Guarded Modules: Adap/vely Extending the VMM s Privileges Into the Guest

Size: px
Start display at page:

Download "Guarded Modules: Adap/vely Extending the VMM s Privileges Into the Guest"

Transcription

1 Guarded Modules: Adap/vely Extending the VMM s Privileges Into the Guest Kyle C. Hale Peter Dinda Department of Electrical Engineering and Computer Science Northwestern University hip://halek.co hip://presciencelab.org hip://v3vee.org hip://xstack.sandia.gov/hobbes

2 Redefining the boundaries between VMM and guest OS Guest OS VMM 2

3 Redefining the boundaries between VMM and guest OS VMM VMM Guest OS VMM 3

4 We want to evolve the VMM- guest rela/onship where the interface between the two is more flexible and where parts of the VMM may actually live inside the guest The laier is the focus of this work 4

5 GEARS* Guest-context virtual service Guest VMM Virtual service * K. Hale, P. Dinda. Shi$ing Gears to Enable Guest- context Virtual Services, ICAC

6 Guest VMM Virtual service privileged operations 6

7 Guarded Module can still interact with guest Guest VMM Virtual service 7

8 How can we isolate and protect pieces of code in a guest OS that run at higher privilege than the rest of the guest? How can we allow legacy code con/nue to use guest func/onality? We show how with two examples 8

9 Palacios VMM OS- independent, embeddable VMM Support for mul/ple host OSes (Linux, KiIen LWK) Open source, available at hip://v3vee.org/palacios 9

10 Outline Mo/va/on Christoiza/on Threat Model and Run/me Invariants Run/me System and Border Crossings Examples Selec/vely Privileged PCI Passthrough Selec/vely Privileged MONITOR/MWAIT Conclusions 10

11 Guarded Module Transforma/on Christoization Linux Kernel Module Guarded Module guarded module compiler 11

12 Christoiza/on Compile- /me and link- /me wrapping we use gcc toolchain to instrument (wrap) all calls out of and into the module Christo and Jeanne- Claude wrap the Reichstag, Berlin,

13 The guest is not to be trusted We assume a threat model in which a malicious kernel wants to hijack a service s privilege Execu/on paths entering and leaving the guarded module must be checked 13

14 We maintain control flow integrity Christoiza/on allows VMM to trap all entries into and exits from module = privileged operation Guarded printk() Module Guest record environment VMM VMM validates the environment for unauthorized changes to execu/on path (e.g. return oriented aiacks) 14

15 We maintain control flow integrity Guarded Module return Guest Environment ok? Entry point valid? VMM = privileged operation 15

16 and code integrity Guarded Module write to module code Guest VMM = privileged operation 16

17 and data integrity private module data Guarded Module write to module data Guest VMM = privileged operation 17

18 What we don t provide Parameter checking Module cloaking Currently no support for interac/ons between guarded modules 18

19 Programmer s perspec/ve 1. Write a Linux kernel module (or use an exis/ng one) 2. Run it through our guarded module compiler (christoiza/on) 3. Op/onal: verify iden/fied module entry points 4. Pass to administrator, who registers guarded module with VMM at run/me 19

20 RECAP: Guarded Modules are guest context virtual services that can have elevated privilege, are protected from the untrusted guest that they run in, yet can s/ll use its func/onality The implementa/on is small: ~220 lines of Perl, ~260 lines of Ruby, and ~1000 lines of C (includes both the GM compila/on toolchain and run/me system) available online at hip://v3vee.org/palacios 20

21 Run/me: module entries/exits trap to the VMM We call these trapped events border crossings Privileged Border- out call Illegal ac/vity Border- out ret Border- in ret Unprivileged Border- in call 21

22 Wrapper stubs exit_wrapped: popq %r11 pushq %rax movq $border_out_call, %rax vmmcall popq %rax callq exit pushq %rax movq $border_in_ret, %rax vmmcall popq %rax pushq %r11 ret (to into guarded module) Trap to VMM, record environment Trap to VMM, Check integrity of environment 22

23 Guest Kernel Border der Crossin ngs Bor Border out Border in Guarded Module VMM Border Control State Machine Privileged VMM Access Privileged Hardware Access Hardware 23

24 Typical Border Crossing guarded module printk() return module_init() guest = privileged operation 24

25 Nested Border Crossings guarded module foo() bar() return callback() return return guest = privileged operation 25

26 Border Crossing from External Event guarded module guest iret interrupt = privileged operation 26

27 Experimental Setup Dell PowerEdge R415 2 sockets, 4 cores each => 8 total cores 2.2 GHz AMD Opteron GB memory Host kernel: Fedora 15 with Linux Guest: single vcore with Busybox environment, Linux

28 System- independent overhead is low Cycles Cost of any VM exit misc_exit_handle entry lookup misc_hcall lower/raise Border- out Call Border- in Ret Border- in Call Border- out Ret 28

29 but ensuring control- flow integrity is expensive Cycles Stack checking entry_lookup misc_exit_handle misc_hcall check priv lower/raise Border- out Call Border- in Ret Border- in Call Border- out Ret 29

30 Outline Mo/va/on Christoiza/on Threat Model and Run/me Invariants Run/me System and Border Crossings Examples Selec/vely Privileged PCI Passthrough Selec/vely Privileged MONITOR/MWAIT Related Work and Conclusions 30

