Lab 8 Phylogenetics I: creating and analysing a data matrix

Size: px
Start display at page:

Download "Lab 8 Phylogenetics I: creating and analysing a data matrix"

Transcription

1 G44 Geobiology Fall 23 Name Lab 8 Phylogenetics I: creating and analysing a data matrix For this lab and the next you will need to download and install the Mesquite and PHYLIP packages: Mesquite. Mesquite has tools for creating and modifying phylogenetic data matrices, as well as tools for displaying trees and doing certain kinds of analysis on phylogenetic data. It does not, however, do an exhaustive parsimony analysis. Mesquite s documentation can be found by opening the file documentation.html in your web browser. PHYLIP. PHYLIP (Phylogenetic Inference Package) has modules for estimating phylogenetic trees from data and for displaying the trees. We will use the Penny module, which calculates a parsimony tree from binary data, and the onsense module, which calculates a consensus tree (average) when more than one tree is found by Penny. PHYLIP s documentation can be found in the folder docs where you stored the PHYLIP package on your computer.. Tree lengths and the most parsimonious tree The objective of a parsimony analysis is to find the cladogram that has the most synapomorphies and the fewest homoplasies for a given data set. Parsimony, or Occam s razor, is the scientific principle that when there are competing hypotheses for a set of data, it is the one that makes the fewest assumptions that is preferred, all else being equal. In phylogenetic analysis the branching structure of the tree is the hypothesis and the characters are the data. The parsimony criterion assumes that a derived character state found in more than one taxon arose once from a common ancestor based on principles of evolution. Instances of homoplasy are assumptions that are to be avoided if necessary. Parsimony therefore looks for the tree that minimizes the number of homoplasies and maximizes the number of synapomorphies. To understand what this means, consider the following data set in which taxa,, and have one character whose plesiomorphic state is and whose apomorphic state is :

2 Three taxa can be related in four possible ways: If is the plesiomorphic state, it was found at the root of the tree. If we map our character onto these four trees we obtain the following: 2 changes (homoplasy) Tree length = 2.I. =.5 change (synapomorphy) Tree length =.I. =. 2 changes (homoplasy) Tree length = 2.I. =.5 2 changes (homoplasy) Tree length = 2.I. =.5 The second tree is preferred by the parsimony method because it requires only one evolutionary change and has no homoplasy. ll the other trees require at least two evolutionary changes and, thus, more assumptions that characters evolved separately instead of being inherited from their ancestor. Parsimony computer algorithms try all possible trees and find the one with the shortest tree length, which is also the one with most synapomorphies and the highest consistency index (I). n important aspect of parsimony is that many characters are used to calculate a tree, each of which provides one piece of evidence about relationships. Some combinations of characters are contradictory and require that the best tree have at least some homoplasy. onsider the following two-character data set: If we map these onto the four possible trees we get the following:,,,,,,,,,,,, Tree length = 3.I. =.67 Tree length = 3.I. =.67 Tree length = 4.I. =.5 Tree length = 4.I. =.5 The first two trees are equally parsimonious, each with one synapomorphy and one homoplasy. Parsimony considers both trees to be equally plausible given the data. We would need additional characters to resolve the relationships among these taxa. 2

3 2. Scoring characters For parsimony analysis, characters must be scored. Scoring includes two steps: () defining characters and their states; and (2) tabulating the state of each character for every taxon in the analysis. Scoring is one of the most critical steps in phylogeny reconstruction. It can be done well or it can be done badly. If it is done badly, then the outcome of the analysis will be bad: garbage in, garbage out. The key to successful scoring involves understanding the morphology. good character is one that evolves independently of others, can be recognized by scientists other than yourself, has genetic underpinnings (e.g., the feature is inherited and not the result of pathology or individual life history), and evolves at an appropriate rate (e.g., the character changes slowly enough so that it has changed a few times at most among the group of interest). Similarly the divisions between character states should be crisp enough that scoring is obvious for all the taxa in the analysis. Most of the scientific debate about the accuracy of a particular phylogenetic tree is about the character scoring. Here is an example of typical character definitions and scorings for them: (Polly, 996) ssignment: Using the data you collected in the first labs, write formal character and character state descriptions. Things to consider: identifying characters and dividing them into states can be very subjective because there is no right way to do it. For scientific rigor it is important to be as objective as possible. Normally one considers characters that other scientists have used (e.g., the presence and absence of temporal fenestra) but one also systematically examines the organism from tip to tail, so to speak, to look for new characters that vary between taxa. lso one should be excruciatingly honest in scoring the characters. If you can t see a feature, score it as absent even if you think it should be there (e.g., if you think an animal is an 3

4 archosaur but you can see no evidence of an anteorbital fenestra, score the fenestra as being absent perhaps the animal is not an archosaur after all). 3. Polarizing characters Scoring involves more then just description. haracters must be polarized, meaning the ancestral state of each character must be determined. The ancestral state is scored as and derived states are scored with a. If there is more than one derived states, then higher integers are used. ssignment: Use the outgroup method to polarize your characters. You may use the information learned in class about the ancestral state of characters among vertebrates for this task. 4. reating a data matrix in Mesquite ssignment: Use Mesquite to create a data file for your data dd a fourth taxon at the beginning of the matrix named Outgroup and give it a for each of the characters. To do this, start Mequite. From the File menu choose New. Specify the number of taxa and tick the box to make a character matrix. We are using standard categorical data (=discrete characters, =meristic characters). Note that you can give names to the characters if you want. Remember to save your file. Make a screen capture of your data matrix to turn in with this lab. 5. nalyzing the data matrix in PHYLIP ssignment: Use PHYLIP to find a parsimony tree for your data. To do this, export your data from Mesquite in PHYLIP format. While your data matrix is showing on the screen, choose Export from the File menu. hoose the Phylip (categorical data) option and accept the default values in the save window (taxon names = characters, end of line current system default). PHYLIP is a simple program and always reads data from a file named infile that is located in the PHYLIP folder. opy the file you exported from Mesquite to the PHYLIP folder named exe. If there is currently a file named infile then delete it. Rename your file as infile (remove the extension.phy). The Penny module does a parsimony analysis. Double click on the Penny icon to start the program. It should read your data file automatically if you have performed the above steps correctly. 4

