UNSUPERVISED LEARNING FOR ANOMALY INTRUSION DETECTION Presented by: Mohamed EL Fadly

Size: px
Start display at page:

Download "UNSUPERVISED LEARNING FOR ANOMALY INTRUSION DETECTION Presented by: Mohamed EL Fadly"

Transcription

1 UNSUPERVISED LEARNING FOR ANOMALY INTRUSION DETECTION Presented by: Mohamed EL Fadly

2 Outline Introduction Motivation Problem Definition Objective Challenges Approach Related Work

3 Introduction Anomaly detection is an important problem that has been researched within diverse research areas and application domains. Many anomaly detection techniques have been specifically developed for certain application domains, while others are more generic.

4 What are anomalies Anomaly is a pattern in the data that does not conform to the expected behaviour Also referred to as outliers, exceptions, peculiarities, surprise, etc. Anomalies translate to significant (often critical) real life entities Cyber intrusions Credit card fraud

5 Real World Anomalies Credit Card Fraud An abnormally high purchase made on a credit card Cyber Intrusions A web server involved in ftp traffic

6 Anomaly detection Anomaly detection triggers alarms when the detected object behaves significantly differently from the predefined normal patterns. Hence, anomaly detection techniques are designed to detect patterns that deviate from an expected normal model built for the data. In cybersecurity, anomaly detection includes the detection of malicious activities, e.g., penetrations and denial of service. The approach consists of two steps: training and detection. a) In the training step, machine-learning techniques are applied to generate a profile of normal patterns in the absence of an attack. b) In the detection step, the input events are labeled as attacks if the event records deviate significantly from the normal profile. Subsequently, anomaly detection can detect previously unknown attacks

7 Application of Anomaly Detection Network intrusion detection Insurance / Credit card fraud detection Healthcare Informatics / Medical diagnostics Industrial Damage Detection Image Processing / Video surveillance Novel Topic Detection in Text Mining

8 Intrusion Detection Intrusion Detection: Process of monitoring the events occurring in a computer system or network and analyzing them for intrusions Intrusions are defined as attempts to bypass the security mechanisms of a computer or network Challenges Traditional signature-based intrusion detection systems are based on signatures of known attacks and cannot detect emerging cyber threats Substantial latency in deployment of newly created signatures across the computer system Anomaly detection can alleviate these limitations

9 Problem Definition In anomaly detection, labeled data corresponding to normal behavior are usually available, while labeled data for anomaly behavior are not. Supervised machine-learning methods need attack-free training data. However, this kind of training data is difficult to obtain in real-world network environments. This lack of training data leads to the well-known unbalanced data distribution in machine learning. In the huge volume of network data, the same malicious data repeatedly occur while the number of similar malicious data is much smaller than the number of normal data. The imbalanced data distribution of normal and anomaly data induces a high false-positive rates (FPRs) of supervised intrusion detection systems (IDSs).

10 Problem definition Unsupervised machine learning methods outperform supervised machine-learning methods in updating rules intelligently while the detection rates downgrade. Thus anomaly detection systems can potentially find new attacks, but they generally have a lower accuracy rate for detection and a higher FAR. The problem we must solve is how to minimize the false negative and false positive rates while keeping higher accuracy rates

11 Objective To propose an unsupervised anomaly detection technique that will produce low false positive rates and to overcome challenges in using labeled data sets for supervised learning, such as time consumption, expensiveness, limitation of expertise, and the accuracy of labels in collecting labeled data.

12 Why unsupervised To overcome the problem of using attack-free training data required by supervised learning. Moreover, with the changing network environment or services, patterns of normal traffic will change. The differences between the training and actual data can lead to high FPRs of supervised IDSs. To address these problems, unsupervised anomaly detection emerges to take unlabeled data as input. Unsupervised anomaly detection aims to find malicious information buried in cyberinfrastructure even without prior knowledge about the data labels and new attacks. Subsequently, unsupervised anomaly detection methods rely on the following assumptions: normal data covers majority while anomaly data are minor in network traffic flow or audit logs. That s why most of the solutions to unsupervised anomaly detection are clusteringbased anomaly/outlier detection techniques.

13 Challenges 1. The key challenge is that the huge volume of data with high-dimensional feature space is difficult to manually analyze and monitor. Such analysis and monitoring requires highly efficient computational algorithms in data processing and pattern learning. 2. Much of the data is streaming data, which requires online analysis. 3. It is also difficult to define a representative normal region or the boundary between normal and outlying behavior. As the concept of an anomaly/outlier varies among application domains 4. The labeled anomalies are not available for training/validation. 5. Training and testing data might contain unknown noises 6. Normal and anomaly behaviors constantly evolve.

14 Approach The below aspects should be considered when choosing my approach 1. Nature of input data 2. Availability of supervision 3. Type of anomaly: point, contextual, structural 4. Output of anomaly detection 5. Evaluation of anomaly detection techniques

15 10 Input Data Most common form of data handled by anomaly detection techniques is Record Data Univariate Multivariate Tid SrcIP Start time Dest IP Dest Port Number of bytes Attack :07: No :13: No :14: No :14: No :14: Yes :14: No :14: No :14: Yes :14: No :14: Yes

16 Input Data Nature of data Nature of attributes Binary Categorical Continuous Hybrid Tid SrcIP Duration Dest IP Number of bytes Internal No No Yes No No

17 Supervision Data Label Supervised Anomaly Detection Labels available for both normal data and anomalies Unsupervised Anomaly Detection No labels assumed; based on the assumption that anomalies are very rare compared to normal data Semi-supervised Anomaly Detection Labels available only for normal data Use modified classification model to learn the normal behaviour and then detect any deviations from normal behaviour as anomalous

