Limits of Parallel Marking Garbage Collection....how parallel can a GC become?

Size: px
Start display at page:

Download "Limits of Parallel Marking Garbage Collection....how parallel can a GC become?"

Transcription

1 Limits of Parallel Marking Garbage Collection...how parallel can a GC become? Dr. Fridtjof Siebert CTO, aicas ISMM 2008, Tucson, 7. June 2008

2 Introduction Parallel Hardware is becoming the norm even for embedded computers even for real time systems We need parallel garbage collection That is not only optimized for max. throughput But that gives guarantees on its performance The worst case GC timing must predictable and fast 2

3 Terminology blocking GC 3

4 Terminology blocking GC Incremental GC 4

5 Terminology blocking GC Incremental GC Concurrent GC CPU 1: Application CPU 2: GC CPU 3: Application 5

6 Terminology blocking GC Incremental GC Concurrent GC parallel GC CPU 1: Application CPU 1 CPU 2: GC CPU 2 CPU 3: Application CPU 3 6

7 Terminology blocking GC Incremental GC Concurrent GC parallel GC CPU 1: Application CPU 1 CPU 2: GC CPU 2 CPU 3: Application Parallel & Concurrent CPU 3 CPU 1: Application CPU 2: GC 7 CPU 3: GC

8 Terminology blocking GC Incremental GC Concurrent GC parallel GC CPU 1: Application CPU 1 CPU 2: GC CPU 2 CPU 3: Application CPU 3 Parallel & Concurrent CPU 1: Application Parallel & Concurrent CPU 1 CPU 2: GC CPU 2 8 CPU 3: GC CPU 3

9 Terminology blocking GC Incremental GC Concurrent GC parallel GC CPU 1: Application CPU 1 CPU 2: GC CPU 2 CPU 3: Application CPU 3 Parallel & Concurrent CPU 1: Application Parallel & Concurrent CPU 1 CPU 2: GC CPU 2 9 CPU 3: GC CPU 3

10 Parallel Mark & Sweep Incremental Mark & Sweep uses three color marking: white, grey and black mark phase step is find take grey object o mark all white objects referenced by o grey mark o black sweep phase step is take white object free its memory 10

11 Parallel Mark & Sweep Limits of Parallel Marking Garbage Collection Parallel Sweep Steps not addressed here sweeping can be performed fully in parallel by sweeping different regions of the heap by different CPUs need parallel access to the free lists 11

12 Parallel Mark & Sweep Parallel Mark several threads may scan grey objects in parallel new color anthracite for grey object that is being scanned by one CPU stalls possible if grey set temporarily empty! 12

13 Worst Case: Linked List Limits of Parallel Marking Garbage Collection root 13

14 Worst Case: Linked List Limits of Parallel Marking Garbage Collection root CPU1 CPU2 CPU3 14

15 Worst Case: Linked List Limits of Parallel Marking Garbage Collection root CPU1 starts mark step CPU1 CPU2 CPU3 15

16 Worst Case: Linked List Limits of Parallel Marking Garbage Collection root CPU1 CPU1 CPU2 no grey object, stalls! CPU3 16

17 Worst Case: Linked List Limits of Parallel Marking Garbage Collection root CPU1 CPU1 CPU2 CPU3 no grey object, stalls! 17

18 Worst Case: Linked List Limits of Parallel Marking Garbage Collection root CPU1 mark step finished CPU1 CPU2 CPU3 18

19 Worst Case: Linked List Limits of Parallel Marking Garbage Collection root CPU1 CPU2 all CPUs compete for one grey object! CPU1 CPU3 19

20 Worst Case: Linked List Limits of Parallel Marking Garbage Collection root CPU1 CPU2 eg., CPU2 successful, CPU1 + CPU3 stall! CPU1 CPU2 CPU3 20

21 Worst Case: Linked List With n CPUs performing mark in parallel there might be n 1 stalls for each mark step only one CPU is performing a mark step at any time Worst case performance equal to non parallel GC! 21

22 Can we find a better limit for real applications? First, look at two processor parallel mark only what if memory graph consists of two linked lists? 22

23 Two Linked Lists with two CPUs root CPU1 CPU2 we might be lucky and see no stalls 23

24 Two Linked Lists with two CPUs root CPU1 CPU2 but we might have bad luck: one list is scanned first, there is a single linked list left! 24

25 Limit on stalls depends on object depth root CPU CPU

26 Limit on stalls depends on object depth (2 processors) after 1 st stall, all objects with depth 1 are black after 2 nd stall, all objects with depth 2 are black etc. after n th stall, all objects with depth n are black 26

27 Limit on stalls depends on object depth (2 processors) # of stalls s on two processor parallel mark is limited by max. depth of the memory graph H: 27

28 Generalization for more processors # of stalls s on p processor parallel mark is limited by: 28

29 Analysis and Measurements Instrumented JamaicaVM Java implementation to measure the maximum depth of the heap graph, make samples of the current heap graph all 10,000 reference store operations, and output the maximum depths and the maximum ratios depth / heap size in # of objects The instrumented VM was then used to run the SPECjvm98 benchmark suite 29

30 Measurements Maximum depths of SPECjvm98 benchmarks check jess compress raytrace db mpegaudio javac mtrt jack 30

31 Measurements Maximum relative depths of SPECjvm98 benchmarks 4,00% 3,50% 3,00% 2,50% 2,00% 1,50% 1,00% 0,50% 0,00% check jess db compress raytrace mpegaudio javac mtrt jack 31

