Pointer Analysis in the Presence of Dynamic Class Loading

Size: px
Start display at page:

Download "Pointer Analysis in the Presence of Dynamic Class Loading"

Transcription

1 Pointer Analysis in the Presence of Dynamic Class Loading Martin Hirzel, Amer Diwan University of Colorado at Boulder Michael Hind IBM T.J. Watson Research Center 1

2 Pointer analysis motivation Code a = new C( ); // G b = new C( ); // H a = b; a.f = b; Clients Tools Optimizations What is it good for? What does it do? Code browsing Code transformations Error detection Devirtualization Load elimination Parallelization Connectivity-based garbage collection Points-to sets pointsto(a) == {G,H} pointsto(b) == {H} pointsto(g.f ) == {H} pointsto(h.f ) == {H} 2

3 Static flow- and context-insensitive pointer analysis by Andersen Analysis components Analysis data structures Call graph builder Code Method compilation Constraint finder Constraint propagator Clients Points-to sets Constraint graph 3

4 Static analysis can not deal with all of Java Class loading may be implicitly triggered by any Constructor call Static field access Static method call Classes may come from the web or be generated on the fly Pretending a static world fails for most real-world applications 4

5 Java challenges Analysis components Call graph builder Analysis data structures 1. Online call graph building Method compilation 4. Reflection and native code Constraint finder 3. Unresolved types 2. Re-propagation Constraint propagator Clients Constraint graph 5

6 1. Online call graph building caller a = x.m(b); callee A::m(c) { return d; } 6

7 1. Online call graph building caller a = x.m(b); e = y.m(f ); callee A::m(c) { return d; } 7

8 1. Online call graph building caller a = x.m(b); e = y.m(f ); callee A::m(c) { return d; } B::m(g) { return h; } 8

9 Architecture for online call graph building Analysis components Call graph builder Analysis data structures Caller/callee look-up Method compilation Constraint finder Constraint propagator Clients Constraint graph 9

10 Java challenges Analysis components Call graph builder Analysis data structures Caller/callee look-up Method compilation 4. Reflection and native code Constraint finder 3. Unresolved types 2. Re-propagation Constraint propagator Clients Constraint graph 10

11 2. Focused re-propagation Code a = new C( ); // G b = new C( ); // H a.f = b; a = b; Points-to sets pointsto(a) == {G} pointsto(b) == {H} pointsto(g.f ) == {H} pointsto(h.f ) == { } 11

12 2. Focused re-propagation Code a = new C( ); // G b = new C( ); // H a.f = b; a = b; Points-to sets pointsto(a) == {G,H} pointsto(b) == {H} pointsto(g.f ) == {H} pointsto(h.f ) == { } 12

13 2. Focused re-propagation Code a = new C( ); // G b = new C( ); // H a.f = b; a = b; Points-to sets pointsto(a) == {G,H} pointsto(b) == {H} pointsto(g.f ) == {H} pointsto(h.f ) == {H} 13

14 Architecture for focused re-propagation Analysis components Call graph builder Analysis data structures Caller/callee look-up Method compilation Constraint finder Propagator worklist Constraint propagator Clients Constraint graph 14

15 Java challenges Analysis components Call graph builder Analysis data structures Caller/callee look-up Method compilation 4. Reflection and native code Constraint finder 3. Unresolved types Constraint propagator Clients Propagator worklist Constraint graph 15

16 3. Unresolved types caller X x = ; a = x.m(b);? Can X have a subclass that inherits m from Y? callee Y::m(c) { return d; }! Cannot tell before X is resolved! 16

17 Architecture for managing unresolved types Virtual machine events Analysis components Analysis data structures Call graph builder Caller/callee look-up Method compilation Type resolution Constraint finder Resolution manager Constraint propagator Clients Deferred constraints Propagator worklist Constraint graph 17

18 Java challenges Virtual machine events Analysis components Analysis data structures Call graph builder Caller/callee look-up Method compilation 4. Reflection and native code Type resolution Constraint finder Resolution manager Constraint propagator Clients Deferred constraints Propagator worklist Constraint graph 18

19 4. Reflection and native code Reflection Field f = B.class.getField( ); B b = ; f.set(b,v); Java-side code a = b.m(c); Native code Object VM_JNIFunctions. CallObjectMethod(method, args) { return method.invoke(args); } Native-side code

20 Architecture for dealing with reflection and native code Virtual machine events Analysis components Analysis data structures Call graph builder Caller/callee look-up Method compilation Reflection execution Native code execution Type resolution Constraint finder Resolution manager Constraint propagator Clients Deferred constraints Propagator worklist Constraint graph 20

21 Other events leading to constraints Virtual machine events Analysis components Analysis data structures Building and start-up Bytecode attributes Method compilation Reflection execution Native code execution Type resolution Call graph builder Constraint finder Resolution manager Constraint propagator Clients Caller/callee look-up Deferred constraints Propagator worklist Constraint graph 21

22 Clients using our pointer analysis Virtual machine events Analysis components Analysis data structures Building and start-up Bytecode attributes Method compilation Reflection execution Native code execution Type resolution Call graph builder Constraint finder Resolution manager Constraint propagator Clients Caller/callee look-up Deferred constraints Propagator worklist Constraint graph 22

23 Dealing with invalidated results Many techniques from prior work Guard optimized code (extant analysis) Pre-existence based inlining On-stack replacement and more Connectivity-based garbage collection Trigger propagator only before collection Merge partitions if necessary 23