5 The user interface of Penny in the PHYLIP package. PHYLIP is a simple program and you change settings by typing the letter or number in the left column. You can use the defaults, but it may be interesting to change item 4 and 5 so that the program reports the steps for each character (the number of changes in that character on the tree) and the states of at the nodes of the tree. Type Y to run the program after you have chosen your options. PHYLIP is a simple program and it sends its results to text files that are automatically saved in the exe folder. The main results are in a text file named outfile and the most parsimonious tree(s) is in the file named outtree. oth of these are text files and you can open them in Word or a text editing program. The outfile shows a text picture of the most parsimonious tree, reports the tree length in the line that begins requires a total of.. (the number is the number of steps on the tree, which is the tree length). If you chose options 4 and 5 you will also see the number of steps in each character and the states at each node on the tree (numbered using the same numbering system as in the picture of the tree). The outtree file contains the tree written using the parenthesis notation that was presented in lecture. This file can be displayed using the drawtree or drawgram modules of PHYLIP or in Mesquite. 6. Plotting trees in Mesquite ssignment: Plot the PHYLIP tree in Mesquite. To do this, copy the outtree file to another folder and rename it appropriately. dd the extension.tre. Using the Taxa&Tree menu, choose Import file with trees with the Include contents option. Select your file and open, choosing the Phylip (trees) option when 5

6 prompted. You can view the tree by clicking on View Trees in the Imported tree pane at the left of the main window. Make a screen capture of your tree to turn in with this lab. 6

Consider the character matrix shown in table 1. We assume that the investigator has conducted primary homology analysis such that:

Consider the character matrix shown in table 1. We assume that the investigator has conducted primary homology analysis such that: 1 Inferring trees from a data matrix onsider the character matrix shown in table 1. We assume that the investigator has conducted primary homology analysis such that: 1. the characters (columns) contain

More information

Basic Tree Building With PAUP

Basic Tree Building With PAUP Phylogenetic Tree Building Objectives 1. Understand the principles of phylogenetic thinking. 2. Be able to develop and test a phylogenetic hypothesis. 3. Be able to interpret a phylogenetic tree. Overview

More information

"PRINCIPLES OF PHYLOGENETICS" Spring Lab 1: Introduction to PHYLIP

PRINCIPLES OF PHYLOGENETICS Spring Lab 1: Introduction to PHYLIP Integrative Biology 200A University of California, Berkeley "PRINCIPLES OF PHYLOGENETICS" Spring 2008 Lab 1: Introduction to PHYLIP What s due at the end of lab, or next Tuesday in class: 1. Print out

More information

"PRINCIPLES OF PHYLOGENETICS" Spring 2008

PRINCIPLES OF PHYLOGENETICS Spring 2008 Integrative Biology 200A University of California, Berkeley "PRINCIPLES OF PHYLOGENETICS" Spring 2008 Lab 7: Introduction to PAUP* Today we will be learning about some of the basic features of PAUP* (Phylogenetic

More information

Molecular Evolution & Phylogenetics Complexity of the search space, distance matrix methods, maximum parsimony

Molecular Evolution & Phylogenetics Complexity of the search space, distance matrix methods, maximum parsimony Molecular Evolution & Phylogenetics Complexity of the search space, distance matrix methods, maximum parsimony Basic Bioinformatics Workshop, ILRI Addis Ababa, 12 December 2017 Learning Objectives understand

More information

Lab 06: Support Measures Bootstrap, Jackknife, and Bremer

Lab 06: Support Measures Bootstrap, Jackknife, and Bremer Integrative Biology 200, Spring 2014 Principles of Phylogenetics: Systematics University of California, Berkeley Updated by Traci L. Grzymala Lab 06: Support Measures Bootstrap, Jackknife, and Bremer So

More information

CAFCA. Chapter 2. Overview of Menus. M. Zandee 1989,1996 All Rights Reserved.

CAFCA. Chapter 2. Overview of Menus. M. Zandee 1989,1996 All Rights Reserved. CAFCA Chapter 2 Overview of Menus M. Zandee 1989,1996 All Rights Reserved. February 1996 CAFCA MAnual THIS PAGE INTENTIONALLY LEFT BLANK Page 2-2 Chapter 2 II. OVERVIEW OF MENUS OUTPUTFILE Output from

More information

Codon models. In reality we use codon model Amino acid substitution rates meet nucleotide models Codon(nucleotide triplet)

Codon models. In reality we use codon model Amino acid substitution rates meet nucleotide models Codon(nucleotide triplet) Phylogeny Codon models Last lecture: poor man s way of calculating dn/ds (Ka/Ks) Tabulate synonymous/non- synonymous substitutions Normalize by the possibilities Transform to genetic distance K JC or K

More information

PHYLIP. Joe Felsenstein. Depts. of Genome Sciences and of Biology, University of Washington. PHYLIP p.1/13