32 Measurements Worst case scalability of SPECjvm98 benchmarks 1,0 0,9 0,8 ideal 0,7 check compress 0,6 jess raytrace 0,5 db 0,4 javac mpegaudio 0,3 mtrt jack 0,2 0,1 ideal check compress jess ray trace db jav ac mpegaudio mtrt jack non-parallel ,

33 Conclusions Limits of Parallel Marking Garbage Collection In the general case, parallel marking garbage collection can not be parallelized. However, if the depth of the memory graph is limited, then parallel mark phase generally works well. To be able to give realtime guarantees on the performance of the mark phase, we need a guarantee from the application on its maximum heap depth. 33

Hard Real-Time Garbage Collection in Java Virtual Machines

Hard Real-Time Garbage Collection in Java Virtual Machines Hard Real-Time Garbage Collection in Java Virtual Machines... towards unrestricted real-time programming in Java Fridtjof Siebert, IPD, University of Karlsruhe 1 Jamaica Systems Structure Exisiting GC

More information

Java without the Coffee Breaks: A Nonintrusive Multiprocessor Garbage Collector

Java without the Coffee Breaks: A Nonintrusive Multiprocessor Garbage Collector Java without the Coffee Breaks: A Nonintrusive Multiprocessor Garbage Collector David F. Bacon IBM T.J. Watson Research Center Joint work with C.R. Attanasio, Han Lee, V.T. Rajan, and Steve Smith ACM Conference

More information

Towards Parallel, Scalable VM Services

Towards Parallel, Scalable VM Services Towards Parallel, Scalable VM Services Kathryn S McKinley The University of Texas at Austin Kathryn McKinley Towards Parallel, Scalable VM Services 1 20 th Century Simplistic Hardware View Faster Processors

More information

The Segregated Binary Trees: Decoupling Memory Manager

The Segregated Binary Trees: Decoupling Memory Manager The Segregated Binary Trees: Decoupling Memory Manager Mehran Rezaei Dept. of Electrical and Computer Engineering University of Alabama in Huntsville Ron K. Cytron Department of Computer Science Washington

More information

Eliminating External Fragmentation in a Non-Moving Garbage Collector for Java

Eliminating External Fragmentation in a Non-Moving Garbage Collector for Java Eliminating External Fragmentation in a Non-Moving Garbage Collector for Java Fridtjof Siebert IPD, Universität Karlsruhe Oberfeldstr. 4B 7649 Karlsruhe, Germany siebert@jamaica-systems.de ABSTRACT Fragmentation

More information

JamaicaVM Java for Embedded Realtime Systems

JamaicaVM Java for Embedded Realtime Systems JamaicaVM Java for Embedded Realtime Systems... bringing modern software development methods to safety critical applications Fridtjof Siebert, 25. Oktober 2001 1 Deeply embedded applications Examples:

More information

Method-Level Phase Behavior in Java Workloads

Method-Level Phase Behavior in Java Workloads Method-Level Phase Behavior in Java Workloads Andy Georges, Dries Buytaert, Lieven Eeckhout and Koen De Bosschere Ghent University Presented by Bruno Dufour dufour@cs.rutgers.edu Rutgers University DCS

More information

Swift: A Register-based JIT Compiler for Embedded JVMs

Swift: A Register-based JIT Compiler for Embedded JVMs Swift: A Register-based JIT Compiler for Embedded JVMs Yuan Zhang, Min Yang, Bo Zhou, Zhemin Yang, Weihua Zhang, Binyu Zang Fudan University Eighth Conference on Virtual Execution Environment (VEE 2012)

More information

Configuring the Heap and Garbage Collector for Real- Time Programming.

Configuring the Heap and Garbage Collector for Real- Time Programming. Configuring the Heap and Garbage Collector for Real- Time Programming.... A user s perspective to garbage collection Fridtjof Siebert, IPD, University of Karlsruhe 1 Jamaica Systems Structure What is the

More information

Garbage Collection. Hwansoo Han

Garbage Collection. Hwansoo Han Garbage Collection Hwansoo Han Heap Memory Garbage collection Automatically reclaim the space that the running program can never access again Performed by the runtime system Two parts of a garbage collector

More information

Heuristics for Profile-driven Method- level Speculative Parallelization

Heuristics for Profile-driven Method- level Speculative Parallelization Heuristics for Profile-driven Method- level John Whaley and Christos Kozyrakis Stanford University Speculative Multithreading Speculatively parallelize an application Uses speculation to overcome ambiguous

More information

On the Effectiveness of GC in Java

On the Effectiveness of GC in Java On the Effectiveness of GC in Java Ran Shaham Tel-Aviv University and IBM aifa Research aboratory rans@math.tau.ac.il Elliot K. Kolodner IBM aifa Research aboratory kolodner@il.ibm.com Mooly Sagiv Tel-Aviv

More information

Mostly Concurrent Garbage Collection Revisited

Mostly Concurrent Garbage Collection Revisited Mostly Concurrent Garbage Collection Revisited Katherine Barabash Yoav Ossia Erez Petrank ABSTRACT The mostly concurrent garbage collection was presented in the seminal paper of Boehm et al. With the deployment