31 We transformed a NIC driver into a guarded module guest VMM guarded module Broadcom BCM5716 1Gb/s no manual modifica/ons to NIC driver! 31

32 SelecFvely expose the PCI BARs to the guest guarded module 1 privileged mode guarded module 2 unprivileged mode r val w r w PCI I/O and memory BARs Hardware NIC 32

33 Bandwidth drops, but border crossing count is very high! Each border crossing is ~16,000 cycles (7.3 μs) Packet Sends Border- in 1.06 Border- out 1.06 Border Crossings / Packet Send 2.12 Packet Receives Border- in 4.64 Border- out 4.64 Border Crossings / Packet Receive 9.28 Many of these are leaf functions! 33

34 We implemented an adap/ve idle loop with selec/ve privilege MONITOR/MWAIT instruc/ons allow a CPU to go into a low- power state un/l a write occurs to a region of memory MONITOR [addr] MWAIT 34

35 VMs can t typically use these instruc/ons Puts physical core to sleep. Other VMs/processes on that core will starve But if the guest knows how many guests are on the machine (VMM state), we can let it run these instruc/ons when idling Can t let untrusted parts of guest hijack this capability! 35

36 Adap/ve mwait_idle() as a guarded module guest idle() mwait_idle() Other vcores present? no guarded module 36

37 zzz zzz vcore 0 mwait_idle() vcore 0 default_idle() idle loop redirec/on stub (guarded module) vcore 1 pcore 0 pcore 1 Scenario 1: a single vcore Scenario 2: vcores sharing a physical core 37

38 Guarded Modules as adapfve, guest- context virtual services We re leveraging VMM global informa/on about the environment That informa/on is only exposed to the guarded module this presents a new way to adapt VMs at run/me 38

39 Related Work Nooks isolate faulty code in kernel modules with wrappers. Kernel requires modifica/on, protec/ng guest from modules [Swit, SOSP 03] LXFI, SecVisor protect kernel against aiack with VMM- authorized code [Mao, SOSP 11], [Seshadri, SOSP 07] SIM guest- resident VMM code, but special- purpose, uses completely separate address space [Sharif, CCS 09] 39

40 Conclusions We ve shown the feasibility of adapfvely extending the VMM into the guest with guarded modules General technique to automa/cally transform kernel modules into guarded modules Two proof- of- concept examples: - Selec/ve Privilege for Commodity NIC driver - Selec/ve Privilege for MONITOR/MWAIT 40

41 Future Work Feasibility of automa/cally inlining leaf func/ons into modules (making them more self- contained) Further mo/va/ng examples for guarded modules Generaliza/on of guarded modules modules with VMM- controlled, specialized execu/on modes 41

42 We are rethinking system sotware interfaces This talk focused on virtualiza/on, but we re thinking bigger (HW/VMM/OS/app) It s /me to reconsider the structure of our system sotware stacks We can adapt sotware services, but can we adapt their organiza/on/structure? 42

43 For more info: Kyle C. Hale hip://halek.co hip://presciencelab.org hip://v3vee.org hip://xstack.sandia.gov/hobbes

Virtualization. Introduction. Why we interested? 11/28/15. Virtualiza5on provide an abstract environment to run applica5ons.

Virtualization. Introduction. Why we interested? 11/28/15. Virtualiza5on provide an abstract environment to run applica5ons. Virtualization Yifu Rong Introduction Virtualiza5on provide an abstract environment to run applica5ons. Virtualiza5on technologies have a long trail in the history of computer science. Why we interested?

More information

VMM Emulation of Intel Hardware Transactional Memory

VMM Emulation of Intel Hardware Transactional Memory VMM Emulation of Intel Hardware Transactional Memory Maciej Swiech, Kyle Hale, Peter Dinda Northwestern University V3VEE Project www.v3vee.org Hobbes Project 1 What will we talk about? We added the capability

More information

CSE 451: Operating Systems. Sec$on 2 Interrupts, system calls, and project 1

CSE 451: Operating Systems. Sec$on 2 Interrupts, system calls, and project 1 CSE 451: Operating Systems Sec$on 2 Interrupts, system calls, and project 1 Interrupts Ü Interrupt Ü Hardware interrupts caused by devices signaling CPU Ü Excep$on Ü Uninten$onal sobware interrupt Ü Ex:

More information

Virtualization, Xen and Denali

Virtualization, Xen and Denali Virtualization, Xen and Denali Susmit Shannigrahi November 9, 2011 Susmit Shannigrahi () Virtualization, Xen and Denali November 9, 2011 1 / 70 Introduction Virtualization is the technology to allow two

More information

2. RELATED WORK Adaptive or autonomic computing in virtualized computing environments is an area of considerable current interest and promise (e.g., [

2. RELATED WORK Adaptive or autonomic computing in virtualized computing environments is an area of considerable current interest and promise (e.g., [ Shifting GEARS to Enable Guest-context Virtual Services Kyle C. Hale Dept. of EECS Northwestern University Evanston, IL 60208 kh@u.northwestern.edu Lei Xia Dept. of EECS Northwestern University Evanston,