PHYLIP. Joe Felsenstein. Depts. of Genome Sciences and of Biology, University of Washington. PHYLIP p.1/13 PHYLIP p.1/13 PHYLIP Joe Felsenstein Depts. of Genome Sciences and of Biology, University of Washington PHYLIP p.2/13 Software for this lab This lab is intended to introduce the PHYLIP package and a number

More information

Evolutionary tree reconstruction (Chapter 10)

Evolutionary tree reconstruction (Chapter 10) Evolutionary tree reconstruction (Chapter 10) Early Evolutionary Studies Anatomical features were the dominant criteria used to derive evolutionary relationships between species since Darwin till early

More information

The worst case complexity of Maximum Parsimony

The worst case complexity of Maximum Parsimony he worst case complexity of Maximum Parsimony mir armel Noa Musa-Lempel Dekel sur Michal Ziv-Ukelson Ben-urion University June 2, 20 / 2 What s a phylogeny Phylogenies: raph-like structures whose topology

More information

Ecomorphology in Anoles

Ecomorphology in Anoles Ecomorphology in Anoles Background Anoles are a diverse group of lizards found in the Caribbean and Central and South America. There are about 400 species of anoles, usually all placed in the same genus

More information

Lab 07: Maximum Likelihood Model Selection and RAxML Using CIPRES

Lab 07: Maximum Likelihood Model Selection and RAxML Using CIPRES Integrative Biology 200, Spring 2014 Principles of Phylogenetics: Systematics University of California, Berkeley Updated by Traci L. Grzymala Lab 07: Maximum Likelihood Model Selection and RAxML Using

More information

Lab 1: Introduction to Mesquite

Lab 1: Introduction to Mesquite Integrative Biology 200B University of California, Berkeley Principles of Phylogenetics: Systematics Spring 2011 Updated by Nick Matzke (before and after lab, 1/27/11) Lab 1: Introduction to Mesquite Today

More information

Distance Methods. "PRINCIPLES OF PHYLOGENETICS" Spring 2006

Distance Methods. PRINCIPLES OF PHYLOGENETICS Spring 2006 Integrative Biology 200A University of California, Berkeley "PRINCIPLES OF PHYLOGENETICS" Spring 2006 Distance Methods Due at the end of class: - Distance matrices and trees for two different distance

More information

Parsimony-Based Approaches to Inferring Phylogenetic Trees

Parsimony-Based Approaches to Inferring Phylogenetic Trees Parsimony-Based Approaches to Inferring Phylogenetic Trees BMI/CS 576 www.biostat.wisc.edu/bmi576.html Mark Craven craven@biostat.wisc.edu Fall 0 Phylogenetic tree approaches! three general types! distance:

More information

Lab 12: The What the Hell Do I Do with All These Trees Lab

Lab 12: The What the Hell Do I Do with All These Trees Lab Integrative Biology 200A University of California, Berkeley Principals of Phylogenetics Spring 2010 Updated by Nick Matzke Lab 12: The What the Hell Do I Do with All These Trees Lab We ve generated a lot

More information

Parsimony methods. Chapter 1

Parsimony methods. Chapter 1 Chapter 1 Parsimony methods Parsimony methods are the easiest ones to explain, and were also among the first methods for inferring phylogenies. The issues that they raise also involve many of the phenomena

More information

CSE 549: Computational Biology

CSE 549: Computational Biology CSE 549: Computational Biology Phylogenomics 1 slides marked with * by Carl Kingsford Tree of Life 2 * H5N1 Influenza Strains Salzberg, Kingsford, et al., 2007 3 * H5N1 Influenza Strains The 2007 outbreak

More information

Phylogenetics on CUDA (Parallel) Architectures Bradly Alicea

Phylogenetics on CUDA (Parallel) Architectures Bradly Alicea Descent w/modification Descent w/modification Descent w/modification Descent w/modification CPU Descent w/modification Descent w/modification Phylogenetics on CUDA (Parallel) Architectures Bradly Alicea

More information

10kTrees - Exercise #2. Viewing Trees Downloaded from 10kTrees: FigTree, R, and Mesquite

10kTrees - Exercise #2. Viewing Trees Downloaded from 10kTrees: FigTree, R, and Mesquite 10kTrees - Exercise #2 Viewing Trees Downloaded from 10kTrees: FigTree, R, and Mesquite The goal of this worked exercise is to view trees downloaded from 10kTrees, including tree blocks. You may wish to

More information

Lecture 20: Clustering and Evolution

Lecture 20: Clustering and Evolution Lecture 20: Clustering and Evolution Study Chapter 10.4 10.8 11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 1 Clique Graphs A clique is a graph where every vertex is connected via an edge to every other

More information

Phylogenetics. Introduction to Bioinformatics Dortmund, Lectures: Sven Rahmann. Exercises: Udo Feldkamp, Michael Wurst

Phylogenetics. Introduction to Bioinformatics Dortmund, Lectures: Sven Rahmann. Exercises: Udo Feldkamp, Michael Wurst Phylogenetics Introduction to Bioinformatics Dortmund, 16.-20.07.2007 Lectures: Sven Rahmann Exercises: Udo Feldkamp, Michael Wurst 1 Phylogenetics phylum = tree phylogenetics: reconstruction of evolutionary

More information

Terminology. A phylogeny is the evolutionary history of an organism

Terminology. A phylogeny is the evolutionary history of an organism Phylogeny Terminology A phylogeny is the evolutionary history of an organism A taxon (plural: taxa) is a group of (one or more) organisms, which a taxonomist adjudges to be a unit. A definition? from Wikipedia

More information

Genetics/MBT 541 Spring, 2002 Lecture 1 Joe Felsenstein Department of Genome Sciences Phylogeny methods, part 1 (Parsimony and such)