More information

Dynamic Selection of Application-Specific Garbage Collectors

Dynamic Selection of Application-Specific Garbage Collectors Dynamic Selection of Application-Specific Garbage Collectors Sunil V. Soman Chandra Krintz University of California, Santa Barbara David F. Bacon IBM T.J. Watson Research Center Background VMs/managed

More information

Hierarchical Real-time Garbage Collection

Hierarchical Real-time Garbage Collection Hierarchical Real-time Garbage Collection Filip Pizlo Antony L. Hosking Jan Vitek Presenter: Petur Olsen October 4, 2007 The general idea Introduction The Article The Authors 2/28 Pizlo, Hosking, Vitek

More information

Java Memory Allocation with Lazy Worst Fit for Small Objects

Java Memory Allocation with Lazy Worst Fit for Small Objects The Computer Journal Advance Access published May 13, 2005 The Author 2005. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved. For Permissions, please

More information

Schism: Fragmentation-Tolerant Real-Time Garbage Collection. Fil Pizlo *

Schism: Fragmentation-Tolerant Real-Time Garbage Collection. Fil Pizlo * Schism: Fragmentation-Tolerant Real-Time Garbage Collection Fil Pizlo Luke Ziarek Peta Maj * Tony Hosking * Ethan Blanton Jan Vitek * * Why another Real Time Garbage Collector? Why another Real Time Garbage

More information

Mixed Mode Execution with Context Threading

Mixed Mode Execution with Context Threading Mixed Mode Execution with Context Threading Mathew Zaleski, Marc Berndl, Angela Demke Brown University of Toronto {matz,berndl,demke}@cs.toronto.edu (CASCON 2005, Oct 19/2005.) Overview Introduction Background:

More information

SABLEJIT: A Retargetable Just-In-Time Compiler for a Portable Virtual Machine p. 1

SABLEJIT: A Retargetable Just-In-Time Compiler for a Portable Virtual Machine p. 1 SABLEJIT: A Retargetable Just-In-Time Compiler for a Portable Virtual Machine David Bélanger dbelan2@cs.mcgill.ca Sable Research Group McGill University Montreal, QC January 28, 2004 SABLEJIT: A Retargetable

More information

Real-Time Garbage Collection Panel JTRES 2007

Real-Time Garbage Collection Panel JTRES 2007 Real-Time Garbage Collection Panel JTRES 2007 Bertrand Delsart, Sun Sean Foley, IBM Kelvin Nilsen, Aonix Sven Robertz, Lund Univ Fridtjof Siebert, aicas Feedback from our customers Is it fast enough to

More information

A Quantitative Evaluation of the Contribution of Native Code to Java Workloads

A Quantitative Evaluation of the Contribution of Native Code to Java Workloads A Quantitative Evaluation of the Contribution of Native Code to Java Workloads Walter Binder University of Lugano Switzerland walter.binder@unisi.ch Jarle Hulaas, Philippe Moret EPFL Switzerland {jarle.hulaas,philippe.moret}@epfl.ch

More information

Cycle Tracing. Presented by: Siddharth Tiwary

Cycle Tracing. Presented by: Siddharth Tiwary Cycle Tracing Chapter 4, pages 41--56, 2010. From: "Garbage Collection and the Case for High-level Low-level Programming," Daniel Frampton, Doctoral Dissertation, Australian National University. Presented

More information

Free-Me: A Static Analysis for Automatic Individual Object Reclamation

Free-Me: A Static Analysis for Automatic Individual Object Reclamation Free-Me: A Static Analysis for Automatic Individual Object Reclamation Samuel Z. Guyer, Kathryn McKinley, Daniel Frampton Presented by: Jason VanFickell Thanks to Dimitris Prountzos for slides adapted

More information

Garbage Collection Algorithms. Ganesh Bikshandi

Garbage Collection Algorithms. Ganesh Bikshandi Garbage Collection Algorithms Ganesh Bikshandi Announcement MP4 posted Term paper posted Introduction Garbage : discarded or useless material Collection : the act or process of collecting Garbage collection

More information

JVM Memory Model and GC

JVM Memory Model and GC JVM Memory Model and GC Developer Community Support Fairoz Matte Principle Member Of Technical Staff Java Platform Sustaining Engineering, Copyright 2015, Oracle and/or its affiliates. All rights reserved.

More information

An Efficient Memory Management Technique That Improves Localities

An Efficient Memory Management Technique That Improves Localities An Efficient Memory Management Technique That Improves Localities Krishna Kavi Mehran Rezaei Dept. of Electrical and Computer Engineering University of Alabama in Huntsville Ron K. Cytron Department of

More information

Write Barrier Elision for Concurrent Garbage Collectors

Write Barrier Elision for Concurrent Garbage Collectors Write Barrier Elision for Concurrent Garbage Collectors Martin T. Vechev Computer Laboratory Cambridge University Cambridge CB3 FD, U.K. mv27@cl.cam.ac.uk David F. Bacon IBM T.J. Watson Research Center

More information

Phase-based Adaptive Recompilation in a JVM

Phase-based Adaptive Recompilation in a JVM Phase-based Adaptive Recompilation in a JVM Dayong Gu Clark Verbrugge Sable Research Group, School of Computer Science McGill University, Montréal, Canada {dgu1, clump}@cs.mcgill.ca April 7, 2008 Sable

More information

Adaptive Optimization using Hardware Performance Monitors. Master Thesis by Mathias Payer

Adaptive Optimization using Hardware Performance Monitors. Master Thesis by Mathias Payer Adaptive Optimization using Hardware Performance Monitors Master Thesis by Mathias Payer Supervising Professor: Thomas Gross Supervising Assistant: Florian Schneider Adaptive Optimization using HPM 1/21

More information

JOVE. An Optimizing Compiler for Java. Allen Wirfs-Brock Instantiations Inc.