24 Evaluation methodology Java virtual machine Jikes RVM from IBM, is itself written in Java Benchmarks SPECjvm98 suite, xalan, hsql Results not comparable to static analysis Analyze more code: Jikes RVM adds a lot of Java code Analyze less code: Not all application classes get loaded 24

25 Propagation cost Eager At GC At End Count Avg. Total Count Avg. Total Total hsql s 1h06m 6 1m17s 7m40s 7m07s jess s 3h26m 3 1m58s 5m53s 3m02s javac 1, s 3h50m 5 1m54s 9m32s 6m27s xalan 1, s 5h22m 1 2m01s 2m01s 7m45s Eagerness trades off average cost against total cost On average, focused re-propagation is much cheaper than full propagation Total cost is a function of code size and propagator eagerness 25

26 How long does a program have to run to amortize the analysis cost? Eager At GC At End Count Avg. Total Count Avg. Total Total hsql s 1h06m 6 1m17s 7m40s 7m07s jess s 3h26m 3 1m58s 5m53s 3m02s javac 1, s 3h50m 5 1m54s 9m32s 6m27s xalan 1, s 5h22m 1 2m01s 2m01s 7m45s Analysis cost to amortize Application runtime 5m 15m 1h 5h Overall analysis overhead 10% 5% 2.5% 50m 1h40m 3h20m 2h30m 5h 10h 10h 20h 1d16h 1d16h 4d04h 8d08h Long-running applications can amortize not-too-eager analysis cost 26

27 Validation Virtual machine events Analysis components Analysis data structures Building and start-up Bytecode attributes Method compilation Reflection execution Native code execution Type resolution Call graph builder Constraint finder Resolution manager Constraint propagator Clients Validation Caller/callee look-up Deferred constraints Propagator worklist Constraint graph 27

28 Validation Piggy-back validation on garbage collection For each pointer, check consistency with analysis results Incorrect analysis would lead to tricky bugs in clients 28

29 Related work Andersen s analysis for static Java [RountevMilanovaRyder 01] [LiangPenningsHarrold 01] [WhaleyLam 02] [LhotakHendren 03] Weaker analyses with dynamic class loading DOIT [PechtchanskiSarkar 01] XTA [QianHendren 04] Ruf s escape analysis [BogdaSingh 01, King 03] Demand-driven / incremental analysis 29

30 Conclusions 1 st non-trivial pointer analysis for all of Java Identified and solved the challenges: 1. Online call graph building 2. Focused re-propagation 3. Managing unresolved types 4. Reflection and native code Evaluated efficiency Validated correctness 30

Pointer Analysis in the Presence of Dynamic Class Loading. Hind Presented by Brian Russell

Pointer Analysis in the Presence of Dynamic Class Loading. Hind Presented by Brian Russell Pointer Analysis in the Presence of Dynamic Class Loading Martin Hirzel, Amer Diwan and Michael Hind Presented by Brian Russell Claim: First nontrivial pointer analysis dealing with all Java language features

More information

Pointer Analysis in the Presence of Dynamic Class Loading

Pointer Analysis in the Presence of Dynamic Class Loading Pointer Analysis in the Presence of Dynamic Class Loading Martin Hirzel 1, Amer Diwan 1, and Michael Hind 2 1 University of Colorado, Boulder, CO 80309, USA {hirzel,diwan}@cs.colorado.edu 2 IBM Watson

More information

Pointer Analysis in the Presence of Dynamic Class Loading

Pointer Analysis in the Presence of Dynamic Class Loading Pointer Analysis in the Presence of Dynamic Class Loading Martin Hirzel University of Colorado Boulder, CO 80309 hirzel@cs.colorado.edu Amer Diwan University of Colorado Boulder, CO 80309 diwan@cs.colorado.edu

More information

IBM Research Report. Fast Online Pointer Analysis

IBM Research Report. Fast Online Pointer Analysis RC23638 (W0506-058) June 10, 2005 Computer Science IBM Research Report Fast Online Pointer Analysis Martin Hirzel, Daniel von Dincklage*, Amer Diwan*, Michael Hind IBM Research Division Thomas J. Watson

More information

Advanced Program Analyses for Object-oriented Systems

Advanced Program Analyses for Object-oriented Systems Advanced Program Analyses for Object-oriented Systems Dr. Barbara G. Ryder Rutgers University http://www.cs.rutgers.edu/~ryder http://prolangs.rutgers.edu/ July 2007 ACACES-3 July 2007 BG Ryder 1 Lecture

More information

Vertical Profiling: Understanding the Behavior of Object-Oriented Applications

Vertical Profiling: Understanding the Behavior of Object-Oriented Applications Vertical Profiling: Understanding the Behavior of Object-Oriented Applications Matthias Hauswirth, Amer Diwan University of Colorado at Boulder Peter F. Sweeney, Michael Hind IBM Thomas J. Watson Research

More information

Write Barrier Removal by Static Analysis

Write Barrier Removal by Static Analysis Write Barrier Removal by Static Analysis Karen Zee Martin Rinard MIT Laboratory for Computer Science Research Goal Use static program analysis to identify and remove unnecessary write barriers in programs

More information

Towards Dynamic Interprocedural Analysis in JVMs

Towards Dynamic Interprocedural Analysis in JVMs Towards Dynamic Interprocedural Analysis in JVMs Feng Qian Laurie Hendren School of Computer Science, McGill University 3480 University Street, Montreal, Quebec Canada H3A 2A7 {fqian,hendren}@cs.mcgill.ca