Genetics/MBT 541 Spring, 2002 Lecture 1 Joe Felsenstein Department of Genome Sciences Phylogeny methods, part 1 (Parsimony and such) Genetics/MBT 541 Spring, 2002 Lecture 1 Joe Felsenstein Department of Genome Sciences joe@gs Phylogeny methods, part 1 (Parsimony and such) Methods of reconstructing phylogenies (evolutionary trees) Parsimony

More information

Lecture 20: Clustering and Evolution

Lecture 20: Clustering and Evolution Lecture 20: Clustering and Evolution Study Chapter 10.4 10.8 11/12/2013 Comp 465 Fall 2013 1 Clique Graphs A clique is a graph where every vertex is connected via an edge to every other vertex A clique

More information

The History Bound and ILP

The History Bound and ILP The History Bound and ILP Julia Matsieva and Dan Gusfield UC Davis March 15, 2017 Bad News for Tree Huggers More Bad News Far more convincingly even than the (also highly convincing) fossil evidence, the

More information

ML phylogenetic inference and GARLI. Derrick Zwickl. University of Arizona (and University of Kansas) Workshop on Molecular Evolution 2015

ML phylogenetic inference and GARLI. Derrick Zwickl. University of Arizona (and University of Kansas) Workshop on Molecular Evolution 2015 ML phylogenetic inference and GARLI Derrick Zwickl University of Arizona (and University of Kansas) Workshop on Molecular Evolution 2015 Outline Heuristics and tree searches ML phylogeny inference and

More information

Introduction to Computational Phylogenetics

Introduction to Computational Phylogenetics Introduction to Computational Phylogenetics Tandy Warnow The University of Texas at Austin No Institute Given This textbook is a draft, and should not be distributed. Much of what is in this textbook appeared

More information

HORIZONTAL GENE TRANSFER DETECTION

HORIZONTAL GENE TRANSFER DETECTION HORIZONTAL GENE TRANSFER DETECTION Sequenzanalyse und Genomik (Modul 10-202-2207) Alejandro Nabor Lozada-Chávez Before start, the user must create a new folder or directory (WORKING DIRECTORY) for all

More information

Lab 13: The What the Hell Do I Do with All These Trees Lab

Lab 13: The What the Hell Do I Do with All These Trees Lab Integrative Biology 200A University of California, Berkeley Principals of Phylogenetics Spring 2012 Updated by Michael Landis Lab 13: The What the Hell Do I Do with All These Trees Lab We ve generated

More information

Parsimony Least squares Minimum evolution Balanced minimum evolution Maximum likelihood (later in the course)

Parsimony Least squares Minimum evolution Balanced minimum evolution Maximum likelihood (later in the course) Tree Searching We ve discussed how we rank trees Parsimony Least squares Minimum evolution alanced minimum evolution Maximum likelihood (later in the course) So we have ways of deciding what a good tree

More information

CISC 636 Computational Biology & Bioinformatics (Fall 2016) Phylogenetic Trees (I)

CISC 636 Computational Biology & Bioinformatics (Fall 2016) Phylogenetic Trees (I) CISC 636 Computational iology & ioinformatics (Fall 2016) Phylogenetic Trees (I) Maximum Parsimony CISC636, F16, Lec13, Liao 1 Evolution Mutation, selection, Only the Fittest Survive. Speciation. t one

More information

Protein phylogenetics

Protein phylogenetics Protein phylogenetics Robert Hirt PAUP4.0* can be used for an impressive range of analytical methods involving DNA alignments. This, unfortunately is not the case for estimating protein phylogenies. Only

More information

Fast Hashing Algorithms to Summarize Large. Collections of Evolutionary Trees

Fast Hashing Algorithms to Summarize Large. Collections of Evolutionary Trees Texas A&M CS Technical Report 2008-6- June 27, 2008 Fast Hashing Algorithms to Summarize Large Collections of Evolutionary Trees by Seung-Jin Sul and Tiffani L. Williams Department of Computer Science

More information

Systematics - Bio 615

Systematics - Bio 615 The 10 Willis (The commandments as given by Willi Hennig after coming down from the Mountain) 1. Thou shalt not paraphyle. 2. Thou shalt not weight. 3. Thou shalt not publish unresolved nodes. 4. Thou

More information

ALTree: Association and Localisation tests using haplotype phylogenetic Trees. Claire Bardel, Vincent Danjean, Pierre Darlu and Emmanuelle Génin

ALTree: Association and Localisation tests using haplotype phylogenetic Trees. Claire Bardel, Vincent Danjean, Pierre Darlu and Emmanuelle Génin ALTree: Association and Localisation tests using haplotype phylogenetic Trees Claire Bardel, Vincent Danjean, Pierre Darlu and Emmanuelle Génin March 17, 2006 Contents 1 Overview of the software 3 1.1

More information

What is a phylogenetic tree? Algorithms for Computational Biology. Phylogenetics Summary. Di erent types of phylogenetic trees

What is a phylogenetic tree? Algorithms for Computational Biology. Phylogenetics Summary. Di erent types of phylogenetic trees What is a phylogenetic tree? Algorithms for Computational Biology Zsuzsanna Lipták speciation events Masters in Molecular and Medical Biotechnology a.a. 25/6, fall term Phylogenetics Summary wolf cat lion

More information

TIGER Manual. Tree Independent Generation of Evolutionary Rates. Carla A. Cummins and James O. McInerney

TIGER Manual. Tree Independent Generation of Evolutionary Rates. Carla A. Cummins and James O. McInerney TIGER Manual Tree Independent Generation of Evolutionary Rates Carla A. Cummins and James O. McInerney Table of Contents Introduction... 3 System Requirements... 4 Installation... 4 Unix (Mac & Linux)...