18 Type of anomaly Point Anomalies: Contextual Anomalies Collective Anomalies

19 Point Anomalies An individual data instance is anomalous w.r.t. the data Y N 1 o 1 O 3 o 2 N 2 X

20 Contextual Anomalies An individual data instance is anomalous within a context Requires a notion of context Also referred to as conditional anomalies Normal Anomaly

21 Collective Anomalies A collection of related data instances is anomalous Requires a relationship among data instances Sequential Data Spatial Data Graph Data The individual instances within a collective anomaly are not anomalous by themselves Anomalous Subsequence

22 Output of anomaly Detection Label Each test instance is given a normal or anomaly label This is especially true of classification-based approaches Score Each test instance is assigned an anomaly score Allows the output to be ranked Requires an additional threshold parameter

23 Evaluation of Anomaly Detection F-value Accuracy is not sufficient metric for evaluation Example: network traffic data set with 99.9% of normal data and 0.1% of intrusions Trivial classifier that labels everything with the normal class can achieve 99.9% accuracy!!!!! Confusion matrix Predicted class NC C Actual NC TN FP class C FN TP Focus on both recall and precision Recall (R) = TP/(TP + FN) Precision (P) = TP/(TP + FP) F measure = 2*R*P/(R+P) anomaly class C normal class NC

24 Evaluation of Outlier Detection ROC Standard measures for evaluating anomaly detection problems: Recall (Detection rate) - ratio between the number of correctly detected anomalies and the total number of anomalies False alarm (false positive) rate ratio between the number of data records from normal class that are misclassified as anomalies and the total number of data records from normal class ROC Curve is a trade-off between detection rate and false alarm rate 0.2 Area under the ROC curve (AUC) is 0.1 computed using a trapezoid rule Detection rate ROC curves for different outlier detection techniques 1 AUC False alarm rate

25 Possible approach Anomaly Detection Point Anomaly Detection Classification Based Nearest Neighbor Based Clustering Based Statistical Others Rule Based Neural Networks Based SVM Based Density Based Distance Based Parametric Non-parametric Information Theory Based Spectral Decomposition Based Visualization Based Contextual Anomaly Detection Collective Anomaly Detection Online Anomaly Detection Distributed Anomaly Detection

26 Clustering Based Techniques Key assumption: normal data records belong to large and dense clusters, while anomalies belong do not belong to any of the clusters or form very small clusters Categorization according to labels Semi-supervised cluster normal data to create modes of normal behavior. If a new instance does not belong to any of the clusters or it is not close to any cluster, is anomaly Unsupervised post-processing is needed after a clustering step to determine the size of the clusters and the distance from the clusters is required fro the point to be anomaly Anomalies detected using clustering based methods can be: Data records that do not fit into any cluster (residuals from clustering) Small clusters Low density clusters or local anomalies (far from other points within the same cluster)

27 Clustering Based Techniques Advantages: No need to be supervised Easily adaptable to on-line / incremental mode suitable for anomaly detection from temporal data Drawbacks Computationally expensive Using indexing structures (k-d tree, R* tree) may alleviate this problem In high dimensional spaces, data is sparse and distances between any two data records may become quite similar. Clustering algorithms may not give any meaningful clusters

28 Related work 1. A Near Real-Time Algorithm for Autonomous Identification and Characterization of Honeypot Attacks ASIA CCS '15 Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security Owezarski presents an unsupervised algorithm - called UNADA for Unsupervised Network Anomaly Detection Algorithm - for identification and characterization of security related anomalies and attacks occurring in honeypots. What is interested that their method does not need any attack signature database, learning phase, or labeled traffic

29 Related Work This algorithm has several advantages 1. It works in a completely unsupervised manner, what makes it able to work on top of any monitoring system, and directly usable, without preliminary configuration or knowledge. 2. It combines robust clustering techniques to avoid classical issues of clustering algorithms, e.g. sensitivity to initial configuration, the required a priori indication of the number of clusters to be identified, or the sensitivity of results when using less pertinent features. 3. It automatically builds simple and small signatures fully characterizing attacks; theses signature can then be used in a filtering security device. 4. It is designed to run in real time by making possible to take advantage of the parallelism of their clustering approach.

30 Evaluation true Positive rates vs False alarms They run their algorithm on the honeypot traffic traces gathered at the University of Maryland They compare the performance of UNADA against three previous approaches for unsupervised anomaly detection: DBSCAN-based, k-means-based, and PCA-based outliers detection.

31 Related Work 2- Enhancing One-class Support Vector Machines for Unsupervised Anomaly Detection Proceeding ODD '13 Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description Amer et.al have applied apply two modifications in order to make one-class SVMs more suitable for unsupervised anomaly detection: Robust one class SVMs and eta one-class SVMs. The key idea of both modifications is, that outliers should contribute less to the decision boundary as normal instances. Experiments performed on datasets from UCI machine learning repository show that their modifications are very promising: Comparing with other standard unsupervised anomaly detection algorithms, the enhanced one-class SVMs are superior on two out of four datasets. In particular, the proposed eta oneclass SVM has shown the most promising results.