More information

Design, Implementation, and Evaluation of a Compilation Server

Design, Implementation, and Evaluation of a Compilation Server Design, Implementation, and Evaluation of a Compilation Server Technical Report CU--978-04 HAN B. LEE University of Colorado AMER DIWAN University of Colorado and J. ELIOT B. MOSS University of Massachusetts

More information

Field Analysis. Last time Exploit encapsulation to improve memory system performance

Field Analysis. Last time Exploit encapsulation to improve memory system performance Field Analysis Last time Exploit encapsulation to improve memory system performance This time Exploit encapsulation to simplify analysis Two uses of field analysis Escape analysis Object inlining April

More information

Experiences with Multi-threading and Dynamic Class Loading in a Java Just-In-Time Compiler

Experiences with Multi-threading and Dynamic Class Loading in a Java Just-In-Time Compiler , Compilation Technology Experiences with Multi-threading and Dynamic Class Loading in a Java Just-In-Time Compiler Daryl Maier, Pramod Ramarao, Mark Stoodley, Vijay Sundaresan TestaRossa JIT compiler

More information

Free-Me: A Static Analysis for Automatic Individual Object Reclamation

Free-Me: A Static Analysis for Automatic Individual Object Reclamation Free-Me: A Static Analysis for Automatic Individual Object Reclamation Samuel Z. Guyer, Kathryn McKinley, Daniel Frampton Presented by: Jason VanFickell Thanks to Dimitris Prountzos for slides adapted

More information

Making Context-sensitive Points-to Analysis with Heap Cloning Practical For The Real World

Making Context-sensitive Points-to Analysis with Heap Cloning Practical For The Real World Making Context-sensitive Points-to Analysis with Heap Cloning Practical For The Real World Chris Lattner Apple Andrew Lenharth UIUC Vikram Adve UIUC What is Heap Cloning? Distinguish objects by acyclic

More information

Dynamic Selection of Application-Specific Garbage Collectors

Dynamic Selection of Application-Specific Garbage Collectors Dynamic Selection of Application-Specific Garbage Collectors Sunil V. Soman Chandra Krintz University of California, Santa Barbara David F. Bacon IBM T.J. Watson Research Center Background VMs/managed

More information

Software Speculative Multithreading for Java

Software Speculative Multithreading for Java Software Speculative Multithreading for Java Christopher J.F. Pickett and Clark Verbrugge School of Computer Science, McGill University {cpicke,clump}@sable.mcgill.ca Allan Kielstra IBM Toronto Lab kielstra@ca.ibm.com

More information

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler Hiroshi Inoue, Hiroshige Hayashizaki, Peng Wu and Toshio Nakatani IBM Research Tokyo IBM Research T.J. Watson Research Center April

More information

A Study of Type Analysis for Speculative Method Inlining in a JIT Environment

A Study of Type Analysis for Speculative Method Inlining in a JIT Environment A Study of Type Analysis for Speculative Method Inlining in a JIT Environment Feng Qian and Laurie Hendren {fqian, hendren}@sable.mcgill.ca School of Computer Science, McGill University Abstract. Method

More information

Phase-based Adaptive Recompilation in a JVM

Phase-based Adaptive Recompilation in a JVM Phase-based Adaptive Recompilation in a JVM Dayong Gu Clark Verbrugge Sable Research Group, School of Computer Science McGill University, Montréal, Canada {dgu1, clump}@cs.mcgill.ca April 7, 2008 Sable

More information

Alias Analysis. Advanced Topics. What is pointer analysis? Last Time

Alias Analysis. Advanced Topics. What is pointer analysis? Last Time Advanced Topics Last Time Experimental Methodology Today What s a managed language? Alias Analysis - dealing with pointers Focus on statically typed managed languages Method invocation resolution Alias

More information

Phases in Branch Targets of Java Programs

Phases in Branch Targets of Java Programs Phases in Branch Targets of Java Programs Technical Report CU-CS-983-04 ABSTRACT Matthias Hauswirth Computer Science University of Colorado Boulder, CO 80309 hauswirt@cs.colorado.edu Recent work on phase

More information

SABLEJIT: A Retargetable Just-In-Time Compiler for a Portable Virtual Machine p. 1

SABLEJIT: A Retargetable Just-In-Time Compiler for a Portable Virtual Machine p. 1 SABLEJIT: A Retargetable Just-In-Time Compiler for a Portable Virtual Machine David Bélanger dbelan2@cs.mcgill.ca Sable Research Group McGill University Montreal, QC January 28, 2004 SABLEJIT: A Retargetable

More information

Myths and Realities: The Performance Impact of Garbage Collection

Myths and Realities: The Performance Impact of Garbage Collection Myths and Realities: The Performance Impact of Garbage Collection Tapasya Patki February 17, 2011 1 Motivation Automatic memory management has numerous software engineering benefits from the developer

More information

Reducing the Overhead of Dynamic Compilation

Reducing the Overhead of Dynamic Compilation Reducing the Overhead of Dynamic Compilation Chandra Krintz David Grove Derek Lieber Vivek Sarkar Brad Calder Department of Computer Science and Engineering, University of California, San Diego IBM T.

