https://wiki.rice.edu/confluence/display/parprog/comp322

More information

Page 1. Goals for Today. Atomic Read-Modify-Write instructions. Examples of Read-Modify-Write

Page 1. Goals for Today. Atomic Read-Modify-Write instructions. Examples of Read-Modify-Write Goals for Today CS162 Operating Systems and Systems Programming Lecture 5 Atomic instruction sequence Continue with Synchronization Abstractions Semaphores, Monitors and condition variables Semaphores,

More information

What is the Race Condition? And what is its solution? What is a critical section? And what is the critical section problem?

What is the Race Condition? And what is its solution? What is a critical section? And what is the critical section problem? What is the Race Condition? And what is its solution? Race Condition: Where several processes access and manipulate the same data concurrently and the outcome of the execution depends on the particular

More information

Interprocess Communication By: Kaushik Vaghani

Interprocess Communication By: Kaushik Vaghani Interprocess Communication By: Kaushik Vaghani Background Race Condition: A situation where several processes access and manipulate the same data concurrently and the outcome of execution depends on the

More information

The deadlock problem

The deadlock problem Deadlocks Arvind Krishnamurthy Spring 2004 The deadlock problem A set of blocked processes each holding a resource and waiting to acquire a resource held by another process. Example locks A and B P 0 P

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 19 Lecture 7/8: Synchronization (1) Administrivia How is Lab going? Be prepared with questions for this weeks Lab My impression from TAs is that you are on track

More information

Lecture 3: Synchronization & Deadlocks

Lecture 3: Synchronization & Deadlocks Lecture 3: Synchronization & Deadlocks Background Concurrent access to shared data may result in data inconsistency Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating

More information

EECS 482 Introduction to Operating Systems

EECS 482 Introduction to Operating Systems EECS 482 Introduction to Operating Systems Winter 2018 Baris Kasikci Slides by: Harsha V. Madhyastha Recap How to leverage hardware support to implement high-level synchronization primitives? Lock implementation

More information

Introducing Shared-Memory Concurrency

Introducing Shared-Memory Concurrency Race Conditions and Atomic Blocks November 19, 2007 Why use concurrency? Communicating between threads Concurrency in Java/C Concurrency Computation where multiple things happen at the same time is inherently

More information

Concurrent Objects. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit

Concurrent Objects. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Concurrent Objects Companion slides for The by Maurice Herlihy & Nir Shavit Concurrent Computation memory object object 2 Objectivism What is a concurrent object? How do we describe one? How do we implement

More information

Spin Locks and Contention. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit

Spin Locks and Contention. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Spin Locks and Contention Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Focus so far: Correctness and Progress Models Accurate (we never lied to you) But idealized

More information

Transactional Memory: Architectural Support for Lock-Free Data Structures Maurice Herlihy and J. Eliot B. Moss ISCA 93

Transactional Memory: Architectural Support for Lock-Free Data Structures Maurice Herlihy and J. Eliot B. Moss ISCA 93 Transactional Memory: Architectural Support for Lock-Free Data Structures Maurice Herlihy and J. Eliot B. Moss ISCA 93 What are lock-free data structures A shared data structure is lock-free if its operations

More information

Chapter 5 Concurrency: Mutual Exclusion and Synchronization

Chapter 5 Concurrency: Mutual Exclusion and Synchronization Operating Systems: Internals and Design Principles Chapter 5 Concurrency: Mutual Exclusion and Synchronization Seventh Edition By William Stallings Designing correct routines for controlling concurrent

More information

Synchronization Classic Problems

Synchronization Classic Problems CS 4410 Operating Systems Synchronization Classic Problems Summer 2013 Cornell University 1 Today What practical problems can we solve with semaphores? Bounded-Buffer Problem Producer-Consumer Problem

More information

CSL373: Lecture 5 Deadlocks (no process runnable) + Scheduling (> 1 process runnable)

CSL373: Lecture 5 Deadlocks (no process runnable) + Scheduling (> 1 process runnable) CSL373: Lecture 5 Deadlocks (no process runnable) + Scheduling (> 1 process runnable) Past & Present Have looked at two constraints: Mutual exclusion constraint between two events is a requirement that

More information

CS153: Deadlock. Chengyu Song. Slides modified from Harsha Madhyvasta, Nael Abu-Ghazaleh, and Zhiyun Qian

CS153: Deadlock. Chengyu Song. Slides modified from Harsha Madhyvasta, Nael Abu-Ghazaleh, and Zhiyun Qian 1 CS153: Deadlock Chengyu Song Slides modified from Harsha Madhyvasta, Nael Abu-Ghazaleh, and Zhiyun Qian 2 Administrivia Lab Lab1 is due this Sunday Demo sessions next week Little book of semaphores First

More information

What We'll Cover Today

What We'll Cover Today Mutual Exclusion Acknowledgement: Slides adopted from the companion slides for the book "The Art of Mul>processor Programming" by Maurice Herlihy and Nir Shavit What We'll Cover Today Chapter 2 of: Digital

More information

Page 1. Goals for Today" Atomic Read-Modify-Write instructions" Examples of Read-Modify-Write "