32 Results Dataset used for evaluation ROC Curve Comparing the AUC of SVM based algorithms against other anomaly detection algorithms

33 Related Work An Unsupervised Anomaly Detection Engine With an Efficient Feature set for AODV Published in: Information Security and Cryptology (ISCISC), th International ISC Conference They proposed an anomaly detection engine by collecting decent features and applying robust PCA on the data set. The results showed their features can detect much more attacks either by applying PCA or by applying robust PCA. Their contribution in using the Robust PCA, through having an unsupervised algorithm that detect anomaly more accurate. The robust PCA can form the baseline profile even by existence of malicious nodes in the learning phase Their results show robust PCA cannot be affected by outlier data within the network

34 References 1- Philippe Owezarski A Near Real-Time Algorithm for Autonomous Identification and Characterization of Honeypot Attacks. In Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security (ASIA CCS '15). ACM, New York, NY, USA, Mennatallah Amer, Markus Goldstein, and Slim Abdennadher Enhancing one-class support vector machines for unsupervised anomaly detection. In Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description (ODD '13). ACM, New York, NY, USA, Houri Zarch, M.K.; Abedini, M.; Berenjkoub, M.; Mirhosseini, A., "An unsupervised anomaly detection engine with an efficient feature set for AODV," Information Security and Cryptology (ISCISC), th International ISC Conference on, vol., no., pp.1,6, Aug Sumeet Dua and Xian Du. Data Mining and Machine Learning in cybersecurity. April 25, 2011 by Auerbach Publications 5- Varun Chandola, Arindam Banerjee, and Vipin Kumar Anomaly detection: A survey. ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages 6- Yingbing Yu A survey of anomaly intrusion detection techniques. J. Comput. Sci. Coll. 28, 1 (October 2012), Phil Simon. Too Big to Ignore: The Business Case for Big Data. Wiley, Taiwo Oladipupo Ayodele. New Advances in Machine Learning. InTech, Harjinder Kaur, Gurpreet Singh, Jaspreet Minhas, A Review of Machine Learning based Anomaly Detection Techniques

Unsupervised Learning for anomaly Intrusion detection

Unsupervised Learning for anomaly Intrusion detection The American University in Cairo Unsupervised Learning for anomaly Intrusion detection Seminar 1 - Report Mohamed EL Fadly 5-17-2015 Table of Contents Introduction... 2 Motivation... 2 Intrusion detection

More information

Anomaly Detection. You Chen

Anomaly Detection. You Chen Anomaly Detection You Chen 1 Two questions: (1) What is Anomaly Detection? (2) What are Anomalies? Anomaly detection refers to the problem of finding patterns in data that do not conform to expected behavior

More information

Data Mining Classification: Alternative Techniques. Imbalanced Class Problem

Data Mining Classification: Alternative Techniques. Imbalanced Class Problem Data Mining Classification: Alternative Techniques Imbalanced Class Problem Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Class Imbalance Problem Lots of classification problems

More information

Anomaly Detection on Data Streams with High Dimensional Data Environment

Anomaly Detection on Data Streams with High Dimensional Data Environment Anomaly Detection on Data Streams with High Dimensional Data Environment Mr. D. Gokul Prasath 1, Dr. R. Sivaraj, M.E, Ph.D., 2 Department of CSE, Velalar College of Engineering & Technology, Erode 1 Assistant

More information

International Journal of Research in Advent Technology, Vol.7, No.3, March 2019 E-ISSN: Available online at

International Journal of Research in Advent Technology, Vol.7, No.3, March 2019 E-ISSN: Available online at Performance Evaluation of Ensemble Method Based Outlier Detection Algorithm Priya. M 1, M. Karthikeyan 2 Department of Computer and Information Science, Annamalai University, Annamalai Nagar, Tamil Nadu,

More information

DATA MINING II - 1DL460

DATA MINING II - 1DL460 DATA MINING II - 1DL460 Spring 2016 A second course in data mining!! http://www.it.uu.se/edu/course/homepage/infoutv2/vt16 Kjell Orsborn! Uppsala Database Laboratory! Department of Information Technology,

More information

What are anomalies and why do we care?

What are anomalies and why do we care? Anomaly Detection Based on V. Chandola, A. Banerjee, and V. Kupin, Anomaly detection: A survey, ACM Computing Surveys, 41 (2009), Article 15, 58 pages. Outline What are anomalies and why do we care? Different

More information

Detection of Anomalies using Online Oversampling PCA

Detection of Anomalies using Online Oversampling PCA Detection of Anomalies using Online Oversampling PCA Miss Supriya A. Bagane, Prof. Sonali Patil Abstract Anomaly detection is the process of identifying unexpected behavior and it is an important research

More information

Evaluation Measures. Sebastian Pölsterl. April 28, Computer Aided Medical Procedures Technische Universität München

Evaluation Measures. Sebastian Pölsterl. April 28, Computer Aided Medical Procedures Technische Universität München Evaluation Measures Sebastian Pölsterl Computer Aided Medical Procedures Technische Universität München April 28, 2015 Outline 1 Classification 1. Confusion Matrix 2. Receiver operating characteristics

More information

Outlier Detection Using Unsupervised and Semi-Supervised Technique on High Dimensional Data

Outlier Detection Using Unsupervised and Semi-Supervised Technique on High Dimensional Data Outlier Detection Using Unsupervised and Semi-Supervised Technique on High Dimensional Data Ms. Gayatri Attarde 1, Prof. Aarti Deshpande 2 M. E Student, Department of Computer Engineering, GHRCCEM, University

More information

A Comparative Study of Locality Preserving Projection and Principle Component Analysis on Classification Performance Using Logistic Regression

A Comparative Study of Locality Preserving Projection and Principle Component Analysis on Classification Performance Using Logistic Regression Journal of Data Analysis and Information Processing, 2016, 4, 55-63 Published Online May 2016 in SciRes. http://www.scirp.org/journal/jdaip http://dx.doi.org/10.4236/jdaip.2016.42005 A Comparative Study

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 08: Classification Evaluation and Practical Issues Instructor: Yizhou Sun yzsun@cs.ucla.edu October 24, 2017 Learnt Prediction and Classification Methods Vector Data

More information

NETWORK FAULT DETECTION - A CASE FOR DATA MINING

NETWORK FAULT DETECTION - A CASE FOR DATA MINING NETWORK FAULT DETECTION - A CASE FOR DATA MINING Poonam Chaudhary & Vikram Singh Department of Computer Science Ch. Devi Lal University, Sirsa ABSTRACT: Parts of the general network fault management problem,