More information

Complex, concurrent software. Precision (no false positives) Find real bugs in real executions

Complex, concurrent software. Precision (no false positives) Find real bugs in real executions Harry Xu May 2012 Complex, concurrent software Precision (no false positives) Find real bugs in real executions Need to modify JVM (e.g., object layout, GC, or ISA-level code) Need to demonstrate realism

More information

Points-to Analysis for Java Using Annotated Constraints*

Points-to Analysis for Java Using Annotated Constraints* Points-to Analysis for Java Using Annotated Constraints* Dr. Barbara G. Ryder Rutgers University http://www.cs.rutgers.edu/~ryder http://prolangs.rutgers.edu/ *Joint research with Atanas Rountev and Ana

More information

Reducing the Overhead of Dynamic Compilation

Reducing the Overhead of Dynamic Compilation Reducing the Overhead of Dynamic Compilation Chandra Krintz y David Grove z Derek Lieber z Vivek Sarkar z Brad Calder y y Department of Computer Science and Engineering, University of California, San Diego

More information

Method-Level Phase Behavior in Java Workloads

Method-Level Phase Behavior in Java Workloads Method-Level Phase Behavior in Java Workloads Andy Georges, Dries Buytaert, Lieven Eeckhout and Koen De Bosschere Ghent University Presented by Bruno Dufour dufour@cs.rutgers.edu Rutgers University DCS

More information

Introduction to Visual Basic and Visual C++ Introduction to Java. JDK Editions. Overview. Lesson 13. Overview

Introduction to Visual Basic and Visual C++ Introduction to Java. JDK Editions. Overview. Lesson 13. Overview Introduction to Visual Basic and Visual C++ Introduction to Java Lesson 13 Overview I154-1-A A @ Peter Lo 2010 1 I154-1-A A @ Peter Lo 2010 2 Overview JDK Editions Before you can write and run the simple

More information

A JAVA VIRTUAL MACHINE FOR RISC-V PORTING THE JIKES RESEARCH VM

A JAVA VIRTUAL MACHINE FOR RISC-V PORTING THE JIKES RESEARCH VM A JAVA VIRTUAL MACHINE FOR RISC-V PORTING THE JIKES RESEARCH VM Martin Maas, UC Berkeley (maas@eecs.berkeley.edu) 5th RISC-V Workshop, Nov 30, 2016 Mountain View, CA 3 WHY DO WE NEED A JVM PORT? Run Java

More information

Write Barrier Removal by Static Analysis

Write Barrier Removal by Static Analysis Write Barrier Removal by Static Analysis Karen Zee and Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology Cambridge, MA 02139 {kkz, rinard@lcs.mit.edu ABSTRACT We present

More information

Demand-Driven Points-To Analysis For Java

Demand-Driven Points-To Analysis For Java Demand-Driven Points-To Analysis For Java Manu Sridharan, Ras Bodik Lexin Shan Denis Gopan UC Berkeley Microsoft UW Madison OOPSLA 2005 1 Who needs better pointer analysis? IDEs: for refactoring, program

More information

IBM Research Report. Efficient Memory Management for Long-Lived Objects

IBM Research Report. Efficient Memory Management for Long-Lived Objects RC24794 (W0905-013) May 7, 2009 Computer Science IBM Research Report Efficient Memory Management for Long-Lived Objects Ronny Morad 1, Martin Hirzel 2, Elliot K. Kolodner 1, Mooly Sagiv 3 1 IBM Research

More information

Running class Timing on Java HotSpot VM, 1

Running class Timing on Java HotSpot VM, 1 Compiler construction 2009 Lecture 3. A first look at optimization: Peephole optimization. A simple example A Java class public class A { public static int f (int x) { int r = 3; int s = r + 5; return

More information

Cycle Tracing. Presented by: Siddharth Tiwary

Cycle Tracing. Presented by: Siddharth Tiwary Cycle Tracing Chapter 4, pages 41--56, 2010. From: "Garbage Collection and the Case for High-level Low-level Programming," Daniel Frampton, Doctoral Dissertation, Australian National University. Presented

More information

Jazz: A Tool for Demand-Driven Structural Testing

Jazz: A Tool for Demand-Driven Structural Testing Jazz: A Tool for Demand-Driven Structural Testing J. Misurda, J. A. Clause, J. L. Reed, P. Gandra, B. R. Childers, and M. L. Soffa Department of Computer Science University of Pittsburgh Pittsburgh, Pennsylvania

More information

Lecture Notes on Advanced Garbage Collection

Lecture Notes on Advanced Garbage Collection Lecture Notes on Advanced Garbage Collection 15-411: Compiler Design André Platzer Lecture 21 November 4, 2010 1 Introduction More information on garbage collection can be found in [App98, Ch 13.5-13.7]

More information

Agenda. CSE P 501 Compilers. Java Implementation Overview. JVM Architecture. JVM Runtime Data Areas (1) JVM Data Types. CSE P 501 Su04 T-1

Agenda. CSE P 501 Compilers. Java Implementation Overview. JVM Architecture. JVM Runtime Data Areas (1) JVM Data Types. CSE P 501 Su04 T-1 Agenda CSE P 501 Compilers Java Implementation JVMs, JITs &c Hal Perkins Summer 2004 Java virtual machine architecture.class files Class loading Execution engines Interpreters & JITs various strategies

More information

Interprocedural Analysis with Data-Dependent Calls. Circularity dilemma. A solution: optimistic iterative analysis. Example

Interprocedural Analysis with Data-Dependent Calls. Circularity dilemma. A solution: optimistic iterative analysis. Example Interprocedural Analysis with Data-Dependent Calls Circularity dilemma In languages with function pointers, first-class functions, or dynamically dispatched messages, callee(s) at call site depend on data