More information

Virtualization. Virtualization

Virtualization. Virtualization Virtualization Virtualization Memory virtualization Process feels like it has its own address space Created by MMU, configured by OS Storage virtualization Logical view of disks connected to a machine

More information

Autoscopy Jr.: Intrusion Detec3on for Embedded Control Systems

Autoscopy Jr.: Intrusion Detec3on for Embedded Control Systems Autoscopy Jr.: Intrusion Detec3on for Embedded Control Systems Jason Reeves, Ashwin Ramaswamy, Michael Locasto, Sergey Bratus, and Sean Smith CSRS 2011 Dartmouth College September 24, 2011 1 Outline Mo3va3on

More information

Hardware- assisted Virtualization

Hardware- assisted Virtualization Hardware- assisted Virtualization Pra$k Shah (pcshah) Rohan Pa$l (rspa$l) 15-612 Opera,ng System Prac,cum Carnegie Mellon University 1 Agenda Introduc)on to VT- x CPU virtualiza)on with VT- x VMX VMX Transi$ons

More information

Outline. Compiling process Linking libraries Common compiling op2ons Automa2ng the process

Outline. Compiling process Linking libraries Common compiling op2ons Automa2ng the process Compiling Programs Outline Compiling process Linking libraries Common compiling op2ons Automa2ng the process Program compilation Programmers usually writes code in high- level programming languages (e.g.

More information

Enabling Hybrid Parallel Runtimes Through Kernel and Virtualization Support. Kyle C. Hale and Peter Dinda

Enabling Hybrid Parallel Runtimes Through Kernel and Virtualization Support. Kyle C. Hale and Peter Dinda Enabling Hybrid Parallel Runtimes Through Kernel and Virtualization Support Kyle C. Hale and Peter Dinda Hybrid Runtimes the runtime IS the kernel runtime not limited to abstractions exposed by syscall

More information

Secure Server Project. Xen Project Developer Summit 2013 Adven9um Labs Jason Sonnek

Secure Server Project. Xen Project Developer Summit 2013 Adven9um Labs Jason Sonnek Secure Server Project Xen Project Developer Summit 2013 Adven9um Labs Jason Sonnek 1 Outline I. Mo9va9on, Objec9ves II. Threat Landscape III. Design IV. Status V. Roadmap 2 Mo9va9on In a nutshell: Secure

More information

more uml: sequence & use case diagrams

more uml: sequence & use case diagrams more uml: sequence & use case diagrams uses of uml as a sketch: very selec)ve informal and dynamic forward engineering: describe some concept you need to implement reverse engineering: explain how some

More information

CSE Opera+ng System Principles

CSE Opera+ng System Principles CSE 30341 Opera+ng System Principles Lecture 3 Systems Structure Project 1 Intro CSE 30341 Opera+ng System Principles 2 1 Recap Last Lecture I/O Structure (I/O Interface, DMA) Storage and Memory Hierarchy

More information

G Xen and Nooks. Robert Grimm New York University

G Xen and Nooks. Robert Grimm New York University G22.3250-001 Xen and Nooks Robert Grimm New York University Agenda! Altogether now: The three questions! The (gory) details of Xen! We already covered Disco, so let s focus on the details! Nooks! The grand

More information

SFO17-403: Optimizing the Design and Implementation of KVM/ARM

SFO17-403: Optimizing the Design and Implementation of KVM/ARM SFO17-403: Optimizing the Design and Implementation of KVM/ARM Christoffer Dall connect.linaro.org Efficient, isolated duplicate of the real machine Popek and Golberg [Formal requirements for virtualizable

More information

Networks and Opera/ng Systems Chapter 21: Virtual Machine Monitors ( )

Networks and Opera/ng Systems Chapter 21: Virtual Machine Monitors ( ) Networks and Opera/ng Systems Chapter 21: Virtual Machine Monitors (252 0062 00) Donald Kossmann & Torsten Hoefler Frühjahrssemester 2013 Systems Group Department of Computer Science ETH Zürich Last /me:

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 32: Pipeline Parallelism 3

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 32: Pipeline Parallelism 3 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 32: Pipeline Parallelism 3 Instructor: Dan Garcia inst.eecs.berkeley.edu/~cs61c! Compu@ng in the News At a laboratory in São Paulo,

More information

EDAN65: Compilers, Lecture 13 Run;me systems for object- oriented languages. Görel Hedin Revised:

EDAN65: Compilers, Lecture 13 Run;me systems for object- oriented languages. Görel Hedin Revised: EDAN65: Compilers, Lecture 13 Run;me systems for object- oriented languages Görel Hedin Revised: 2014-10- 13 This lecture Regular expressions Context- free grammar ATribute grammar Lexical analyzer (scanner)

More information

Alterna(ve Architectures

Alterna(ve Architectures Alterna(ve Architectures COMS W4118 Prof. Kaustubh R. Joshi krj@cs.columbia.edu hep://www.cs.columbia.edu/~krj/os References: Opera(ng Systems Concepts (9e), Linux Kernel Development, previous W4118s Copyright

More information

CS5460: Operating Systems

CS5460: Operating Systems CS5460: Operating Systems Lecture 2: OS Hardware Interface (Chapter 2) Course web page: http://www.eng.utah.edu/~cs5460/ CADE lab: WEB L224 and L226 http://www.cade.utah.edu/ Projects will be on Linux

More information

Operating System Security

Operating System Security Operating System Security Operating Systems Defined Hardware: I/o...Memory.CPU Operating Systems: Windows or Android, etc Applications run on operating system Operating Systems Makes it easier to use resources.