More information

ALTree: Association and Localisation tests using haplotype phylogenetic Trees

ALTree: Association and Localisation tests using haplotype phylogenetic Trees ALTree: Association and Localisation tests using haplotype phylogenetic Trees Claire Bardel, Vincent Danjean, Pierre Darlu and Emmanuelle Génin Version 1.1.0 Contents 1 Introduction 3 1.1 What s new?.....................................

More information

DIVA 1.1 User s Manual

DIVA 1.1 User s Manual Page 1 of 21 Swedish English Uppsala University Home Research Information Staff DIVA 1.1 User s Manual 5 November, 1996 Fredrik Ronquist, Dep. Systematic Zoology, Evolutionary Biology Centre, Uppsala University,

More information

UNIVERSITY OF CALIFORNIA. Santa Barbara. Testing Trait Evolution Models on Phylogenetic Trees. A Thesis submitted in partial satisfaction of the

UNIVERSITY OF CALIFORNIA. Santa Barbara. Testing Trait Evolution Models on Phylogenetic Trees. A Thesis submitted in partial satisfaction of the Lee 1 UNIVERSITY OF CALIFORNIA Santa Barbara Testing Trait Evolution Models on Phylogenetic Trees A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Computer

More information

human chimp mouse rat

human chimp mouse rat Michael rudno These notes are based on earlier notes by Tomas abak Phylogenetic Trees Phylogenetic Trees demonstrate the amoun of evolution, and order of divergence for several genomes. Phylogenetic trees

More information

Dinosaur Problem: Hints and an Example Tree

Dinosaur Problem: Hints and an Example Tree Dinosaur Problem: Hints and an Example Tree If you are having difficulty with the dinosaur practice problem, read through these pages, especially the example tree we filled out. Step #5: Determine which

More information

EVOLUTIONARY DISTANCES INFERRING PHYLOGENIES

EVOLUTIONARY DISTANCES INFERRING PHYLOGENIES EVOLUTIONARY DISTANCES INFERRING PHYLOGENIES Luca Bortolussi 1 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste luca@dmi.units.it Trieste, 28 th November 2007 OUTLINE 1 INFERRING

More information

A. Using the data provided above, calculate the sampling variance and standard error for S for each week s data.

A. Using the data provided above, calculate the sampling variance and standard error for S for each week s data. WILD 502 Lab 1 Estimating Survival when Animal Fates are Known Today s lab will give you hands-on experience with estimating survival rates using logistic regression to estimate the parameters in a variety

More information

Sequence clustering. Introduction. Clustering basics. Hierarchical clustering

Sequence clustering. Introduction. Clustering basics. Hierarchical clustering Sequence clustering Introduction Data clustering is one of the key tools used in various incarnations of data-mining - trying to make sense of large datasets. It is, thus, natural to ask whether clustering

More information

11/17/2009 Comp 590/Comp Fall

11/17/2009 Comp 590/Comp Fall Lecture 20: Clustering and Evolution Study Chapter 10.4 10.8 Problem Set #5 will be available tonight 11/17/2009 Comp 590/Comp 790-90 Fall 2009 1 Clique Graphs A clique is a graph with every vertex connected

More information

Evolutionary Trees. Fredrik Ronquist. August 29, 2005

Evolutionary Trees. Fredrik Ronquist. August 29, 2005 Evolutionary Trees Fredrik Ronquist August 29, 2005 1 Evolutionary Trees Tree is an important concept in Graph Theory, Computer Science, Evolutionary Biology, and many other areas. In evolutionary biology,

More information

Definitions. Matt Mauldin

Definitions. Matt Mauldin Combining Data Sets Matt Mauldin Definitions Character Independence: changes in character states are independent of others Character Correlation: changes in character states occur together Character Congruence:

More information

PALEONTOLOGY ANALYSIS LOG (PAL) USER S MANUAL

PALEONTOLOGY ANALYSIS LOG (PAL) USER S MANUAL PALEONTOLOGY ANALYSIS LOG (PAL) USER S MANUAL Delivered Leg 187 Table of Contents Introduction...................................................... 1 Document Layout..................................................

More information

CS/NEUR125 Brains, Minds, and Machines. Due: Wednesday, March 8

CS/NEUR125 Brains, Minds, and Machines. Due: Wednesday, March 8 CS/NEUR125 Brains, Minds, and Machines Lab 6: Inferring Location from Hippocampal Place Cells Due: Wednesday, March 8 This lab explores how place cells in the hippocampus encode the location of an animal

More information

4/4/16 Comp 555 Spring

4/4/16 Comp 555 Spring 4/4/16 Comp 555 Spring 2016 1 A clique is a graph where every vertex is connected via an edge to every other vertex A clique graph is a graph where each connected component is a clique The concept of clustering

More information

Olivier Gascuel Arbres formels et Arbre de la Vie Conférence ENS Cachan, septembre Arbres formels et Arbre de la Vie.