More information

Compiler construction 2009

Compiler construction 2009 Compiler construction 2009 Lecture 3 JVM and optimization. A first look at optimization: Peephole optimization. A simple example A Java class public class A { public static int f (int x) { int r = 3; int

More information

Compact Garbage Collection Tables

Compact Garbage Collection Tables Compact Garbage Collection Tables David Tarditi Microsoft Research Redmond, WA 98052, USA dtarditi@microsoft.com ABSTRACT Garbage collection tables for finding pointers on the stack can be represented

More information

Debunking Dynamic Optimization Myths

Debunking Dynamic Optimization Myths Debunking Dynamic Optimization Myths Michael Hind (Material borrowed from 3 hr PLDI 04 Tutorial by Stephen Fink, David Grove, and Michael Hind. See those slides for more details.) September 15, 2004 Future

More information

The VMKit project: Java (and.net) on top of LLVM

The VMKit project: Java (and.net) on top of LLVM The VMKit project: Java (and.net) on top of LLVM Nicolas Geoffray Université Pierre et Marie Curie, France nicolas.geoffray@lip6.fr What is VMKit? Glue between existing VM components LLVM, GNU Classpath,

More information

Understanding the Connectivity of Heap Objects Technical Report: CU-CS

Understanding the Connectivity of Heap Objects Technical Report: CU-CS Understanding the Connectivity of Heap Objects Technical Report: CU-CS-923-01 Martin Hirzel, Johannes Henkel, Amer Diwan University of Colorado, Boulder Michael Hind IBM Research Abstract Modern garbage

More information

Towards Parallel, Scalable VM Services

Towards Parallel, Scalable VM Services Towards Parallel, Scalable VM Services Kathryn S McKinley The University of Texas at Austin Kathryn McKinley Towards Parallel, Scalable VM Services 1 20 th Century Simplistic Hardware View Faster Processors

More information

Scaling Java Points-to Analysis Using Spark

Scaling Java Points-to Analysis Using Spark Scaling Java Points-to Analysis Using Spark Ondřej Lhoták and Laurie Hendren Sable Research Group, McGill University, Montreal, Canada {olhotak,hendren}@sable.mcgill.ca Abstract. Most points-to analysis

More information

20 Most Important Java Programming Interview Questions. Powered by

20 Most Important Java Programming Interview Questions. Powered by 20 Most Important Java Programming Interview Questions Powered by 1. What's the difference between an interface and an abstract class? An abstract class is a class that is only partially implemented by

More information

Scaling Java Points-To Analysis using Spark

Scaling Java Points-To Analysis using Spark McGill University School of Computer Science Sable Research Group Scaling Java Points-To Analysis using Spark Sable Technical Report No. 2002-9 Ondřej Lhoták and Laurie Hendren October 24, 2002 w w w.

More information

Shenandoah: An ultra-low pause time garbage collector for OpenJDK. Christine Flood Principal Software Engineer Red Hat

Shenandoah: An ultra-low pause time garbage collector for OpenJDK. Christine Flood Principal Software Engineer Red Hat Shenandoah: An ultra-low pause time garbage collector for OpenJDK Christine Flood Principal Software Engineer Red Hat 1 Why do we need another Garbage Collector? OpenJDK currently has: SerialGC ParallelGC

More information

Thin Locks: Featherweight Synchronization for Java

Thin Locks: Featherweight Synchronization for Java Thin Locks: Featherweight Synchronization for Java David F. Bacon Ravi Konuru Chet Murthy Mauricio Serrano IBM T.J. Watson Research Center Introduction It s the same old sad story: Java has threads and

More information

Probabilistic Calling Context

Probabilistic Calling Context Probabilistic Calling Context Michael D. Bond Kathryn S. McKinley University of Texas at Austin Why Context Sensitivity? Static program location not enough at com.mckoi.db.jdbcserver.jdbcinterface.execquery():213

More information

Calvin Lin The University of Texas at Austin

Calvin Lin The University of Texas at Austin Interprocedural Analysis Last time Introduction to alias analysis Today Interprocedural analysis March 4, 2015 Interprocedural Analysis 1 Motivation Procedural abstraction Cornerstone of programming Introduces

More information

SSA Based Mobile Code: Construction and Empirical Evaluation

SSA Based Mobile Code: Construction and Empirical Evaluation SSA Based Mobile Code: Construction and Empirical Evaluation Wolfram Amme Friedrich Schiller University Jena, Germany Michael Franz Universit of California, Irvine, USA Jeffery von Ronne Universtity of

More information

A Framework for Optimistic Program Optimization

A Framework for Optimistic Program Optimization A Framework for Optimistic Program Optimization by Igor Pechtchanski A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Computer Science

More information

Delft-Java Link Translation Buffer

Delft-Java Link Translation Buffer Delft-Java Link Translation Buffer John Glossner 1,2 and Stamatis Vassiliadis 2 1 Lucent / Bell Labs Advanced DSP Architecture and Compiler Research Allentown, Pa glossner@lucent.com 2 Delft University

More information

Reference Analyses. VTA - Variable Type Analysis

Reference Analyses. VTA - Variable Type Analysis Reference Analyses Variable Type Analysis for Java Related points-to analyses for C Steengaard Andersen Field-sensitive points-to for Java Object-sensitive points-to for Java Other analysis approaches

More information

Interprocedural Analysis. Motivation. Interprocedural Analysis. Function Calls and Pointers

Interprocedural Analysis. Motivation. Interprocedural Analysis. Function Calls and Pointers Interprocedural Analysis Motivation Last time Introduction to alias analysis Today Interprocedural analysis Procedural abstraction Cornerstone of programming Introduces barriers to analysis Example x =

More information

Implementing Higher-Level Languages. Quick tour of programming language implementation techniques. From the Java level to the C level.