JOVE. An Optimizing Compiler for Java. Allen Wirfs-Brock Instantiations Inc. An Optimizing Compiler for Java Allen Wirfs-Brock Instantiations Inc. Object-Orient Languages Provide a Breakthrough in Programmer Productivity Reusable software components Higher level abstractions Yield

More information

IBM Research Report. Efficient Memory Management for Long-Lived Objects

IBM Research Report. Efficient Memory Management for Long-Lived Objects RC24794 (W0905-013) May 7, 2009 Computer Science IBM Research Report Efficient Memory Management for Long-Lived Objects Ronny Morad 1, Martin Hirzel 2, Elliot K. Kolodner 1, Mooly Sagiv 3 1 IBM Research

More information

Approximation of the Worst-Case Execution Time Using Structural Analysis. Matteo Corti and Thomas Gross Zürich

Approximation of the Worst-Case Execution Time Using Structural Analysis. Matteo Corti and Thomas Gross Zürich Approximation of the Worst-Case Execution Time Using Structural Analysis Matteo Corti and Thomas Gross Zürich Goal Worst-case execution time estimation of softreal time Java applications. We focus on semantic

More information

Context Threading: A flexible and efficient dispatch technique for virtual machine interpreters

Context Threading: A flexible and efficient dispatch technique for virtual machine interpreters : A flexible and efficient dispatch technique for virtual machine interpreters Marc Berndl Benjamin Vitale Mathew Zaleski Angela Demke Brown Research supported by IBM CAS, NSERC, CITO 1 Interpreter performance

More information

Managed runtimes & garbage collection. CSE 6341 Some slides by Kathryn McKinley

Managed runtimes & garbage collection. CSE 6341 Some slides by Kathryn McKinley Managed runtimes & garbage collection CSE 6341 Some slides by Kathryn McKinley 1 Managed runtimes Advantages? Disadvantages? 2 Managed runtimes Advantages? Reliability Security Portability Performance?

More information

Exploiting the Behavior of Generational Garbage Collector

Exploiting the Behavior of Generational Garbage Collector Exploiting the Behavior of Generational Garbage Collector I. Introduction Zhe Xu, Jia Zhao Garbage collection is a form of automatic memory management. The garbage collector, attempts to reclaim garbage,

More information

Managed runtimes & garbage collection

Managed runtimes & garbage collection Managed runtimes Advantages? Managed runtimes & garbage collection CSE 631 Some slides by Kathryn McKinley Disadvantages? 1 2 Managed runtimes Portability (& performance) Advantages? Reliability Security

More information

JVM Performance Study Comparing Java HotSpot to Azul Zing Using Red Hat JBoss Data Grid

JVM Performance Study Comparing Java HotSpot to Azul Zing Using Red Hat JBoss Data Grid JVM Performance Study Comparing Java HotSpot to Azul Zing Using Red Hat JBoss Data Grid Legal Notices JBoss, Red Hat and their respective logos are trademarks or registered trademarks of Red Hat, Inc.

More information

YETI. GraduallY Extensible Trace Interpreter VEE Mathew Zaleski, Angela Demke Brown (University of Toronto) Kevin Stoodley (IBM Toronto)

YETI. GraduallY Extensible Trace Interpreter VEE Mathew Zaleski, Angela Demke Brown (University of Toronto) Kevin Stoodley (IBM Toronto) YETI GraduallY Extensible Trace Interpreter Mathew Zaleski, Angela Demke Brown (University of Toronto) Kevin Stoodley (IBM Toronto) VEE 2007 1 Goal Create a VM that is more easily extended with a just

More information

Reference Counting. Reference counting: a way to know whether a record has other users

Reference Counting. Reference counting: a way to know whether a record has other users Garbage Collection Today: various garbage collection strategies; basic ideas: Allocate until we run out of space; then try to free stuff Invariant: only the PL implementation (runtime system) knows about

More information

Memory Organization and Optimization for Java Workloads

Memory Organization and Optimization for Java Workloads 284 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.11, November 2006 Memory Organization and Optimization for Java Workloads K. F. Chong, and Anthony S. Fong Department

More information

Kodewerk. Java Performance Services. The War on Latency. Reducing Dead Time Kirk Pepperdine Principle Kodewerk Ltd.