More information

How to use the BigDataBench simulator versions

How to use the BigDataBench simulator versions How to use the BigDataBench simulator versions Zhen Jia Institute of Computing Technology, Chinese Academy of Sciences BigDataBench Tutorial MICRO 2014 Cambridge, UK INSTITUTE OF COMPUTING TECHNOLOGY Objec8ves

More information

Opera&ng Systems ECE344

Opera&ng Systems ECE344 Opera&ng Systems ECE344 Lecture 8: Paging Ding Yuan Lecture Overview Today we ll cover more paging mechanisms: Op&miza&ons Managing page tables (space) Efficient transla&ons (TLBs) (&me) Demand paged virtual

More information

Xen and the Art of Virtualiza2on

Xen and the Art of Virtualiza2on Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian PraF, Andrew Warfield University of Cambridge Computer Laboratory Kyle SchuF CS 5204 Virtualiza2on Abstrac2on

More information

Verifiable Cloud Outsourcing for Network Func9ons (+ Verifiable Resource Accoun9ng for Cloud Services)

Verifiable Cloud Outsourcing for Network Func9ons (+ Verifiable Resource Accoun9ng for Cloud Services) 1 Verifiable Cloud Outsourcing for Network Func9ons (+ Verifiable Resource Accoun9ng for Cloud Services) Vyas Sekar vnfo joint with Seyed Fayazbakhsh, Mike Reiter VRA joint with Chen Chen, Petros Mania9s,

More information

W4118: interrupt and system call. Junfeng Yang

W4118: interrupt and system call. Junfeng Yang W4118: interrupt and system call Junfeng Yang Outline Motivation for protection Interrupt System call 2 Need for protection Kernel privileged, cannot trust user processes User processes may be malicious

More information

Difference Engine: Harnessing Memory Redundancy in Virtual Machines (D. Gupta et all) Presented by: Konrad Go uchowski

Difference Engine: Harnessing Memory Redundancy in Virtual Machines (D. Gupta et all) Presented by: Konrad Go uchowski Difference Engine: Harnessing Memory Redundancy in Virtual Machines (D. Gupta et all) Presented by: Konrad Go uchowski What is Virtual machine monitor (VMM)? Guest OS Guest OS Guest OS Virtual machine

More information

To EL2, and Beyond! connect.linaro.org. Optimizing the Design and Implementation of KVM/ARM

To EL2, and Beyond! connect.linaro.org. Optimizing the Design and Implementation of KVM/ARM To EL2, and Beyond! Optimizing the Design and Implementation of KVM/ARM LEADING COLLABORATION IN THE ARM ECOSYSTEM Christoffer Dall Shih-Wei Li connect.linaro.org

More information

Machine- Level Representa2on: Procedure

Machine- Level Representa2on: Procedure Machine- Level Representa2on: Procedure CSCI 2021: Machine Architecture and Organiza2on Pen- Chung Yew Department Computer Science and Engineering University of Minnesota With Slides from Bryant, O Hallaron

More information

COS 318: Operating Systems. Virtual Machine Monitors

COS 318: Operating Systems. Virtual Machine Monitors COS 318: Operating Systems Virtual Machine Monitors Prof. Margaret Martonosi Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall11/cos318/ Announcements Project

More information

Virtualization. Dr. Yingwu Zhu

Virtualization. Dr. Yingwu Zhu Virtualization Dr. Yingwu Zhu Virtualization Definition Framework or methodology of dividing the resources of a computer into multiple execution environments. Types Platform Virtualization: Simulate a

More information

The Kernel Abstrac/on

The Kernel Abstrac/on The Kernel Abstrac/on Debugging as Engineering Much of your /me in this course will be spent debugging In industry, 50% of sobware dev is debugging Even more for kernel development How do you reduce /me

More information

SecVisor: A Tiny Hypervisor for Lifetime Kernel Code Integrity

SecVisor: A Tiny Hypervisor for Lifetime Kernel Code Integrity SecVisor: A Tiny Hypervisor for Lifetime Kernel Code Integrity Arvind Seshadri, Mark Luk, Ning Qu, Adrian Perrig Carnegie Mellon University Kernel rootkits Motivation Malware inserted into OS kernels Anti

More information

Virtualization. Pradipta De

Virtualization. Pradipta De Virtualization Pradipta De pradipta.de@sunykorea.ac.kr Today s Topic Virtualization Basics System Virtualization Techniques CSE506: Ext Filesystem 2 Virtualization? A virtual machine (VM) is an emulation

More information

A Userspace Packet Switch for Virtual Machines

A Userspace Packet Switch for Virtual Machines SHRINKING THE HYPERVISOR ONE SUBSYSTEM AT A TIME A Userspace Packet Switch for Virtual Machines Julian Stecklina OS Group, TU Dresden jsteckli@os.inf.tu-dresden.de VEE 2014, Salt Lake City 1 Motivation