Implementing Higher-Level Languages. Quick tour of programming language implementation techniques. From the Java level to the C level. Implementing Higher-Level Languages Quick tour of programming language implementation techniques. From the Java level to the C level. Ahead-of-time compiler compile time C source code C compiler x86 assembly

More information

Java On Steroids: Sun s High-Performance Java Implementation. History

Java On Steroids: Sun s High-Performance Java Implementation. History Java On Steroids: Sun s High-Performance Java Implementation Urs Hölzle Lars Bak Steffen Grarup Robert Griesemer Srdjan Mitrovic Sun Microsystems History First Java implementations: interpreters compact

More information

6.828: OS/Language Co-design. Adam Belay

6.828: OS/Language Co-design. Adam Belay 6.828: OS/Language Co-design Adam Belay Singularity An experimental research OS at Microsoft in the early 2000s Many people and papers, high profile project Influenced by experiences at

More information

Safety Checks and Semantic Understanding via Program Analysis Techniques

Safety Checks and Semantic Understanding via Program Analysis Techniques Safety Checks and Semantic Understanding via Program Analysis Techniques Nurit Dor Joint Work: EranYahav, Inbal Ronen, Sara Porat Goal Find properties of a program Anti-patterns that indicate potential

More information

Context-sensitive points-to analysis: is it worth it?

Context-sensitive points-to analysis: is it worth it? Context-sensitive points-to analysis: is it worth it? Ondřej Lhoták 1,2 and Laurie Hendren 2 olhotak@uwaterloo.ca hendren@sable.mcgill.ca 1 School of Computer Science, University of Waterloo, Waterloo,

More information

CSE P 501 Compilers. Java Implementation JVMs, JITs &c Hal Perkins Winter /11/ Hal Perkins & UW CSE V-1

CSE P 501 Compilers. Java Implementation JVMs, JITs &c Hal Perkins Winter /11/ Hal Perkins & UW CSE V-1 CSE P 501 Compilers Java Implementation JVMs, JITs &c Hal Perkins Winter 2008 3/11/2008 2002-08 Hal Perkins & UW CSE V-1 Agenda Java virtual machine architecture.class files Class loading Execution engines

More information

CO444H. Ben Livshits. Datalog Pointer analysis

CO444H. Ben Livshits. Datalog Pointer analysis CO444H Ben Livshits Datalog Pointer analysis 1 Call Graphs Class analysis: Given a reference variable x, what are the classes of the objects that x refers to at runtime? We saw CHA and RTA Deal with polymorphic/virtual

More information

YETI. GraduallY Extensible Trace Interpreter VEE Mathew Zaleski, Angela Demke Brown (University of Toronto) Kevin Stoodley (IBM Toronto)

YETI. GraduallY Extensible Trace Interpreter VEE Mathew Zaleski, Angela Demke Brown (University of Toronto) Kevin Stoodley (IBM Toronto) YETI GraduallY Extensible Trace Interpreter Mathew Zaleski, Angela Demke Brown (University of Toronto) Kevin Stoodley (IBM Toronto) VEE 2007 1 Goal Create a VM that is more easily extended with a just

More information

Run-Time Environments/Garbage Collection

Run-Time Environments/Garbage Collection Run-Time Environments/Garbage Collection Department of Computer Science, Faculty of ICT January 5, 2014 Introduction Compilers need to be aware of the run-time environment in which their compiled programs

More information

Sista: Improving Cog s JIT performance. Clément Béra

Sista: Improving Cog s JIT performance. Clément Béra Sista: Improving Cog s JIT performance Clément Béra Main people involved in Sista Eliot Miranda Over 30 years experience in Smalltalk VM Clément Béra 2 years engineer in the Pharo team Phd student starting

More information

Connectivity-Based Garbage Collection

Connectivity-Based Garbage Collection Connectivity-Based Garbage Collection Martin Hirzel Vordiplom, Darmstadt University of Technology, 1998 M.S., University of Colorado at Boulder, 2000 A thesis submitted to the Faculty of the Graduate School

More information

Accurate Garbage Collection in Uncooperative Environments with Lazy Pointer Stacks

Accurate Garbage Collection in Uncooperative Environments with Lazy Pointer Stacks Accurate Garbage Collection in Uncooperative Environments with Lazy Pointer Stacks Jason Baker, Antonio Cunei, Filip Pizlo, and Jan Vitek Computer Science Department Purdue University West Lafayette, IN

More information

Wednesday, October 15, 14. Functions

Wednesday, October 15, 14. Functions Functions Terms void foo() { int a, b;... bar(a, b); void bar(int x, int y) {... foo is the caller bar is the callee a, b are the actual parameters to bar x, y are the formal parameters of bar Shorthand:

More information

Expressing high level optimizations within LLVM. Artur Pilipenko

Expressing high level optimizations within LLVM. Artur Pilipenko Expressing high level optimizations within LLVM Artur Pilipenko artur.pilipenko@azul.com This presentation describes advanced development work at Azul Systems and is for informational purposes only. Any

More information

Featherweight Monitors with Bacon Bits

Featherweight Monitors with Bacon Bits Featherweight Monitors with Bacon Bits David F. Bacon IBM T.J. Watson Research Center Contributors Chet Murthy Tamiya Onodera Mauricio Serrano Mark Wegman Rob Strom Kevin Stoodley Introduction It s the