Kodewerk. Java Performance Services. The War on Latency. Reducing Dead Time Kirk Pepperdine Principle Kodewerk Ltd. Kodewerk tm Java Performance Services The War on Latency Reducing Dead Time Kirk Pepperdine Principle Kodewerk Ltd. Me Work as a performance tuning freelancer Nominated Sun Java Champion www.kodewerk.com

More information

How s the Parallel Computing Revolution Going? Towards Parallel, Scalable VM Services

How s the Parallel Computing Revolution Going? Towards Parallel, Scalable VM Services How s the Parallel Computing Revolution Going? Towards Parallel, Scalable VM Services Kathryn S McKinley The University of Texas at Austin Kathryn McKinley Towards Parallel, Scalable VM Services 1 20 th

More information

Experiences with Multi-threading and Dynamic Class Loading in a Java Just-In-Time Compiler

Experiences with Multi-threading and Dynamic Class Loading in a Java Just-In-Time Compiler , Compilation Technology Experiences with Multi-threading and Dynamic Class Loading in a Java Just-In-Time Compiler Daryl Maier, Pramod Ramarao, Mark Stoodley, Vijay Sundaresan TestaRossa JIT compiler

More information

Do Your GC Logs Speak To You

Do Your GC Logs Speak To You Do Your GC Logs Speak To You Visualizing CMS, the (mostly) Concurrent Collector Copyright 2012 Kodewerk Ltd. All rights reserved About Me Consultant (www.kodewerk.com) performance tuning and training seminar

More information

Contaminated Garbage Collection

Contaminated Garbage Collection Washington University in St. Louis Washington University Open Scholarship All Computer Science and Engineering Research Computer Science and Engineering Report Number: WUCSE-2003-40 2003-04-15 Contaminated

More information

A High Integrity Distributed Deterministic Java Environment. WORDS 2002 January 7, San Diego CA

A High Integrity Distributed Deterministic Java Environment. WORDS 2002 January 7, San Diego CA A High Integrity Distributed Deterministic Java Environment WORDS 2002 January 7, San Diego CA João Ventura Skysoft Portugal SA Fridtjof Siebert & Andy Walter aicas GmbH James Hunt Forschungszentrum Informatik

More information

Exploiting Prolific Types for Memory Management and Optimizations

Exploiting Prolific Types for Memory Management and Optimizations Exploiting Prolific Types for Memory Management and Optimizations Yefim Shuf Manish Gupta Rajesh Bordawekar Jaswinder Pal Singh IBM T. J. Watson Research Center Computer Science Department P. O. Box 218

More information

Accurate Garbage Collection in Uncooperative Environments with Lazy Pointer Stacks

Accurate Garbage Collection in Uncooperative Environments with Lazy Pointer Stacks Accurate Garbage Collection in Uncooperative Environments with Lazy Pointer Stacks Jason Baker, Antonio Cunei, Filip Pizlo, and Jan Vitek Computer Science Department Purdue University West Lafayette, IN

More information

Using Prefetching to Improve Reference-Counting Garbage Collectors

Using Prefetching to Improve Reference-Counting Garbage Collectors Using Prefetching to Improve Reference-Counting Garbage Collectors Harel Paz 1 and Erez Petrank 2 1 IBM Haifa Research Laboratory, Mount Carmel, Haifa 31905, ISRAEL. 2 Microsoft Research, One Microsoft

More information

Scheduling Hard Real-time Garbage Collection

Scheduling Hard Real-time Garbage Collection Scheduling Hard Real-time Garbage Collection Tomas Kalibera, Filip Pizlo, Antony L. Hosking, Jan Vitek Purdue University Abstract Managed languages such as Java and C# are increasingly being considered

More information

MicroPhase: An Approach to Proactively Invoking Garbage Collection for Improved Performance

MicroPhase: An Approach to Proactively Invoking Garbage Collection for Improved Performance MicroPhase: An Approach to Proactively Invoking Garbage Collection for Improved Performance Feng Xian, Witawas Srisa-an, and Hong Jiang Department of Computer Science & Engineering University of Nebraska-Lincoln

More information

Understanding Parallelism-Inhibiting Dependences in Sequential Java

Understanding Parallelism-Inhibiting Dependences in Sequential Java Understanding Parallelism-Inhibiting Dependences in Sequential Java Programs Atanas(Nasko) Rountev Kevin Van Valkenburgh Dacong Yan P. Sadayappan Ohio State University Overview and Motivation Multi-core

More information

Heap Defragmentation in Bounded Time

Heap Defragmentation in Bounded Time Washington University in St. Louis Washington University Open Scholarship All Computer Science and Engineering Research Computer Science and Engineering Report Number: WUCSE-2004-58 2004-10-07 Heap Defragmentation

More information

Eliminating Exception Constraints of Java Programs for IA-64

Eliminating Exception Constraints of Java Programs for IA-64 Eliminating Exception Constraints of Java Programs for IA-64 Kazuaki Ishizaki, Tatsushi Inagaki, Hideaki Komatsu,Toshio Nakatani IBM Research, Tokyo Research

More information

Using Prefetching to Improve Reference-Counting Garbage Collectors

Using Prefetching to Improve Reference-Counting Garbage Collectors Using Prefetching to Improve Reference-Counting Garbage Collectors Harel Paz 1, and Erez Petrank 2, 1 IBM Haifa Research Laboratory, Mount Carmel, Haifa 31905, Israel paz@il.ibm.com 2 Microsoft Research,

More information

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters. Hiroshi Inoue and Toshio Nakatani IBM Research - Tokyo

Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters. Hiroshi Inoue and Toshio Nakatani IBM Research - Tokyo Identifying the Sources of Cache Misses in Java Programs Without Relying on Hardware Counters Hiroshi Inoue and Toshio Nakatani IBM Research - Tokyo June 15, 2012 ISMM 2012 at Beijing, China Motivation