More information

Module 1: Virtualization. Types of Interfaces

Module 1: Virtualization. Types of Interfaces Module 1: Virtualization Virtualization: extend or replace an existing interface to mimic the behavior of another system. Introduced in 1970s: run legacy software on newer mainframe hardware Handle platform

More information

Back To The Future: A Radical Insecure Design of KVM on ARM

Back To The Future: A Radical Insecure Design of KVM on ARM Back To The Future: A Radical Insecure Design of KVM on ARM Abstract In ARM, there are certain instructions that generate exceptions. Such instructions are typically executed to request a service from

More information

Virtual Machines. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Virtual Machines. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Virtual Machines Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today's Topics History and benefits of virtual machines Virtual machine technologies

More information

Advanced branch predic.on algorithms. Ryan Gabrys Ilya Kolykhmatov

Advanced branch predic.on algorithms. Ryan Gabrys Ilya Kolykhmatov Advanced branch predic.on algorithms Ryan Gabrys Ilya Kolykhmatov Context Branches are frequent: 15-25 % A branch predictor allows the processor to specula.vely fetch and execute instruc.ons down the predicted

More information

Prac%cal Control Flow Integrity & Randomiza%on for Binary Executables

Prac%cal Control Flow Integrity & Randomiza%on for Binary Executables Prac%cal Control Flow Integrity & Randomiza%on for Binary Executables Chao Zhang Tao Wei Zhaofeng Chen Lei Duan Peking University Peking University UC Berkeley Peking University Peking University László

More information

Virtual Memory: Concepts

Virtual Memory: Concepts Virtual Memory: Concepts 5-23 / 8-23: Introduc=on to Computer Systems 6 th Lecture, Mar. 8, 24 Instructors: Anthony Rowe, Seth Goldstein, and Gregory Kesden Today VM Movaon and Address spaces ) VM as a

More information

Virtualization. Starting Point: A Physical Machine. What is a Virtual Machine? Virtualization Properties. Types of Virtualization

Virtualization. Starting Point: A Physical Machine. What is a Virtual Machine? Virtualization Properties. Types of Virtualization Starting Point: A Physical Machine Virtualization Based on materials from: Introduction to Virtual Machines by Carl Waldspurger Understanding Intel Virtualization Technology (VT) by N. B. Sahgal and D.

More information

Virtualization. ! Physical Hardware Processors, memory, chipset, I/O devices, etc. Resources often grossly underutilized

Virtualization. ! Physical Hardware Processors, memory, chipset, I/O devices, etc. Resources often grossly underutilized Starting Point: A Physical Machine Virtualization Based on materials from: Introduction to Virtual Machines by Carl Waldspurger Understanding Intel Virtualization Technology (VT) by N. B. Sahgal and D.

More information

Virtual Machines. Part 2: starting 19 years ago. Operating Systems In Depth IX 1 Copyright 2018 Thomas W. Doeppner. All rights reserved.

Virtual Machines. Part 2: starting 19 years ago. Operating Systems In Depth IX 1 Copyright 2018 Thomas W. Doeppner. All rights reserved. Virtual Machines Part 2: starting 19 years ago Operating Systems In Depth IX 1 Copyright 2018 Thomas W. Doeppner. All rights reserved. Operating Systems In Depth IX 2 Copyright 2018 Thomas W. Doeppner.

More information

Advanced Systems Security: Virtual Machine Systems

Advanced Systems Security: Virtual Machine Systems Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA Advanced Systems Security:

More information

This lecture. Virtual Memory. Virtual memory (VM) CS Instructor: Sanjeev Se(a

This lecture. Virtual Memory. Virtual memory (VM) CS Instructor: Sanjeev Se(a Virtual Memory Instructor: Sanjeev Se(a This lecture (VM) Overview and mo(va(on VM as tool for caching VM as tool for memory management VM as tool for memory protec(on Address transla(on 2 Virtual Memory

More information

Intel s Virtualization Extensions (VT-x) So you want to build a hypervisor?

Intel s Virtualization Extensions (VT-x) So you want to build a hypervisor? Intel s Virtualization Extensions (VT-x) So you want to build a hypervisor? Mr. Jacob Torrey May 13, 2014 Dartmouth College 153 Brooks Road, Rome, NY 315.336.3306 http://ainfosec.com @JacobTorrey torreyj@ainfosec.com

More information

RDMA-like VirtIO Network Device for Palacios Virtual Machines

RDMA-like VirtIO Network Device for Palacios Virtual Machines RDMA-like VirtIO Network Device for Palacios Virtual Machines Kevin Pedretti UNM ID: 101511969 CS-591 Special Topics in Virtualization May 10, 2012 Abstract This project developed an RDMA-like VirtIO network

More information

Chapter 5 C. Virtual machines

Chapter 5 C. Virtual machines Chapter 5 C Virtual machines Virtual Machines Host computer emulates guest operating system and machine resources Improved isolation of multiple guests Avoids security and reliability problems Aids sharing

More information

Implementation and Analysis of Large Receive Offload in a Virtualized System

Implementation and Analysis of Large Receive Offload in a Virtualized System Implementation and Analysis of Large Receive Offload in a Virtualized System Takayuki Hatori and Hitoshi Oi The University of Aizu, Aizu Wakamatsu, JAPAN {s1110173,hitoshi}@u-aizu.ac.jp Abstract System