Olivier Gascuel Arbres formels et Arbre de la Vie Conférence ENS Cachan, septembre Arbres formels et Arbre de la Vie. Arbres formels et Arbre de la Vie Olivier Gascuel Centre National de la Recherche Scientifique LIRMM, Montpellier, France www.lirmm.fr/gascuel 10 permanent researchers 2 technical staff 3 postdocs, 10

More information

Conservation genetics

Conservation genetics Conservation genetics Franky ossuyt Conservation genetics Franky ossuyt im To be able to evaluate evolutionary history as one of the parameters that can be used to estimate the value of fauna and flora

More information

PAUP tutorial - Macintosh

PAUP tutorial - Macintosh 1 PAUP tutorial - Macintosh The following tutorial is based on the tutorial provided with the PAUP package (but modified to emphasise morphological analysis, and updated to refer to the current command-line

More information

Biology 559R: Introduction to Phylogenetic Comparative Methods

Biology 559R: Introduction to Phylogenetic Comparative Methods Biology 559R: Introduction to Phylogenetic Comparative Methods Topics for this week (Feb 24 & 26): Ancestral state reconstruction (discrete) Ancestral state reconstruction (continuous) 1 Ancestral Phenotypes

More information

Sistemática Teórica. Hernán Dopazo. Biomedical Genomics and Evolution Lab. Lesson 03 Statistical Model Selection

Sistemática Teórica. Hernán Dopazo. Biomedical Genomics and Evolution Lab. Lesson 03 Statistical Model Selection Sistemática Teórica Hernán Dopazo Biomedical Genomics and Evolution Lab Lesson 03 Statistical Model Selection Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Argentina 2013 Statistical

More information

Lab 8: Using POY from your desktop and through CIPRES

Lab 8: Using POY from your desktop and through CIPRES Integrative Biology 200A University of California, Berkeley PRINCIPLES OF PHYLOGENETICS Spring 2012 Updated by Michael Landis Lab 8: Using POY from your desktop and through CIPRES In this lab we re going

More information

GRADE CENTRE BEST PRACTICE FOR A4L

GRADE CENTRE BEST PRACTICE FOR A4L GRADE CENTRE BEST PRACTICE FOR A4L Overview A large number of reports use information from the Grade Centre to draw correlations between activity and student success (see appendix). This document serves

More information

Characters and Character matrices

Characters and Character matrices Introduction Why? How to Cite Publication Support Credits Help FAQ Web Site Simplicity Files Menus Windows Charts Scripts/Macros Modules How Characters Taxa Trees Glossary New Features Characters and Character

More information

MANUAL. SEEVA Software Spatial Evolutionary and Ecological Vicariance Analysis

MANUAL. SEEVA Software Spatial Evolutionary and Ecological Vicariance Analysis MANUAL SEEVA Software Spatial Evolutionary and Ecological Vicariance Analysis Beta version: ver. 0.33 released Nov 1, 2008 By Einar Heiberg & Lena Struwe websites: seeva.heiberg.se or www.rci.rutgers.edu/~struwe/seeva

More information

An introduction to the picante package

An introduction to the picante package An introduction to the picante package Steven Kembel (skembel@uoregon.edu) April 2010 Contents 1 Installing picante 1 2 Data formats in picante 1 2.1 Phylogenies................................ 2 2.2 Community

More information

Lab 1: Silver Dollar Game 1 CSCI 2101B Fall 2018

Lab 1: Silver Dollar Game 1 CSCI 2101B Fall 2018 Lab 1: Silver Dollar Game 1 CSCI 2101B Fall 2018 Due: Tuesday, September 18, 11:59 pm Collaboration Policy: Level 1 (review full policy for details) Group Policy: Individual This lab will give you experience

More information

Unique reconstruction of tree-like phylogenetic networks from distances between leaves

Unique reconstruction of tree-like phylogenetic networks from distances between leaves Unique reconstruction of tree-like phylogenetic networks from distances between leaves Stephen J. Willson Department of Mathematics Iowa State University Ames, IA 50011 USA email: swillson@iastate.edu

More information

Simulation of Molecular Evolution with Bioinformatics Analysis

Simulation of Molecular Evolution with Bioinformatics Analysis Simulation of Molecular Evolution with Bioinformatics Analysis Barbara N. Beck, Rochester Community and Technical College, Rochester, MN Project created by: Barbara N. Beck, Ph.D., Rochester Community

More information

An Experimental Analysis of Robinson-Foulds Distance Matrix Algorithms

An Experimental Analysis of Robinson-Foulds Distance Matrix Algorithms An Experimental Analysis of Robinson-Foulds Distance Matrix Algorithms Seung-Jin Sul and Tiffani L. Williams Department of Computer Science Texas A&M University College Station, TX 77843-3 {sulsj,tlw}@cs.tamu.edu

More information

Page 1.1 Guidelines 2 Requirements JCoDA package Input file formats License. 1.2 Java Installation 3-4 Not required in all cases

Page 1.1 Guidelines 2 Requirements JCoDA package Input file formats License. 1.2 Java Installation 3-4 Not required in all cases JCoDA and PGI Tutorial Version 1.0 Date 03/16/2010 Page 1.1 Guidelines 2 Requirements JCoDA package Input file formats License 1.2 Java Installation 3-4 Not required in all cases 2.1 dn/ds calculation

More information

Dynamic Programming for Phylogenetic Estimation

Dynamic Programming for Phylogenetic Estimation 1 / 45 Dynamic Programming for Phylogenetic Estimation CS598AGB Pranjal Vachaspati University of Illinois at Urbana-Champaign 2 / 45 Coalescent-based Species Tree Estimation Find evolutionary tree for

More information

MATHEMATICAL MODELS AND BIOLOGICAL MEANING: TAKING TREES SERIOUSLY

MATHEMATICAL MODELS AND BIOLOGICAL MEANING: TAKING TREES SERIOUSLY MATHEMATICAL MODELS AND BIOLOGICAL MEANING: TAKING TREES SERIOUSLY JEREMY L. MARTIN AND E. O. WILEY Abstract. We compare three basic kinds of discrete mathematical models used to portray phylogenetic relationships