More information

Hard Real-Time Garbage Collection in the Jamaica Virtual Machine

Hard Real-Time Garbage Collection in the Jamaica Virtual Machine Hard Real-Time Garbage Collection in the Jamaica Virtual Machine Fridtjof Siebert Jamaica Systems siebert@real-time-systems.de Abstract Java s automatic memory management is the main reason that prevents

More information

Phases in Branch Targets of Java Programs

Phases in Branch Targets of Java Programs Phases in Branch Targets of Java Programs Technical Report CU-CS-983-04 ABSTRACT Matthias Hauswirth Computer Science University of Colorado Boulder, CO 80309 hauswirt@cs.colorado.edu Recent work on phase

More information

Replicating Real-Time Garbage Collector

Replicating Real-Time Garbage Collector Replicating Real-Time Garbage Collector Tomas Kalibera Purdue University, West Lafayette, IN 47907, USA; Charles University, Prague, 147 00, Czech Republic SUMMARY Real-time Java is becoming a viable platform

More information

CS842: Automatic Memory Management and Garbage Collection. Mark and sweep

CS842: Automatic Memory Management and Garbage Collection. Mark and sweep CS842: Automatic Memory Management and Garbage Collection Mark and sweep 1 Schedule M W Sept 14 Intro/Background Basics/ideas Sept 21 Allocation/layout GGGGC Sept 28 Mark/Sweep Mark/Sweep cto 5 Copying

More information

Chip-Multithreading Systems Need A New Operating Systems Scheduler

Chip-Multithreading Systems Need A New Operating Systems Scheduler Chip-Multithreading Systems Need A New Operating Systems Scheduler Alexandra Fedorova Christopher Small Daniel Nussbaum Margo Seltzer Harvard University, Sun Microsystems Sun Microsystems Sun Microsystems

More information

Jazz: A Tool for Demand-Driven Structural Testing

Jazz: A Tool for Demand-Driven Structural Testing Jazz: A Tool for Demand-Driven Structural Testing J. Misurda, J. A. Clause, J. L. Reed, P. Gandra, B. R. Childers, and M. L. Soffa Department of Computer Science University of Pittsburgh Pittsburgh, Pennsylvania

More information

Ulterior Reference Counting: Fast Garbage Collection without a Long Wait

Ulterior Reference Counting: Fast Garbage Collection without a Long Wait Ulterior Reference Counting: Fast Garbage Collection without a Long Wait ABSTRACT Stephen M Blackburn Department of Computer Science Australian National University Canberra, ACT, 000, Australia Steve.Blackburn@anu.edu.au

More information

The VMKit project: Java (and.net) on top of LLVM

The VMKit project: Java (and.net) on top of LLVM The VMKit project: Java (and.net) on top of LLVM Nicolas Geoffray Université Pierre et Marie Curie, France nicolas.geoffray@lip6.fr What is VMKit? Glue between existing VM components LLVM, GNU Classpath,

More information

Heap Compression for Memory-Constrained Java

Heap Compression for Memory-Constrained Java Heap Compression for Memory-Constrained Java CSE Department, PSU G. Chen M. Kandemir N. Vijaykrishnan M. J. Irwin Sun Microsystems B. Mathiske M. Wolczko OOPSLA 03 October 26-30 2003 Overview PROBLEM:

More information

An Experimental Study of Rapidly Alternating Bottleneck in n-tier Applications

An Experimental Study of Rapidly Alternating Bottleneck in n-tier Applications An Experimental Study of Rapidly Alternating Bottleneck in n-tier Applications Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Deepal Jayasinghe, Toshihiro Shimizu, Masazumi Matsubara, Motoyuki Kawaba, Calton

More information

Reducing the Overhead of Dynamic Compilation

Reducing the Overhead of Dynamic Compilation Reducing the Overhead of Dynamic Compilation Chandra Krintz y David Grove z Derek Lieber z Vivek Sarkar z Brad Calder y y Department of Computer Science and Engineering, University of California, San Diego

More information

Vertical Profiling: Understanding the Behavior of Object-Oriented Applications

Vertical Profiling: Understanding the Behavior of Object-Oriented Applications Vertical Profiling: Understanding the Behavior of Object-Oriented Applications Matthias Hauswirth, Amer Diwan University of Colorado at Boulder Peter F. Sweeney, Michael Hind IBM Thomas J. Watson Research

More information

Automatic Object Colocation Based on Read Barriers

Automatic Object Colocation Based on Read Barriers See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221644818 Automatic Object Colocation Based on Read Barriers Conference Paper September 2006

More information

Dynamic Profiling & Comparison of Sun Microsystems JDK1.3.1 versus the Kaffe VM APIs

Dynamic Profiling & Comparison of Sun Microsystems JDK1.3.1 versus the Kaffe VM APIs Dynamic Profiling & Comparison of Sun Microsystems JDK1.3.1 versus the VM APIs Author: Anthony Sartini Computer Engineering, Trinity College, Dublin 2, Ireland Supervisor: John Waldron Department of Computer

More information

DNWSH - Version: 2.3..NET Performance and Debugging Workshop

DNWSH - Version: 2.3..NET Performance and Debugging Workshop DNWSH - Version: 2.3.NET Performance and Debugging Workshop .NET Performance and Debugging Workshop DNWSH - Version: 2.3 8 days Course Description: The.NET Performance and Debugging Workshop is a practical

More information

Efficient Object Placement including Node Selection in a Distributed Virtual Machine

Efficient Object Placement including Node Selection in a Distributed Virtual Machine John von Neumann Institute for Computing Efficient Object Placement including Node Selection in a Distributed Virtual Machine Jose M. Velasco, David Atienza, Katzalin Olcoz, Francisco Tirado published

More information

Reducing the Overhead of Dynamic Compilation

Reducing the Overhead of Dynamic Compilation Reducing the Overhead of Dynamic Compilation Chandra Krintz David Grove Derek Lieber Vivek Sarkar Brad Calder Department of Computer Science and Engineering, University of California, San Diego IBM T.