More information

PROTECTING VM REGISTER STATE WITH AMD SEV-ES DAVID KAPLAN LSS 2017

PROTECTING VM REGISTER STATE WITH AMD SEV-ES DAVID KAPLAN LSS 2017 PROTECTING VM REGISTER STATE WITH AMD SEV-ES DAVID KAPLAN LSS 2017 BACKGROUND-- HARDWARE MEMORY ENCRYPTION AMD Secure Memory Encryption (SME) / AMD Secure Encrypted Virtualization (SEV) Hardware AES engine

More information

CS370: Operating Systems [Spring 2017] Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Spring 2017] Dept. Of Computer Science, Colorado State University Frequently asked questions from the previous class survey CS 370: OPERATING SYSTEMS [VIRTUALIZATION] Shrideep Pallickara Computer Science Colorado State University Difference between physical and logical

More information

Defeating Return-Oriented Rootkits with Return-less Kernels

Defeating Return-Oriented Rootkits with Return-less Kernels 5 th ACM SIGOPS EuroSys Conference, Paris, France April 15 th, 2010 Defeating Return-Oriented Rootkits with Return-less Kernels Jinku Li, Zhi Wang, Xuxian Jiang, Mike Grace, Sina Bahram Department of Computer

More information

Operating Systems 4/27/2015

Operating Systems 4/27/2015 Virtualization inside the OS Operating Systems 24. Virtualization Memory virtualization Process feels like it has its own address space Created by MMU, configured by OS Storage virtualization Logical view

More information

CS 550 Operating Systems Spring Introduction to Virtual Machines

CS 550 Operating Systems Spring Introduction to Virtual Machines CS 550 Operating Systems Spring 2018 Introduction to Virtual Machines 1 How to share a physical computer Operating systems allows multiple processes/applications to run simultaneously Via process/memory

More information

CSE 120 Principles of Operating Systems

CSE 120 Principles of Operating Systems CSE 120 Principles of Operating Systems Spring 2018 Lecture 16: Virtual Machine Monitors Geoffrey M. Voelker Virtual Machine Monitors 2 Virtual Machine Monitors Virtual Machine Monitors (VMMs) are a hot

More information

Live Migration of Direct-Access Devices. Live Migration

Live Migration of Direct-Access Devices. Live Migration Live Migration of Direct-Access Devices Asim Kadav and Michael M. Swift University of Wisconsin - Madison Live Migration Migrating VM across different hosts without noticeable downtime Uses of Live Migration

More information

Virtual Machine Security

Virtual Machine Security Virtual Machine Security CSE443 - Spring 2012 Introduction to Computer and Network Security Professor Jaeger www.cse.psu.edu/~tjaeger/cse443-s12/ 1 Operating System Quandary Q: What is the primary goal

More information

SecVisor: A Tiny Hypervisor to Provide Lifetime Kernel Code Integrity for Commodity OSes

SecVisor: A Tiny Hypervisor to Provide Lifetime Kernel Code Integrity for Commodity OSes SecVisor: A Tiny Hypervisor to Provide Lifetime Kernel Code Integrity for Commodity OSes Arvind Seshadri Mark Luk Ning Qu Adrian Perrig CyLab/CMU CyLab/CMU CyLab/CMU CyLab/CMU Pittsburgh, PA, USA Pittsburgh,

More information

SQLite with a Fine-Toothed Comb. John Regehr Trust-in-So1 / University of Utah

SQLite with a Fine-Toothed Comb. John Regehr Trust-in-So1 / University of Utah SQLite with a Fine-Toothed Comb John Regehr Trust-in-So1 / University of Utah Feasible states for a system we care about No execu

More information

Electrical Engineering and Computer Science Department

Electrical Engineering and Computer Science Department Electrical Engineering and Computer Science Department Technical Report Number: NU-EECS-16-03 March, 2016 Automatic Hybridization of Runtime Systems Kyle C. Hale, Conor Hetland, and Peter Dinda Abstract

More information

RISCV with Sanctum Enclaves. Victor Costan, Ilia Lebedev, Srini Devadas

RISCV with Sanctum Enclaves. Victor Costan, Ilia Lebedev, Srini Devadas RISCV with Sanctum Enclaves Victor Costan, Ilia Lebedev, Srini Devadas Today, privilege implies trust (1/3) If computing remotely, what is the TCB? Priviledge CPU HW Hypervisor trusted computing base OS

More information

Follow us on Twitter for important news and Compiling Programs

Follow us on Twitter for important news and Compiling Programs Follow us on Twitter for important news and updates: @ACCREVandy Compiling Programs Outline Compiling process Linking libraries Common compiling op2ons Automa2ng the process Program compilation Programmers

More information

Hard Real-time Scheduling for Parallel Run-time Systems

Hard Real-time Scheduling for Parallel Run-time Systems Hard Real-time Scheduling for Parallel Run-time Systems Peter Dinda Xiaoyang Wang Jinghang Wang Chris Beauchene Conor Hetland Prescience Lab Department of EECS Northwestern University pdinda.org presciencelab.org