More information

INFORMATION-THEORETIC OUTLIER DETECTION FOR LARGE-SCALE CATEGORICAL DATA

INFORMATION-THEORETIC OUTLIER DETECTION FOR LARGE-SCALE CATEGORICAL DATA Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 4, April 2015,

More information

Feature Selection. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Feature Selection. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Feature Selection CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Dimensionality reduction Feature selection vs. feature extraction Filter univariate

More information

NDoT: Nearest Neighbor Distance Based Outlier Detection Technique

NDoT: Nearest Neighbor Distance Based Outlier Detection Technique NDoT: Nearest Neighbor Distance Based Outlier Detection Technique Neminath Hubballi 1, Bidyut Kr. Patra 2, and Sukumar Nandi 1 1 Department of Computer Science & Engineering, Indian Institute of Technology

More information

Large Scale Data Analysis for Policy

Large Scale Data Analysis for Policy Large Scale Data Analysis for Policy 90-866, Fall 2012 Lecture 9: Anomaly and Outlier Detection Parts of this lecture were adapted from Banerjee et al., Anomaly Detection: A Tutorial, presented at SDM

More information

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.3, May Dr.Zakea Il-Agure and Mr.Hicham Noureddine Itani

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.3, May Dr.Zakea Il-Agure and Mr.Hicham Noureddine Itani LINK MINING PROCESS Dr.Zakea Il-Agure and Mr.Hicham Noureddine Itani Higher Colleges of Technology, United Arab Emirates ABSTRACT Many data mining and knowledge discovery methodologies and process models

More information

Classification Part 4

Classification Part 4 Classification Part 4 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville Model Evaluation Metrics for Performance Evaluation How to evaluate

More information

Improved Classification of Known and Unknown Network Traffic Flows using Semi-Supervised Machine Learning

Improved Classification of Known and Unknown Network Traffic Flows using Semi-Supervised Machine Learning Improved Classification of Known and Unknown Network Traffic Flows using Semi-Supervised Machine Learning Timothy Glennan, Christopher Leckie, Sarah M. Erfani Department of Computing and Information Systems,

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

Intrusion Detection System using AI and Machine Learning Algorithm

Intrusion Detection System using AI and Machine Learning Algorithm Intrusion Detection System using AI and Machine Learning Algorithm Syam Akhil Repalle 1, Venkata Ratnam Kolluru 2 1 Student, Department of Electronics and Communication Engineering, Koneru Lakshmaiah Educational

More information

Evaluating Classifiers

Evaluating Classifiers Evaluating Classifiers Reading for this topic: T. Fawcett, An introduction to ROC analysis, Sections 1-4, 7 (linked from class website) Evaluating Classifiers What we want: Classifier that best predicts

More information

Automatic Detection Of Suspicious Behaviour

Automatic Detection Of Suspicious Behaviour University Utrecht Technical Artificial Intelligence Master Thesis Automatic Detection Of Suspicious Behaviour Author: Iris Renckens Supervisors: Dr. Selmar Smit Dr. Ad Feelders Prof. Dr. Arno Siebes September

More information

An Intelligent Clustering Algorithm for High Dimensional and Highly Overlapped Photo-Thermal Infrared Imaging Data

An Intelligent Clustering Algorithm for High Dimensional and Highly Overlapped Photo-Thermal Infrared Imaging Data An Intelligent Clustering Algorithm for High Dimensional and Highly Overlapped Photo-Thermal Infrared Imaging Data Nian Zhang and Lara Thompson Department of Electrical and Computer Engineering, University

More information

Anomaly Detection in Communication Networks

Anomaly Detection in Communication Networks Anomaly Detection in Communication Networks Prof. D. J. Parish High Speed networks Group Department of Electronic and Electrical Engineering D.J.Parish@lboro.ac.uk Loughborough University Overview u u

More information

EVALUATIONS OF THE EFFECTIVENESS OF ANOMALY BASED INTRUSION DETECTION SYSTEMS BASED ON AN ADAPTIVE KNN ALGORITHM

EVALUATIONS OF THE EFFECTIVENESS OF ANOMALY BASED INTRUSION DETECTION SYSTEMS BASED ON AN ADAPTIVE KNN ALGORITHM EVALUATIONS OF THE EFFECTIVENESS OF ANOMALY BASED INTRUSION DETECTION SYSTEMS BASED ON AN ADAPTIVE KNN ALGORITHM Assosiate professor, PhD Evgeniya Nikolova, BFU Assosiate professor, PhD Veselina Jecheva,

More information

Evaluating Classifiers

Evaluating Classifiers Evaluating Classifiers Reading for this topic: T. Fawcett, An introduction to ROC analysis, Sections 1-4, 7 (linked from class website) Evaluating Classifiers What we want: Classifier that best predicts

More information

AN IMPROVED DENSITY BASED k-means ALGORITHM

AN IMPROVED DENSITY BASED k-means ALGORITHM AN IMPROVED DENSITY BASED k-means ALGORITHM Kabiru Dalhatu 1 and Alex Tze Hiang Sim 2 1 Department of Computer Science, Faculty of Computing and Mathematical Science, Kano University of Science and Technology

More information

Comparative Analysis of Machine Learning Methods in Anomaly-based Intrusion Detection

Comparative Analysis of Machine Learning Methods in Anomaly-based Intrusion Detection Proceedings of the Fourth Engineering Students Conference at Peradeniya (ESCaPe) 2016 Comparative Analysis of Machine Learning Methods in Anomaly-based Intrusion Detection W.D.Y.N. Piyasinghe, K.E.G.A.P.