Page 1. Goals for Today Atomic Read-Modify-Write instructions Examples of Read-Modify-Write Goals for Today" CS162 Operating Systems and Systems Programming Lecture 5 Semaphores, Conditional Variables" Atomic instruction sequence Continue with Synchronization Abstractions Semaphores, Monitors

More information

Synchronization Principles II

Synchronization Principles II CSC 256/456: Operating Systems Synchronization Principles II John Criswell University of Rochester 1 Synchronization Issues Race conditions and the need for synchronization Critical Section Problem Mutual

More information

Shared-Memory Computability

Shared-Memory Computability Shared-Memory Computability 10011 Universal Object Wait-free/Lock-free computable = Threads with methods that solve n- consensus Art of Multiprocessor Programming Copyright Herlihy- Shavit 2007 93 GetAndSet

More information

CSE 153 Design of Operating Systems Fall 2018

CSE 153 Design of Operating Systems Fall 2018 CSE 153 Design of Operating Systems Fall 2018 Lecture 5: Threads/Synchronization Implementing threads l Kernel Level Threads l u u All thread operations are implemented in the kernel The OS schedules all

More information

Synchronization. Disclaimer: some slides are adopted from the book authors slides with permission 1

Synchronization. Disclaimer: some slides are adopted from the book authors slides with permission 1 Synchronization Disclaimer: some slides are adopted from the book authors slides with permission 1 What is it? Recap: Thread Independent flow of control What does it need (thread private)? Stack What for?

More information

Threads Cannot Be Implemented As a Library

Threads Cannot Be Implemented As a Library Threads Cannot Be Implemented As a Library Authored by Hans J. Boehm Presented by Sarah Sharp February 18, 2008 Outline POSIX Thread Library Operation Vocab Problems with pthreads POSIX Thread Library

More information

Operating Systems CMPSCI 377 Spring Mark Corner University of Massachusetts Amherst

Operating Systems CMPSCI 377 Spring Mark Corner University of Massachusetts Amherst Operating Systems CMPSCI 377 Spring 2017 Mark Corner University of Massachusetts Amherst What is a Monitor? Ties data and the synchronization operations together Monitors guarantee mutual exclusion, i.e.,

More information

Midterm Exam Amy Murphy 19 March 2003

Midterm Exam Amy Murphy 19 March 2003 University of Rochester Midterm Exam Amy Murphy 19 March 2003 Computer Systems (CSC2/456) Read before beginning: Please write clearly. Illegible answers cannot be graded. Be sure to identify all of your

More information

Chapter 7: Process Synchronization!

Chapter 7: Process Synchronization! Chapter 7: Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors 7.1 Background Concurrent access to shared

More information

IT 540 Operating Systems ECE519 Advanced Operating Systems

IT 540 Operating Systems ECE519 Advanced Operating Systems IT 540 Operating Systems ECE519 Advanced Operating Systems Prof. Dr. Hasan Hüseyin BALIK (5 th Week) (Advanced) Operating Systems 5. Concurrency: Mutual Exclusion and Synchronization 5. Outline Principles

More information

CS510 Advanced Topics in Concurrency. Jonathan Walpole

CS510 Advanced Topics in Concurrency. Jonathan Walpole CS510 Advanced Topics in Concurrency Jonathan Walpole Threads Cannot Be Implemented as a Library Reasoning About Programs What are the valid outcomes for this program? Is it valid for both r1 and r2 to

More information

COMP 322: Fundamentals of Parallel Programming

COMP 322: Fundamentals of Parallel Programming COMP 322: Fundamentals of Parallel Programming https://wiki.rice.edu/confluence/display/parprog/comp322 Lecture 28: Java Threads (contd), synchronized statement Vivek Sarkar Department of Computer Science

More information

Real Time Operating System: Inter-Process Communication (IPC)

Real Time Operating System: Inter-Process Communication (IPC) ECE3411 Fall 2015 Lecture 6c. Real Time Operating System: Inter-Process Communication (IPC) Marten van Dijk, Syed Kamran Haider Department of Electrical & Computer Engineering University of Connecticut

More information

CS 318 Principles of Operating Systems

CS 318 Principles of Operating Systems CS 318 Principles of Operating Systems Fall 2017 Lecture 8: Deadlock Ryan Huang Administrivia Lab 1 deadline extended - Friday 09/29 11:59 pm - Saturday 09/30 11:59 pm [Hard] HW2 out - should try to solve

More information

Mutual Exclusion and Synchronization

Mutual Exclusion and Synchronization Mutual Exclusion and Synchronization Concurrency Defined Single processor multiprogramming system Interleaving of processes Multiprocessor systems Processes run in parallel on different processors Interleaving

More information

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 3 Threads & Concurrency Jonathan Walpole Computer Science Portland State University 1 The Process Concept 2 The Process Concept Process a program in execution

More information

More Types of Synchronization 11/29/16

More Types of Synchronization 11/29/16 More Types of Synchronization 11/29/16 Today s Agenda Classic thread patterns Other parallel programming patterns More synchronization primitives: RW locks Condition variables Semaphores Message passing

More information

Chapters 5 and 6 Concurrency

Chapters 5 and 6 Concurrency Operating Systems: Internals and Design Principles, 6/E William Stallings Chapters 5 and 6 Concurrency Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall Concurrency When several processes/threads

More information