More information

Introduction to Trees

Introduction to Trees Introduction to Trees Tandy Warnow December 28, 2016 Introduction to Trees Tandy Warnow Clades of a rooted tree Every node v in a leaf-labelled rooted tree defines a subset of the leafset that is below

More information

Generation of distancebased phylogenetic trees

Generation of distancebased phylogenetic trees primer for practical phylogenetic data gathering. Uconn EEB3899-007. Spring 2015 Session 12 Generation of distancebased phylogenetic trees Rafael Medina (rafael.medina.bry@gmail.com) Yang Liu (yang.liu@uconn.edu)

More information

Rapid Neighbour-Joining

Rapid Neighbour-Joining Rapid Neighbour-Joining Martin Simonsen, Thomas Mailund and Christian N. S. Pedersen Bioinformatics Research Center (BIRC), University of Aarhus, C. F. Møllers Allé, Building 1110, DK-8000 Århus C, Denmark.

More information

Aerospace Software Engineering

Aerospace Software Engineering 16.35 Aerospace Software Engineering Verification & Validation Prof. Kristina Lundqvist Dept. of Aero/Astro, MIT Would You...... trust a completely-automated nuclear power plant?... trust a completely-automated

More information

Version 3.1 March Program by David L. Swofford

Version 3.1 March Program by David L. Swofford Version 3.1 March 1993 Program by David L. Swofford User's Manual by David L. Swofford and Douglas P. Begle Laboratory of Molecular Systematics MRC 534, MSC Smithsonian Institution Washington DC 20560

More information

Three-Dimensional Cost-Matrix Optimization and Maximum Cospeciation

Three-Dimensional Cost-Matrix Optimization and Maximum Cospeciation Cladistics 14, 167 172 (1998) WWW http://www.apnet.com Article i.d. cl980066 Three-Dimensional Cost-Matrix Optimization and Maximum Cospeciation Fredrik Ronquist Department of Zoology, Uppsala University,

More information

Construction of a distance tree using clustering with the Unweighted Pair Group Method with Arithmatic Mean (UPGMA).

Construction of a distance tree using clustering with the Unweighted Pair Group Method with Arithmatic Mean (UPGMA). Construction of a distance tree using clustering with the Unweighted Pair Group Method with Arithmatic Mean (UPGMA). The UPGMA is the simplest method of tree construction. It was originally developed for

More information

Reconstructing Reticulate Evolution in Species Theory and Practice

Reconstructing Reticulate Evolution in Species Theory and Practice Reconstructing Reticulate Evolution in Species Theory and Practice Luay Nakhleh Department of Computer Science Rice University Houston, Texas 77005 nakhleh@cs.rice.edu Tandy Warnow Department of Computer

More information

A Rough Guide to RASP 2.1 (Beta)

A Rough Guide to RASP 2.1 (Beta) A Rough Guide to RASP 2.1 (Beta) (Former S-DIVA ) 19/11/2012 Yan Yu 1, AJ Harris 2 and Xingjin He 1 1 Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences,

More information

Evolution Module. 6.1 Phylogenetic Trees. Bob Gardner and Lev Yampolski. Integrated Biology and Discrete Math (IBMS 1300)

Evolution Module. 6.1 Phylogenetic Trees. Bob Gardner and Lev Yampolski. Integrated Biology and Discrete Math (IBMS 1300) Evolution Module 6.1 Phylogenetic Trees Bob Gardner and Lev Yampolski Integrated Biology and Discrete Math (IBMS 1300) Fall 2008 1 INDUCTION Note. The natural numbers N is the familiar set N = {1, 2, 3,...}.

More information

Module 1: Introduction RStudio

Module 1: Introduction RStudio Module 1: Introduction RStudio Contents Page(s) Installing R and RStudio Software for Social Network Analysis 1-2 Introduction to R Language/ Syntax 3 Welcome to RStudio 4-14 A. The 4 Panes 5 B. Calculator

More information

Please download and install the Phylogenetics for Mathematica and the Quantitative Paleontology for Mathematica packages.

Please download and install the Phylogenetics for Mathematica and the Quantitative Paleontology for Mathematica packages. In addition to the packages that come with Mathematica, one can install packages written by other Mathematica users for special purposes. Several such packages are available from the Polly Lab website

More information

Tutorial: Phylogenetic Analysis on BioHealthBase Written by: Catherine A. Macken Version 1: February 2009

Tutorial: Phylogenetic Analysis on BioHealthBase Written by: Catherine A. Macken Version 1: February 2009 Tutorial: Phylogenetic Analysis on BioHealthBase Written by: Catherine A. Macken Version 1: February 2009 BioHealthBase provides multiple functions for inferring phylogenetic trees, through the Phylogenetic

More information

Identifying Character Non-Independence in Phylogenetic Data using Data Mining Techniques

Identifying Character Non-Independence in Phylogenetic Data using Data Mining Techniques Missouri University of Science and Technology Scholars' Mine Computer Science Faculty Research & Creative Works Computer Science 1-1-2004 Identifying Character Non-Independence in Phylogenetic Data using

More information

Lab 11-1 Lab User Profiles and Tracking

Lab 11-1 Lab User Profiles and Tracking In the following lab instructions, you will be setting up groups, users, and passwords to require password-protected login to Kofax Capture modules. Rights will be assigned to the groups and users that

More information

Prior Distributions on Phylogenetic Trees

Prior Distributions on Phylogenetic Trees Prior Distributions on Phylogenetic Trees Magnus Johansson Masteruppsats i matematisk statistik Master Thesis in Mathematical Statistics Masteruppsats 2011:4 Matematisk statistik Juni 2011 www.math.su.se

More information

Lecture 3: Linear Classification

Lecture 3: Linear Classification Lecture 3: Linear Classification Roger Grosse 1 Introduction Last week, we saw an example of a learning task called regression. There, the goal was to predict a scalar-valued target from a set of features.