More information

OUTLIER MINING IN HIGH DIMENSIONAL DATASETS

OUTLIER MINING IN HIGH DIMENSIONAL DATASETS OUTLIER MINING IN HIGH DIMENSIONAL DATASETS DATA MINING DISCUSSION GROUP OUTLINE MOTIVATION OUTLIERS IN MULTIVARIATE DATA OUTLIERS IN HIGH DIMENSIONAL DATA Distribution-based Distance-based NN-based Density-based

More information

Anomaly Detection in Categorical Datasets with Artificial Contrasts. Seyyedehnasim Mousavi

Anomaly Detection in Categorical Datasets with Artificial Contrasts. Seyyedehnasim Mousavi Anomaly Detection in Categorical Datasets with Artificial Contrasts by Seyyedehnasim Mousavi A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science Approved October

More information

A Multi-agent Based Cognitive Approach to Unsupervised Feature Extraction and Classification for Network Intrusion Detection

A Multi-agent Based Cognitive Approach to Unsupervised Feature Extraction and Classification for Network Intrusion Detection Int'l Conf. on Advances on Applied Cognitive Computing ACC'17 25 A Multi-agent Based Cognitive Approach to Unsupervised Feature Extraction and Classification for Network Intrusion Detection Kaiser Nahiyan,

More information

Evaluation Metrics. (Classifiers) CS229 Section Anand Avati

Evaluation Metrics. (Classifiers) CS229 Section Anand Avati Evaluation Metrics (Classifiers) CS Section Anand Avati Topics Why? Binary classifiers Metrics Rank view Thresholding Confusion Matrix Point metrics: Accuracy, Precision, Recall / Sensitivity, Specificity,

More information

Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation

Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation Learning 4 Supervised Learning 4 Unsupervised Learning 4

More information

DATA MINING AND MACHINE LEARNING. Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane

DATA MINING AND MACHINE LEARNING. Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane DATA MINING AND MACHINE LEARNING Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Data preprocessing Feature normalization Missing

More information

Outlier Detection. Chapter 12

Outlier Detection. Chapter 12 Contents 12 Outlier Detection 3 12.1 Outliers and Outlier Analysis.................... 4 12.1.1 What Are Outliers?..................... 4 12.1.2 Types of Outliers....................... 5 12.1.3 Challenges

More information

Role of big data in classification and novel class detection in data streams

Role of big data in classification and novel class detection in data streams DOI 10.1186/s40537-016-0040-9 METHODOLOGY Open Access Role of big data in classification and novel class detection in data streams M. B. Chandak * *Correspondence: hodcs@rknec.edu; chandakmb@gmail.com

More information

Chapter 3: Supervised Learning

Chapter 3: Supervised Learning Chapter 3: Supervised Learning Road Map Basic concepts Evaluation of classifiers Classification using association rules Naïve Bayesian classification Naïve Bayes for text classification Summary 2 An example

More information

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes.

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes. Outliers Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Concepts What is an outlier? The set of data points that are considerably different than the remainder of the

More information

CPSC 340: Machine Learning and Data Mining. Outlier Detection Fall 2018

CPSC 340: Machine Learning and Data Mining. Outlier Detection Fall 2018 CPSC 340: Machine Learning and Data Mining Outlier Detection Fall 2018 Admin Assignment 2 is due Friday. Assignment 1 grades available? Midterm rooms are now booked. October 18 th at 6:30pm (BUCH A102

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Classification Evaluation and Practical Issues Instructor: Yizhou Sun yzsun@cs.ucla.edu April 24, 2017 Homework 2 out Announcements Due May 3 rd (11:59pm) Course project proposal

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

Computer Technology Department, Sanjivani K. B. P. Polytechnic, Kopargaon

Computer Technology Department, Sanjivani K. B. P. Polytechnic, Kopargaon Outlier Detection Using Oversampling PCA for Credit Card Fraud Detection Amruta D. Pawar 1, Seema A. Dongare 2, Amol L. Deokate 3, Harshal S. Sangle 4, Panchsheela V. Mokal 5 1,2,3,4,5 Computer Technology

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 February 11(2): pages 14-18 Open Access Journal A Novel Framework

More information

IMPROVING THE PERFORMANCE OF OUTLIER DETECTION METHODS FOR CATEGORICAL DATA BY USING WEIGHTING FUNCTION

IMPROVING THE PERFORMANCE OF OUTLIER DETECTION METHODS FOR CATEGORICAL DATA BY USING WEIGHTING FUNCTION IMPROVING THE PERFORMANCE OF OUTLIER DETECTION METHODS FOR CATEGORICAL DATA BY USING WEIGHTING FUNCTION 1 NUR ROKHMAN, 2 SUBANAR, 3 EDI WINARKO 1 Gadjah Mada University, Department of Computer Science

More information

Cluster Based detection of Attack IDS using Data Mining

Cluster Based detection of Attack IDS using Data Mining Cluster Based detection of Attack IDS using Data Mining 1 Manisha Kansra, 2 Pankaj Dev Chadha 1 Research scholar, 2 Assistant Professor, 1 Department of Computer Science Engineering 1 Geeta Institute of

More information

Weka ( )

Weka (  ) Weka ( http://www.cs.waikato.ac.nz/ml/weka/ ) The phases in which classifier s design can be divided are reflected in WEKA s Explorer structure: Data pre-processing (filtering) and representation Supervised

More information

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering Erik Velldal University of Oslo Sept. 18, 2012 Topics for today 2 Classification Recap Evaluating classifiers Accuracy, precision,

More information

Keywords: Clustering, Anomaly Detection, Multivariate Outlier Detection, Mixture Model, EM, Visualization, Explanation, Mineset.