More information

Dynamic SimpleScalar: Simulating Java Virtual Machines

Dynamic SimpleScalar: Simulating Java Virtual Machines Dynamic SimpleScalar: Simulating Java Virtual Machines Xianglong Huang J. Eliot B. Moss Kathryn S. McKinley Steve Blackburn Doug Burger Department of Computer Sciences Department of Computer Science Department

More information

Go GC: Prioritizing Low Latency and Simplicity

Go GC: Prioritizing Low Latency and Simplicity Go GC: Prioritizing Low Latency and Simplicity Rick Hudson Google Engineer QCon San Francisco Nov 16, 2015 My Codefendants: The Cambridge Runtime Gang https://upload.wikimedia.org/wikipedia/commons/thumb/2/2f/sato_tadanobu_with_a_goban.jpeg/500px-sato_tadanobu_with_a_goban.jpeg

More information

Java Performance Evaluation through Rigorous Replay Compilation

Java Performance Evaluation through Rigorous Replay Compilation Java Performance Evaluation through Rigorous Replay Compilation Andy Georges Lieven Eeckhout Dries Buytaert Department Electronics and Information Systems, Ghent University, Belgium {ageorges,leeckhou}@elis.ugent.be,

More information

Garbage-First Garbage Collection

Garbage-First Garbage Collection Garbage-First Garbage Collection David Detlefs, Christine Flood, Steve Heller, Tony Printezis Sun Microsystems, Inc. 1 Network Drive, Burlington, MA 01803, USA {david.detlefs, christine.flood, steve.heller,

More information

SUB SUB+BI SUB+BI+AR TINY. nucleic. genlex kb. Ocaml benchmark. (a) Pentium 4 Mispredicted Taken Branches. genlex. nucleic.

SUB SUB+BI SUB+BI+AR TINY. nucleic. genlex kb. Ocaml benchmark. (a) Pentium 4 Mispredicted Taken Branches. genlex. nucleic. 5.2. INTERPRETING THE DATA 69 +BI +BI+AR TINY MPT relative to Direct boyer fft fib genlex kb nucleic quicksort sieve Ocaml benchmark soli takc taku geomean (a) Pentium 4 Mispredicted Taken Branches LR/CTR

More information

Shenandoah: An ultra-low pause time garbage collector for OpenJDK. Christine Flood Roman Kennke Principal Software Engineers Red Hat

Shenandoah: An ultra-low pause time garbage collector for OpenJDK. Christine Flood Roman Kennke Principal Software Engineers Red Hat Shenandoah: An ultra-low pause time garbage collector for OpenJDK Christine Flood Roman Kennke Principal Software Engineers Red Hat 1 Shenandoah Why do we need it? What does it do? How does it work? What's

More information

Lecture 15 Advanced Garbage Collection

Lecture 15 Advanced Garbage Collection Lecture 15 Advanced Garbage Collection I. Break Up GC in Time (Incremental) II. Break Up GC in Space (Partial) Readings: Ch. 7.6.4-7.7.4 CS243: Advanced Garbage Collection 1 Trace-Based GC: Memory Life-Cycle

More information

Understanding Application Hiccups

Understanding Application Hiccups Understanding Application Hiccups and what you can do about them An introduction to the Open Source jhiccup tool Gil Tene, CTO & co-founder, Azul Systems About me: Gil Tene co-founder, CTO @Azul Systems

More information

Hardware-Supported Pointer Detection for common Garbage Collections

Hardware-Supported Pointer Detection for common Garbage Collections 2013 First International Symposium on Computing and Networking Hardware-Supported Pointer Detection for common Garbage Collections Kei IDEUE, Yuki SATOMI, Tomoaki TSUMURA and Hiroshi MATSUO Nagoya Institute

More information

JAVA PERFORMANCE. PR SW2 S18 Dr. Prähofer DI Leopoldseder

JAVA PERFORMANCE. PR SW2 S18 Dr. Prähofer DI Leopoldseder JAVA PERFORMANCE PR SW2 S18 Dr. Prähofer DI Leopoldseder OUTLINE 1. What is performance? 1. Benchmarking 2. What is Java performance? 1. Interpreter vs JIT 3. Tools to measure performance 4. Memory Performance

More information

Reference Analyses. VTA - Variable Type Analysis

Reference Analyses. VTA - Variable Type Analysis Reference Analyses Variable Type Analysis for Java Related points-to analyses for C Steengaard Andersen Field-sensitive points-to for Java Object-sensitive points-to for Java Other analysis approaches

More information

Memory Management 3/29/14 21:38

Memory Management 3/29/14 21:38 Presentation for use with the textbook Data Structures and Algorithms in Java, 6 th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014 Memory Management Diagram of a 4 4 plane of

More information

Static Java Program Features for Intelligent Squash Prediction

Static Java Program Features for Intelligent Squash Prediction Static Java Program Features for Intelligent Squash Prediction Jeremy Singer,, Adam Pocock, Mikel Lujan, Gavin Brown, Nikolas Ioannou, Marcelo Cintra Thread-level Speculation... Aim to use parallel multi-core

More information

Estimating the Impact of Heap Liveness Information on Space Consumption in Java

Estimating the Impact of Heap Liveness Information on Space Consumption in Java Estimating the Impact of Heap Liveness Information on Space Consumption in Java by R. Shaham, E. Kolodner and M. Sagiv first presented at ISSM'02 presentation: Adrian Moos Contents what is this about?