More information

Instrumentation in Software Dynamic Translators for Self-Managed Systems

Instrumentation in Software Dynamic Translators for Self-Managed Systems Instrumentation in Software Dynamic Translators for Self-Managed Systems Naveen Kumar, Jonathan Misurda, Bruce R. Childers Department of Computer Science University of Pittsburgh Pittsburgh, PA 15260 {naveen,jmisurda,childers}@cs.pitt.edu

More information

Connectivity-Based Garbage Collection

Connectivity-Based Garbage Collection Connectivity-Based Garbage Collection Martin Hirzel Vordiplom, Darmstadt University of Technology, 1998 This thesis entitled: Connectivity-Based Garbage Collection written by Martin Hirzel has been approved

More information

Static Java Program Features for Intelligent Squash Prediction

Static Java Program Features for Intelligent Squash Prediction Static Java Program Features for Intelligent Squash Prediction Jeremy Singer,, Adam Pocock, Mikel Lujan, Gavin Brown, Nikolas Ioannou, Marcelo Cintra Thread-level Speculation... Aim to use parallel multi-core

More information

JOVE. An Optimizing Compiler for Java. Allen Wirfs-Brock Instantiations Inc.

JOVE. An Optimizing Compiler for Java. Allen Wirfs-Brock Instantiations Inc. An Optimizing Compiler for Java Allen Wirfs-Brock Instantiations Inc. Object-Orient Languages Provide a Breakthrough in Programmer Productivity Reusable software components Higher level abstractions Yield

More information

Efficient Context Sensitivity for Dynamic Analyses via Calling Context Uptrees and Customized Memory Management

Efficient Context Sensitivity for Dynamic Analyses via Calling Context Uptrees and Customized Memory Management to Reuse * * Evaluated * OOPSLA * Artifact * AEC Efficient Context Sensitivity for Dynamic Analyses via Calling Context Uptrees and Customized Memory Management Jipeng Huang Michael D. Bond Ohio State

More information

Managed runtimes & garbage collection

Managed runtimes & garbage collection Managed runtimes Advantages? Managed runtimes & garbage collection CSE 631 Some slides by Kathryn McKinley Disadvantages? 1 2 Managed runtimes Portability (& performance) Advantages? Reliability Security

More information

Managed runtimes & garbage collection. CSE 6341 Some slides by Kathryn McKinley

Managed runtimes & garbage collection. CSE 6341 Some slides by Kathryn McKinley Managed runtimes & garbage collection CSE 6341 Some slides by Kathryn McKinley 1 Managed runtimes Advantages? Disadvantages? 2 Managed runtimes Advantages? Reliability Security Portability Performance?

More information

Dimensions of Precision in Reference Analysis of Object-oriented Programming Languages. Outline

Dimensions of Precision in Reference Analysis of Object-oriented Programming Languages. Outline Dimensions of Precision in Reference Analysis of Object-oriented Programming Languages Dr. Barbara G. Ryder Rutgers University http://www.cs.rutgers.edu/~ryder http://prolangs.rutgers.edu/ Research supported,

More information

RUNTIME TECHNIQUES AND INTERPROCEDURAL ANALYSIS IN JAVA VIRTUAL MACHINES

RUNTIME TECHNIQUES AND INTERPROCEDURAL ANALYSIS IN JAVA VIRTUAL MACHINES RUNTIME TECHNIQUES AND INTERPROCEDURAL ANALYSIS IN JAVA VIRTUAL MACHINES by Feng Qian School of Computer Science McGill University, Montreal March 2005 A thesis submitted to McGill University in partial

More information

Static Program Analysis Part 9 pointer analysis. Anders Møller & Michael I. Schwartzbach Computer Science, Aarhus University

Static Program Analysis Part 9 pointer analysis. Anders Møller & Michael I. Schwartzbach Computer Science, Aarhus University Static Program Analysis Part 9 pointer analysis Anders Møller & Michael I. Schwartzbach Computer Science, Aarhus University Agenda Introduction to points-to analysis Andersen s analysis Steensgaards s

More information

Untyped Memory in the Java Virtual Machine

Untyped Memory in the Java Virtual Machine Untyped Memory in the Java Virtual Machine Andreas Gal and Michael Franz University of California, Irvine {gal,franz}@uci.edu Christian W. Probst Technical University of Denmark probst@imm.dtu.dk July

More information

Escape Analysis in the Context of Dynamic Compilation and Deoptimization

Escape Analysis in the Context of Dynamic Compilation and Deoptimization Escape Analysis in the Context of Dynamic Compilation and Deoptimization ABSTRACT Thomas Kotzmann Institute for System Software Johannes Kepler University Linz Linz, Austria kotzmann@ssw.jku.at In object-oriented

More information

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler 1 / 25 Flow-sensitive rewritings and for the Graal JIT compiler Miguel Garcia http://lampwww.epfl.ch/~magarcia/ 2014-07-07 2 / 25 Outline Flow-sensitive rewritings during HighTier Example Rewritings in

More information

Accelerating Ruby with LLVM

Accelerating Ruby with LLVM Accelerating Ruby with LLVM Evan Phoenix Oct 2, 2009 RUBY RUBY Strongly, dynamically typed RUBY Unified Model RUBY Everything is an object RUBY 3.class # => Fixnum RUBY Every code context is equal RUBY

More information

CS711 Advanced Programming Languages Pointer Analysis Overview and Flow-Sensitive Analysis