Keywords: Clustering, Anomaly Detection, Multivariate Outlier Detection, Mixture Model, EM, Visualization, Explanation, Mineset. ISSN 2319-8885 Vol.03,Issue.35 November-2014, Pages:7140-7144 www.ijsetr.com Accurate and Efficient Anomaly Detection via Online Oversampling Principal Component Analysis K. RAJESH KUMAR 1, S.S.N ANJANEYULU

More information

Fraud Detection using Machine Learning

Fraud Detection using Machine Learning Fraud Detection using Machine Learning Aditya Oza - aditya19@stanford.edu Abstract Recent research has shown that machine learning techniques have been applied very effectively to the problem of payments

More information

INTRODUCTION TO DATA MINING. Daniel Rodríguez, University of Alcalá

INTRODUCTION TO DATA MINING. Daniel Rodríguez, University of Alcalá INTRODUCTION TO DATA MINING Daniel Rodríguez, University of Alcalá Outline Knowledge Discovery in Datasets Model Representation Types of models Supervised Unsupervised Evaluation (Acknowledgement: Jesús

More information

Combination of PCA with SMOTE Resampling to Boost the Prediction Rate in Lung Cancer Dataset

Combination of PCA with SMOTE Resampling to Boost the Prediction Rate in Lung Cancer Dataset International Journal of Computer Applications (0975 8887) Combination of PCA with SMOTE Resampling to Boost the Prediction Rate in Lung Cancer Dataset Mehdi Naseriparsa Islamic Azad University Tehran

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

Internet Traffic Classification using Machine Learning

Internet Traffic Classification using Machine Learning Internet Traffic Classification using Machine Learning by Alina Lapina 2018, UiO, INF5050 Alina Lapina, Master student at IFI, Full stack developer at Ciber Experis 2 Based on Thuy T. T. Nguyen, Grenville

More information

Contents. Preface to the Second Edition

Contents. Preface to the Second Edition Preface to the Second Edition v 1 Introduction 1 1.1 What Is Data Mining?....................... 4 1.2 Motivating Challenges....................... 5 1.3 The Origins of Data Mining....................

More information

CS4491/CS 7265 BIG DATA ANALYTICS

CS4491/CS 7265 BIG DATA ANALYTICS CS4491/CS 7265 BIG DATA ANALYTICS EVALUATION * Some contents are adapted from Dr. Hung Huang and Dr. Chengkai Li at UT Arlington Dr. Mingon Kang Computer Science, Kennesaw State University Evaluation for

More information

Using Real-valued Meta Classifiers to Integrate and Contextualize Binding Site Predictions

Using Real-valued Meta Classifiers to Integrate and Contextualize Binding Site Predictions Using Real-valued Meta Classifiers to Integrate and Contextualize Binding Site Predictions Offer Sharabi, Yi Sun, Mark Robinson, Rod Adams, Rene te Boekhorst, Alistair G. Rust, Neil Davey University of

More information

CPSC 340: Machine Learning and Data Mining. Outlier Detection Fall 2016

CPSC 340: Machine Learning and Data Mining. Outlier Detection Fall 2016 CPSC 340: Machine Learning and Data Mining Outlier Detection Fall 2016 Admin Assignment 1 solutions will be posted after class. Assignment 2 is out: Due next Friday, but start early! Calculus and linear

More information

NMLRG #4 meeting in Berlin. Mobile network state characterization and prediction. P.Demestichas (1), S. Vassaki (2,3), A.Georgakopoulos (2,3)

NMLRG #4 meeting in Berlin. Mobile network state characterization and prediction. P.Demestichas (1), S. Vassaki (2,3), A.Georgakopoulos (2,3) NMLRG #4 meeting in Berlin Mobile network state characterization and prediction P.Demestichas (1), S. Vassaki (2,3), A.Georgakopoulos (2,3) (1)University of Piraeus (2)WINGS ICT Solutions, www.wings-ict-solutions.eu/

More information

node2vec: Scalable Feature Learning for Networks

node2vec: Scalable Feature Learning for Networks node2vec: Scalable Feature Learning for Networks A paper by Aditya Grover and Jure Leskovec, presented at Knowledge Discovery and Data Mining 16. 11/27/2018 Presented by: Dharvi Verma CS 848: Graph Database

More information

Detection and Deletion of Outliers from Large Datasets

Detection and Deletion of Outliers from Large Datasets Detection and Deletion of Outliers from Large Datasets Nithya.Jayaprakash 1, Ms. Caroline Mary 2 M. tech Student, Dept of Computer Science, Mohandas College of Engineering and Technology, India 1 Assistant

More information

An Unsupervised Approach for Combining Scores of Outlier Detection Techniques, Based on Similarity Measures

An Unsupervised Approach for Combining Scores of Outlier Detection Techniques, Based on Similarity Measures An Unsupervised Approach for Combining Scores of Outlier Detection Techniques, Based on Similarity Measures José Ramón Pasillas-Díaz, Sylvie Ratté Presenter: Christoforos Leventis 1 Basic concepts Outlier

More information

Anomalydetection in massive datasets

Anomalydetection in massive datasets Anomalydetection in massive datasets Ennio Ottaviani OnAIR s.r.l. ennio.ottaviani@onairweb.com University of Genova, Dept. Of Mathematics, SMID ennio.ottaviani@edu.unige.it 1 Outline 1. Introduction 2.