More information

Java Performance Tuning and Optimization Student Guide

Java Performance Tuning and Optimization Student Guide Java Performance Tuning and Optimization Student Guide D69518GC10 Edition 1.0 June 2011 D73450 Disclaimer This document contains proprietary information and is protected by copyright and other intellectual

More information

CS577 Modern Language Processors. Spring 2018 Lecture Garbage Collection

CS577 Modern Language Processors. Spring 2018 Lecture Garbage Collection CS577 Modern Language Processors Spring 2018 Lecture Garbage Collection 1 BASIC GARBAGE COLLECTION Garbage Collection (GC) is the automatic reclamation of heap records that will never again be accessed

More information

Reducing Generational Copy Reserve Overhead with Fallback Compaction

Reducing Generational Copy Reserve Overhead with Fallback Compaction Reducing Generational Copy Reserve Overhead with Fallback Compaction Phil McGachey Antony L. Hosking Department of Computer Sciences Purdue University West Lafayette, IN 4797, USA phil@cs.purdue.edu hosking@cs.purdue.edu

More information

Reducing Pause Time of Conservative Collectors

Reducing Pause Time of Conservative Collectors Reducing Pause Time of Conservative Collectors Toshio Endo National Institute of Informatics 2-1-2 Hitotsubashi Chiyoda-ku Tokyo 11-843, Japan endo@nii.ac.jp Kenjiro Taura Graduate School of Information

More information

CS229 Project: TLS, using Learning to Speculate

CS229 Project: TLS, using Learning to Speculate CS229 Project: TLS, using Learning to Speculate Jiwon Seo Dept. of Electrical Engineering jiwon@stanford.edu Sang Kyun Kim Dept. of Electrical Engineering skkim38@stanford.edu ABSTRACT We apply machine

More information

MEMORY MANAGEMENT HEAP, STACK AND GARBAGE COLLECTION

MEMORY MANAGEMENT HEAP, STACK AND GARBAGE COLLECTION MEMORY MANAGEMENT HEAP, STACK AND GARBAGE COLLECTION 2 1. What is the Heap Size: 2 2. What is Garbage Collection: 3 3. How are Java objects stored in memory? 3 4. What is the difference between stack and

More information

A Side-channel Attack on HotSpot Heap Management. Xiaofeng Wu, Kun Suo, Yong Zhao, Jia Rao The University of Texas at Arlington

A Side-channel Attack on HotSpot Heap Management. Xiaofeng Wu, Kun Suo, Yong Zhao, Jia Rao The University of Texas at Arlington A Side-channel Attack on HotSpot Heap Management Xiaofeng Wu, Kun Suo, Yong Zhao, Jia Rao The University of Texas at Arlington HotCloud 18 July 9, 2018 1 Side-Channel Attack Attack based on information

More information

Garbage Collection. Weiyuan Li

Garbage Collection. Weiyuan Li Garbage Collection Weiyuan Li Why GC exactly? - Laziness - Performance - free is not free - combats memory fragmentation - More flame wars Basic concepts - Type Safety - Safe: ML, Java (not really) - Unsafe:

More information

Lecture Notes on Advanced Garbage Collection

Lecture Notes on Advanced Garbage Collection Lecture Notes on Advanced Garbage Collection 15-411: Compiler Design André Platzer Lecture 21 November 4, 2010 1 Introduction More information on garbage collection can be found in [App98, Ch 13.5-13.7]

More information

Garbage Collection. CS 351: Systems Programming Michael Saelee

Garbage Collection. CS 351: Systems Programming Michael Saelee Garbage Collection CS 351: Systems Programming Michael Saelee = automatic deallocation i.e., malloc, but no free! system must track status of allocated blocks free (and potentially reuse)

More information

Computer Languages, Systems & Structures

Computer Languages, Systems & Structures omputer Languages, Systems & Structures 38 (2012) 98 107 ontents lists available at SciVerse ScienceDirect omputer Languages, Systems & Structures journal homepage: www.elsevier.com/locate/cl yclic reference

More information

Parallel Memory Defragmentation on a GPU

Parallel Memory Defragmentation on a GPU Parallel Memory Defragmentation on a GPU Ronald Veldema, Michael Philippsen University of Erlangen-Nuremberg Germany Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Motivation Application

More information

Towards High Performance Processing in Modern Java-based Control Systems. Marek Misiowiec Wojciech Buczak, Mark Buttner CERN ICalepcs 2011

Towards High Performance Processing in Modern Java-based Control Systems. Marek Misiowiec Wojciech Buczak, Mark Buttner CERN ICalepcs 2011 Towards High Performance Processing in Modern Java-based Control Systems Marek Misiowiec Wojciech Buczak, Mark Buttner CERN ICalepcs 2011 Performance with soft real time Distributed system - Monitoring

More information