More information

Bayesian phylogenetic inference MrBayes (Practice)

Bayesian phylogenetic inference MrBayes (Practice) Bayesian phylogenetic inference MrBayes (Practice) The aim of this tutorial is to give a very short introduction to MrBayes. There is a website with most information about MrBayes: www.mrbayes.net (which

More information

Assignment 3 Phylogenetic Tree Reconstruction and Motif Finding

Assignment 3 Phylogenetic Tree Reconstruction and Motif Finding ssignment Phylogenetic ree Reconstruction and Motif Finding Lecturer: Michal Ziv-Ukelson ssignment hecker: Dina Svetlitsky You may submit the assignment in pairs. Explain your answers as clearly as possible

More information

15.083J Integer Programming and Combinatorial Optimization Fall Enumerative Methods

15.083J Integer Programming and Combinatorial Optimization Fall Enumerative Methods 5.8J Integer Programming and Combinatorial Optimization Fall 9 A knapsack problem Enumerative Methods Let s focus on maximization integer linear programs with only binary variables For example: a knapsack

More information

The NEXUS file includes a variety of node-date calibrations, including an offsetexp(min=45, mean=50) calibration for the root node:

The NEXUS file includes a variety of node-date calibrations, including an offsetexp(min=45, mean=50) calibration for the root node: Appendix 1: Issues with the MrBayes dating analysis of Slater (2015). In setting up variant MrBayes analyses (Supplemental Table S2), a number of issues became apparent with the NEXUS file of the original

More information

Seeing the wood for the trees: Analysing multiple alternative phylogenies

Seeing the wood for the trees: Analysing multiple alternative phylogenies Seeing the wood for the trees: Analysing multiple alternative phylogenies Tom M. W. Nye, Newcastle University tom.nye@ncl.ac.uk Isaac Newton Institute, 17 December 2007 Multiple alternative phylogenies

More information

TreeCollapseCL 4 Emma Hodcroft Andrew Leigh Brown Group Institute of Evolutionary Biology University of Edinburgh

TreeCollapseCL 4 Emma Hodcroft Andrew Leigh Brown Group Institute of Evolutionary Biology University of Edinburgh TreeCollapseCL 4 Emma Hodcroft Andrew Leigh Brown Group Institute of Evolutionary Biology University of Edinburgh 2011-2015 This command-line Java program takes in Nexus/Newick-style phylogenetic tree

More information

Lecture 7 Logic Simplification

Lecture 7 Logic Simplification Lecture 7 Logic Simplification Simplification Using oolean lgebra simplified oolean expression uses the fewest gates possible to implement a given expression. +(+)+(+) Simplification Using oolean lgebra

More information

1 High-Performance Phylogeny Reconstruction Under Maximum Parsimony. David A. Bader, Bernard M.E. Moret, Tiffani L. Williams and Mi Yan

1 High-Performance Phylogeny Reconstruction Under Maximum Parsimony. David A. Bader, Bernard M.E. Moret, Tiffani L. Williams and Mi Yan Contents 1 High-Performance Phylogeny Reconstruction Under Maximum Parsimony 1 David A. Bader, Bernard M.E. Moret, Tiffani L. Williams and Mi Yan 1.1 Introduction 1 1.2 Maximum Parsimony 7 1.3 Exact MP:

More information

CS 581. Tandy Warnow

CS 581. Tandy Warnow CS 581 Tandy Warnow This week Maximum parsimony: solving it on small datasets Maximum Likelihood optimization problem Felsenstein s pruning algorithm Bayesian MCMC methods Research opportunities Maximum

More information

Trees. Binary arithmetic expressions. Visualizing binary arithmetic expressions. ((2 6) + (5 2))/(5 3) can be defined in terms of two smaller

Trees. Binary arithmetic expressions. Visualizing binary arithmetic expressions. ((2 6) + (5 2))/(5 3) can be defined in terms of two smaller Trees Readings: HtDP, sections 14, 15, 16. We will cover the ideas in the text using different examples and different terminology. The readings are still important as an additional source of examples.

More information

Lab 15: Maximum Likelihood Estimation of Biogeographic History on Phylogenies using DIVA and Lagrange

Lab 15: Maximum Likelihood Estimation of Biogeographic History on Phylogenies using DIVA and Lagrange Integrative Biology 200B University of California, Berkeley "Systematics" Spring 2011 by Nick Matzke Lab 15: Maximum Likelihood Estimation of Biogeographic History on Phylogenies using DIVA and Lagrange

More information

Chapter 9. Software Testing

Chapter 9. Software Testing Chapter 9. Software Testing Table of Contents Objectives... 1 Introduction to software testing... 1 The testers... 2 The developers... 2 An independent testing team... 2 The customer... 2 Principles of

More information

Massachusetts Institute of Technology Computational Evolutionary Biology, Fall, 2005 Laboratory 3: Detecting selection

Massachusetts Institute of Technology Computational Evolutionary Biology, Fall, 2005 Laboratory 3: Detecting selection Massachusetts Institute of Technology 6.877 Computational Evolutionary Biology, Fall, 2005 Laboratory 3: Detecting selection Handed out: November 28 Due: December 14 Part 2. Detecting selection likelihood

More information