CS711 Advanced Programming Languages Pointer Analysis Overview and Flow-Sensitive Analysis CS711 Advanced Programming Languages Pointer Analysis Overview and Flow-Sensitive Analysis Radu Rugina 8 Sep 2005 Pointer Analysis Informally: determine where pointers (or references) in the program may

More information

ONLINE PROFILING AND FEEDBACK-DIRECTED OPTIMIZATION OF JAVA

ONLINE PROFILING AND FEEDBACK-DIRECTED OPTIMIZATION OF JAVA ONLINE PROFILING AND FEEDBACK-DIRECTED OPTIMIZATION OF JAVA BY MATTHEW ARNOLD A dissertation submitted to the Graduate School New Brunswick Rutgers, The State University of New Jersey in partial fulfillment

More information

Reference Object Processing in On-The-Fly Garbage Collection

Reference Object Processing in On-The-Fly Garbage Collection Reference Object Processing in On-The-Fly Garbage Collection Tomoharu Ugawa, Kochi University of Technology Richard Jones, Carl Ritson, University of Kent Weak Pointers Weak pointers are a mechanism to

More information

Analysis of Object-oriented Programming Languages

Analysis of Object-oriented Programming Languages Analysis of Object-oriented Programming Languages Dr. Barbara G. Ryder Rutgers University http://www.cs.rutgers.edu/~ryder http://prolangs.rutgers.edu/ OOAnalysis, Dagstuhl 2/03, BG Ryder 1 Outline Why

More information

CS260 Intro to Java & Android 02.Java Technology

CS260 Intro to Java & Android 02.Java Technology CS260 Intro to Java & Android 02.Java Technology CS260 - Intro to Java & Android 1 Getting Started: http://docs.oracle.com/javase/tutorial/getstarted/index.html Java Technology is: (a) a programming language

More information

Kasper Lund, Software engineer at Google. Crankshaft. Turbocharging the next generation of web applications

Kasper Lund, Software engineer at Google. Crankshaft. Turbocharging the next generation of web applications Kasper Lund, Software engineer at Google Crankshaft Turbocharging the next generation of web applications Overview Why did we introduce Crankshaft? Deciding when and what to optimize Type feedback and

More information

Limits of Parallel Marking Garbage Collection....how parallel can a GC become?

Limits of Parallel Marking Garbage Collection....how parallel can a GC become? Limits of Parallel Marking Garbage Collection...how parallel can a GC become? Dr. Fridtjof Siebert CTO, aicas ISMM 2008, Tucson, 7. June 2008 Introduction Parallel Hardware is becoming the norm even for

More information

Just-In-Time Compilation

Just-In-Time Compilation Just-In-Time Compilation Thiemo Bucciarelli Institute for Software Engineering and Programming Languages 18. Januar 2016 T. Bucciarelli 18. Januar 2016 1/25 Agenda Definitions Just-In-Time Compilation

More information

Parley: Federated Virtual Machines

Parley: Federated Virtual Machines 1 IBM Research Parley: Federated Virtual Machines Perry Cheng, Dave Grove, Martin Hirzel, Rob O Callahan and Nikhil Swamy VEE Workshop September 2004 2002 IBM Corporation What is Parley? Motivation Virtual

More information

CSE 501: Compiler Construction. Course outline. Goals for language implementation. Why study compilers? Models of compilation

CSE 501: Compiler Construction. Course outline. Goals for language implementation. Why study compilers? Models of compilation CSE 501: Compiler Construction Course outline Main focus: program analysis and transformation how to represent programs? how to analyze programs? what to analyze? how to transform programs? what transformations

More information

Eliminating Exception Constraints of Java Programs for IA-64

Eliminating Exception Constraints of Java Programs for IA-64 Eliminating Exception Constraints of Java Programs for IA-64 Kazuaki Ishizaki, Tatsushi Inagaki, Hideaki Komatsu,Toshio Nakatani IBM Research, Tokyo Research

More information

Context Threading: A flexible and efficient dispatch technique for virtual machine interpreters

Context Threading: A flexible and efficient dispatch technique for virtual machine interpreters : A flexible and efficient dispatch technique for virtual machine interpreters Marc Berndl Benjamin Vitale Mathew Zaleski Angela Demke Brown Research supported by IBM CAS, NSERC, CITO 1 Interpreter performance

More information

Running R Faster. Tomas Kalibera

Running R Faster. Tomas Kalibera Running R Faster Tomas Kalibera My background: computer scientist, R user. My FastR experience: Implementing a new R VM in Java. New algorithms, optimizations help Frame representation, variable lookup

More information

Uncovering Performance Problems in Java Applications with Reference Propagation Profiling

Uncovering Performance Problems in Java Applications with Reference Propagation Profiling Uncovering Performance Problems in Java Applications with Reference Propagation Profiling Dacong Yan 1 Guoqing Xu 2 Atanas Rountev 1 1 Department of Computer Science and Engineering, Ohio State University

More information

Shenandoah: An ultra-low pause time garbage collector for OpenJDK. Christine Flood Roman Kennke Principal Software Engineers Red Hat

Shenandoah: An ultra-low pause time garbage collector for OpenJDK. Christine Flood Roman Kennke Principal Software Engineers Red Hat Shenandoah: An ultra-low pause time garbage collector for OpenJDK Christine Flood Roman Kennke Principal Software Engineers Red Hat 1 Shenandoah Why do we need it? What does it do? How does it work? What's

More information