More information

The Challenges of X86 Hardware Virtualization. GCC- Virtualization: Rajeev Wankar 36

The Challenges of X86 Hardware Virtualization. GCC- Virtualization: Rajeev Wankar 36 The Challenges of X86 Hardware Virtualization GCC- Virtualization: Rajeev Wankar 36 The Challenges of X86 Hardware Virtualization X86 operating systems are designed to run directly on the bare-metal hardware,

More information

Originally prepared by Lehigh graduate Greg Bosch; last modified April 2016 by B. Davison

Originally prepared by Lehigh graduate Greg Bosch; last modified April 2016 by B. Davison Virtualization Originally prepared by Lehigh graduate Greg Bosch; last modified April 2016 by B. Davison I. Introduction to Virtualization II. Virtual liances III. Benefits to Virtualization IV. Example

More information

Lecture 2: Memory in C

Lecture 2: Memory in C CIS 330:! / / / / (_) / / / / _/_/ / / / / / \/ / /_/ / `/ \/ / / / _/_// / / / / /_ / /_/ / / / / /> < / /_/ / / / / /_/ / / / /_/ / / / / / \ /_/ /_/_/_/ _ \,_/_/ /_/\,_/ \ /_/ \ //_/ /_/ Lecture 2:

More information

Virtual Memory. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University

Virtual Memory. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Virtual Memory Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Precise Definition of Virtual Memory Virtual memory is a mechanism for translating logical

More information

Virtual Machines. To do. q VM over time q Implementation methods q Hardware features supporting VM q Next time: Midterm?

Virtual Machines. To do. q VM over time q Implementation methods q Hardware features supporting VM q Next time: Midterm? Virtual Machines To do q VM over time q Implementation methods q Hardware features supporting VM q Next time: Midterm? *Partially based on notes from C. Waldspurger, VMware, 2010 and Arpaci-Dusseau s Three

More information

Fast access ===> use map to find object. HW == SW ===> map is in HW or SW or combo. Extend range ===> longer, hierarchical names

Fast access ===> use map to find object. HW == SW ===> map is in HW or SW or combo. Extend range ===> longer, hierarchical names Fast access ===> use map to find object HW == SW ===> map is in HW or SW or combo Extend range ===> longer, hierarchical names How is map embodied: --- L1? --- Memory? The Environment ---- Long Latency

More information

Virtual Machine Monitors (VMMs) are a hot topic in

Virtual Machine Monitors (VMMs) are a hot topic in CSE 120 Principles of Operating Systems Winter 2007 Lecture 16: Virtual Machine Monitors Keith Marzullo and Geoffrey M. Voelker Virtual Machine Monitors Virtual Machine Monitors (VMMs) are a hot topic

More information

Background. IBM sold expensive mainframes to large organizations. Monitor sits between one or more OSes and HW

Background. IBM sold expensive mainframes to large organizations. Monitor sits between one or more OSes and HW Virtual Machines Background IBM sold expensive mainframes to large organizations Some wanted to run different OSes at the same time (because applications were developed on old OSes) Solution: IBM developed

More information

ARMlock: Hardware-based Fault Isolation for ARM

ARMlock: Hardware-based Fault Isolation for ARM ARMlock: Hardware-based Fault Isolation for ARM Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang North Carolina State University Xi an Jiaotong University Florida State University Software is Complicated

More information

Rack Disaggregation Using PCIe Networking

Rack Disaggregation Using PCIe Networking Ethernet-based Software Defined Network (SDN) Rack Disaggregation Using PCIe Networking Cloud Computing Research Center for Mobile Applications (CCMA) Industrial Technology Research Institute 雲端運算行動應用研究中心

More information

Mo;va;on. Program Equivalence. Performance. Goal. More Pain, More Gain 10/27/15. Program Equivalence. (slides due to Rahul Sharma)

Mo;va;on. Program Equivalence. Performance. Goal. More Pain, More Gain 10/27/15. Program Equivalence. (slides due to Rahul Sharma) Mo;va;on Program Equivalence Verifica/on is specifica/on- limited We need specifica/ons to verifica/on And specifica/ons are hard to come by (slides due to Rahul Sharma) Much research focuses on well-

More information

Profiling & Tuning Applica1ons. CUDA Course July István Reguly

Profiling & Tuning Applica1ons. CUDA Course July István Reguly Profiling & Tuning Applica1ons CUDA Course July 21-25 István Reguly Introduc1on Why is my applica1on running slow? Work it out on paper Instrument code Profile it NVIDIA Visual Profiler Works with CUDA,

More information

CSE Opera*ng System Principles

CSE Opera*ng System Principles CSE 30341 Opera*ng System Principles Overview/Introduc7on Syllabus Instructor: Chris*an Poellabauer (cpoellab@nd.edu) Course Mee*ngs TR 9:30 10:45 DeBartolo 101 TAs: Jian Yang, Josh Siva, Qiyu Zhi, Louis

More information

Operating System Kernels

Operating System Kernels Operating System Kernels Presenter: Saikat Guha Cornell University CS 614, Fall 2005 Operating Systems Initially, the OS was a run-time library Batch ( 55 65): Resident, spooled jobs Multiprogrammed (late