More information

Lecture 6 K- Nearest Neighbors(KNN) And Predictive Accuracy

Lecture 6 K- Nearest Neighbors(KNN) And Predictive Accuracy Lecture 6 K- Nearest Neighbors(KNN) And Predictive Accuracy Machine Learning Dr.Ammar Mohammed Nearest Neighbors Set of Stored Cases Atr1... AtrN Class A Store the training samples Use training samples

More information

Advancements of Data Anomaly Detection Research in Wireless Sensor Networks: A Survey and Open Issues

Advancements of Data Anomaly Detection Research in Wireless Sensor Networks: A Survey and Open Issues Sensors 2013, 13, 10087-10122; doi:10.3390/s130810087 Review OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Advancements of Data Anomaly Detection Research in Wireless Sensor Networks:

More information

Evaluating Classifiers

Evaluating Classifiers Evaluating Classifiers Charles Elkan elkan@cs.ucsd.edu January 18, 2011 In a real-world application of supervised learning, we have a training set of examples with labels, and a test set of examples with

More information

An Anomaly-Based Intrusion Detection System for the Smart Grid Based on CART Decision Tree

An Anomaly-Based Intrusion Detection System for the Smart Grid Based on CART Decision Tree An Anomaly-Based Intrusion Detection System for the Smart Grid Based on CART Decision Tree P. Radoglou-Grammatikis and P. Sarigiannidis* University of Western Macedonia Department of Informatics & Telecommunications

More information

Classification. Instructor: Wei Ding

Classification. Instructor: Wei Ding Classification Part II Instructor: Wei Ding Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 1 Practical Issues of Classification Underfitting and Overfitting Missing Values Costs of Classification

More information

Chapter 5: Outlier Detection

Chapter 5: Outlier Detection Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Knowledge Discovery in Databases SS 2016 Chapter 5: Outlier Detection Lecture: Prof. Dr.

More information

Unsupervised learning in Vision

Unsupervised learning in Vision Chapter 7 Unsupervised learning in Vision The fields of Computer Vision and Machine Learning complement each other in a very natural way: the aim of the former is to extract useful information from visual

More information

Ester Bernadó-Mansilla. Research Group in Intelligent Systems Enginyeria i Arquitectura La Salle Universitat Ramon Llull Barcelona, Spain

Ester Bernadó-Mansilla. Research Group in Intelligent Systems Enginyeria i Arquitectura La Salle Universitat Ramon Llull Barcelona, Spain Learning Classifier Systems for Class Imbalance Problems Research Group in Intelligent Systems Enginyeria i Arquitectura La Salle Universitat Ramon Llull Barcelona, Spain Aim Enhance the applicability

More information

Data Clustering With Leaders and Subleaders Algorithm

Data Clustering With Leaders and Subleaders Algorithm IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719, Volume 2, Issue 11 (November2012), PP 01-07 Data Clustering With Leaders and Subleaders Algorithm Srinivasulu M 1,Kotilingswara

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Unsupervised learning Until now, we have assumed our training samples are labeled by their category membership. Methods that use labeled samples are said to be supervised. However,

More information

Classification Algorithms in Data Mining

Classification Algorithms in Data Mining August 9th, 2016 Suhas Mallesh Yash Thakkar Ashok Choudhary CIS660 Data Mining and Big Data Processing -Dr. Sunnie S. Chung Classification Algorithms in Data Mining Deciding on the classification algorithms

More information

PCA Based Anomaly Detection

PCA Based Anomaly Detection PCA Based Anomaly Detection P. Rameswara Anand 1,, Tulasi Krishna Kumar.K 2 Department of Computer Science and Engineering, Jigjiga University, Jigjiga, Ethiopi 1, Department of Computer Science and Engineering,Yogananda

More information

SELECTION OF OPTIMAL MINING ALGORITHM FOR OUTLIER DETECTION - AN EFFICIENT METHOD TO PREDICT/DETECT MONEY LAUNDERING CRIME IN FINANCE INDUSTRY

SELECTION OF OPTIMAL MINING ALGORITHM FOR OUTLIER DETECTION - AN EFFICIENT METHOD TO PREDICT/DETECT MONEY LAUNDERING CRIME IN FINANCE INDUSTRY P P P-ISSN: 2347-4408 SELECTION OF OPTIMAL MINING ALGORITHM FOR OUTLIER DETECTION - AN EFFICIENT METHOD TO PREDICT/DETECT MONEY LAUNDERING CRIME IN FINANCE INDUSTRY Abstract 1 1 Kannan SP P, Dr. K. SomasundaramP

More information

Thanks to the advances of data processing technologies, a lot of data can be collected and stored in databases efficiently New challenges: with a

Thanks to the advances of data processing technologies, a lot of data can be collected and stored in databases efficiently New challenges: with a Data Mining and Information Retrieval Introduction to Data Mining Why Data Mining? Thanks to the advances of data processing technologies, a lot of data can be collected and stored in databases efficiently

More information

Further Thoughts on Precision

Further Thoughts on Precision Further Thoughts on Precision David Gray, David Bowes, Neil Davey, Yi Sun and Bruce Christianson Abstract Background: There has been much discussion amongst automated software defect prediction researchers

More information

Data Mining. Introduction. Hamid Beigy. Sharif University of Technology. Fall 1395

Data Mining. Introduction. Hamid Beigy. Sharif University of Technology. Fall 1395 Data Mining Introduction Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1395 1 / 21 Table of contents 1 Introduction 2 Data mining

More information

Pattern recognition (4)

Pattern recognition (4) Pattern recognition (4) 1 Things we have discussed until now Statistical pattern recognition Building simple classifiers Supervised classification Minimum distance classifier Bayesian classifier (1D and

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

K- Nearest Neighbors(KNN) And Predictive Accuracy

K- Nearest Neighbors(KNN) And Predictive Accuracy Contact: mailto: Ammar@cu.edu.eg Drammarcu@gmail.com K- Nearest Neighbors(KNN) And Predictive Accuracy Dr. Ammar Mohammed Associate Professor of Computer Science ISSR, Cairo University PhD of CS ( Uni.

More information

HKBU Institutional Repository

HKBU Institutional Repository Hong Kong Baptist University HKBU Institutional Repository HKBU Staff Publication 2016 Traffic outlier detection by density-based bounded local outlier factors Jialing Tang Hong Kong Baptist University,

More information

Clustering Algorithms for Data Stream

Clustering Algorithms for Data Stream Clustering Algorithms for Data Stream Karishma Nadhe 1, Prof. P. M. Chawan 2 1Student, Dept of CS & IT, VJTI Mumbai, Maharashtra, India 2Professor, Dept of CS & IT, VJTI Mumbai, Maharashtra, India Abstract:

More information

Mining Of Inconsistent Data in Large Dataset In Distributed Environment

Mining Of Inconsistent Data in Large Dataset In Distributed Environment Mining Of Inconsistent Data in Large Dataset In Distributed Environment M.Shanthini 1 Department of Computer Science and Engineering, Syed Ammal Engineering College, Ramanathapuram, Tamilnadu, India 1

More information

Basic Concepts in Intrusion Detection

Basic Concepts in Intrusion Detection Technology Technical Information Services Security Engineering Roma, L Università Roma Tor Vergata, 23 Aprile 2007 Basic Concepts in Intrusion Detection JOVAN GOLIĆ Outline 2 Introduction Classification

More information

Anomaly Detection Based on Access Behavior and Document Rank Algorithm

Anomaly Detection Based on Access Behavior and Document Rank Algorithm Anomaly Detection Based on Access Behavior and Document Rank Algorithm Prajwal R Thakare, M.Tech IT Dept, ASTRA, Bandlaguda, Abstract:-Distributed denial of service (DDoS) attack is ongoing dangerous threat

More information

Lecture 25: Review I

Lecture 25: Review I Lecture 25: Review I Reading: Up to chapter 5 in ISLR. STATS 202: Data mining and analysis Jonathan Taylor 1 / 18 Unsupervised learning In unsupervised learning, all the variables are on equal standing,

More information

An Abnormal Data Detection Method Based on the Temporal-spatial Correlation in Wireless Sensor Networks

An Abnormal Data Detection Method Based on the Temporal-spatial Correlation in Wireless Sensor Networks An Based on the Temporal-spatial Correlation in Wireless Sensor Networks 1 Department of Computer Science & Technology, Harbin Institute of Technology at Weihai,Weihai, 264209, China E-mail: Liuyang322@hit.edu.cn

More information

MIT Samberg Center Cambridge, MA, USA. May 30 th June 2 nd, by C. Rea, R.S. Granetz MIT Plasma Science and Fusion Center, Cambridge, MA, USA

MIT Samberg Center Cambridge, MA, USA. May 30 th June 2 nd, by C. Rea, R.S. Granetz MIT Plasma Science and Fusion Center, Cambridge, MA, USA Exploratory Machine Learning studies for disruption prediction on DIII-D by C. Rea, R.S. Granetz MIT Plasma Science and Fusion Center, Cambridge, MA, USA Presented at the 2 nd IAEA Technical Meeting on

More information

Sampling Large Graphs for Anticipatory Analysis

Sampling Large Graphs for Anticipatory Analysis Sampling Large Graphs for Anticipatory Analysis Lauren Edwards*, Luke Johnson, Maja Milosavljevic, Vijay Gadepally, Benjamin A. Miller IEEE High Performance Extreme Computing Conference September 16, 2015

More information

Data Mining. Introduction. Hamid Beigy. Sharif University of Technology. Fall 1394

Data Mining. Introduction. Hamid Beigy. Sharif University of Technology. Fall 1394 Data Mining Introduction Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1394 1 / 20 Table of contents 1 Introduction 2 Data mining

More information

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a Week 9 Based in part on slides from textbook, slides of Susan Holmes Part I December 2, 2012 Hierarchical Clustering 1 / 1 Produces a set of nested clusters organized as a Hierarchical hierarchical clustering

More information

Cyber-physical intrusion detection on a robotic vehicle

Cyber-physical intrusion detection on a robotic vehicle WIFS 2015 The 7th IEEE International Workshop on Information Forensics and Security Rome, Italy, 16-19 November, 2015 Cyber-physical intrusion detection on a robotic vehicle Tuan Vuong, George Loukas and

More information

DATA MINING FOR NETWORK INTRUSION DETECTION. Vipin Kumar

DATA MINING FOR NETWORK INTRUSION DETECTION. Vipin Kumar DATA MINING FOR NETWORK INTRUSION DETECTION Vipin Kumar Army High Performance Computing Research Center Department of Computer Science University of Minnesota http://www.cs.umn.edu/~kumar Collaborators:

More information

Scalable Selective Traffic Congestion Notification

Scalable Selective Traffic Congestion Notification Scalable Selective Traffic Congestion Notification Győző Gidófalvi Division of Geoinformatics Deptartment of Urban Planning and Environment KTH Royal Institution of Technology, Sweden gyozo@kth.se Outline

More information

CPSC 340: Machine Learning and Data Mining. Non-Parametric Models Fall 2016

CPSC 340: Machine Learning and Data Mining. Non-Parametric Models Fall 2016 CPSC 340: Machine Learning and Data Mining Non-Parametric Models Fall 2016 Assignment 0: Admin 1 late day to hand it in tonight, 2 late days for Wednesday. Assignment 1 is out: Due Friday of next week.

More information

Lecture Notes on Critique of 1998 and 1999 DARPA IDS Evaluations

Lecture Notes on Critique of 1998 and 1999 DARPA IDS Evaluations Lecture Notes on Critique of 1998 and 1999 DARPA IDS Evaluations Prateek Saxena March 3 2008 1 The Problems Today s lecture is on the discussion of the critique on 1998 and 1999 DARPA IDS evaluations conducted

More information

A novel supervised learning algorithm and its use for Spam Detection in Social Bookmarking Systems

A novel supervised learning algorithm and its use for Spam Detection in Social Bookmarking Systems A novel supervised learning algorithm and its use for Spam Detection in Social Bookmarking Systems Anestis Gkanogiannis and Theodore Kalamboukis Department of Informatics Athens University of Economics

More information