More information

Introduc)on to Xeon Phi

Introduc)on to Xeon Phi Introduc)on to Xeon Phi ACES Aus)n, TX Dec. 04 2013 Kent Milfeld, Luke Wilson, John McCalpin, Lars Koesterke TACC What is it? Co- processor PCI Express card Stripped down Linux opera)ng system Dense, simplified

More information

Confinement (Running Untrusted Programs)

Confinement (Running Untrusted Programs) Confinement (Running Untrusted Programs) Chester Rebeiro Indian Institute of Technology Madras Untrusted Programs How to run untrusted programs and not harm your system? Answer: Confinement (some:mes called

More information

Fast access ===> use map to find object. HW == SW ===> map is in HW or SW or combo. Extend range ===> longer, hierarchical names

Fast access ===> use map to find object. HW == SW ===> map is in HW or SW or combo. Extend range ===> longer, hierarchical names Fast access ===> use map to find object HW == SW ===> map is in HW or SW or combo Extend range ===> longer, hierarchical names How is map embodied: --- L1? --- Memory? The Environment ---- Long Latency

More information

Design Principles & Prac4ces

Design Principles & Prac4ces Design Principles & Prac4ces Robert France Robert B. France 1 Understanding complexity Accidental versus Essen4al complexity Essen%al complexity: Complexity that is inherent in the problem or the solu4on

More information

Linux and Xen. Andrea Sarro. andrea.sarro(at)quadrics.it. Linux Kernel Hacking Free Course IV Edition

Linux and Xen. Andrea Sarro. andrea.sarro(at)quadrics.it. Linux Kernel Hacking Free Course IV Edition Linux and Xen Andrea Sarro andrea.sarro(at)quadrics.it Linux Kernel Hacking Free Course IV Edition Andrea Sarro (andrea.sarro(at)quadrics.it) Linux and Xen 07/05/2008 1 / 37 Introduction Xen and Virtualization

More information

Single and mul,threaded processes

Single and mul,threaded processes 1 Single and mul,threaded processes Why threads? Express concurrency Web server (mul,ple requests), Browser (GUI + network I/O + rendering), most GUI programs for(;;) { struct request *req = get_request();

More information

Virtual machines are an interesting extension of the virtual-memory concept: not only do we give processes the illusion that they have all of memory

Virtual machines are an interesting extension of the virtual-memory concept: not only do we give processes the illusion that they have all of memory Virtual machines are an interesting extension of the virtual-memory concept: not only do we give processes the illusion that they have all of memory to themselves, but also we give them the illusion that

More information

Xen and the Art of Virtualization

Xen and the Art of Virtualization Xen and the Art of Virtualization Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, Andrew Warfield Presented by Thomas DuBuisson Outline Motivation

More information

Lecture 2: September 9

Lecture 2: September 9 CMPSCI 377 Operating Systems Fall 2010 Lecture 2: September 9 Lecturer: Prashant Shenoy TA: Antony Partensky & Tim Wood 2.1 OS & Computer Architecture The operating system is the interface between a user

More information

Virtualization. Adam Belay

Virtualization. Adam Belay Virtualization Adam Belay What is a virtual machine Simulation of a computer Running as an application on a host computer Accurate Isolated Fast Why use a virtual machine? To run multiple

More information

Learning Outcomes. Extended OS. Observations Operating systems provide well defined interfaces. Virtual Machines. Interface Levels

Learning Outcomes. Extended OS. Observations Operating systems provide well defined interfaces. Virtual Machines. Interface Levels Learning Outcomes Extended OS An appreciation that the abstract interface to the system can be at different levels. Virtual machine monitors (VMMs) provide a lowlevel interface An understanding of trap

More information

Today s Objec4ves. Data Center. Virtualiza4on Cloud Compu4ng Amazon Web Services. What did you think? 10/23/17. Oct 23, 2017 Sprenkle - CSCI325

Today s Objec4ves. Data Center. Virtualiza4on Cloud Compu4ng Amazon Web Services. What did you think? 10/23/17. Oct 23, 2017 Sprenkle - CSCI325 Today s Objec4ves Virtualiza4on Cloud Compu4ng Amazon Web Services Oct 23, 2017 Sprenkle - CSCI325 1 Data Center What did you think? Oct 23, 2017 Sprenkle - CSCI325 2 1 10/23/17 Oct 23, 2017 Sprenkle -

More information

kguard++: Improving the Performance of kguard with Low-latency Code Inflation

kguard++: Improving the Performance of kguard with Low-latency Code Inflation kguard++: Improving the Performance of kguard with Low-latency Code Inflation Jordan P. Hendricks Brown University Abstract In this paper, we introduce low-latency code inflation for kguard, a GCC plugin

More information

CSSE232 Computer Architecture I. Datapath

CSSE232 Computer Architecture I. Datapath CSSE232 Computer Architecture I Datapath Class Status Reading Sec;ons 4.1-3 Project Project group milestone assigned Indicate who you want to work with Indicate who you don t want to work with Due next

More information

Return-Oriented Rootkits

Return-Oriented Rootkits Return-Oriented Rootkits Ralf Hund Troopers March 10, 2010 What is Return-Oriented Programming? New emerging attack technique, pretty hyped topic Gained awareness in 2007 in Hovav Shacham s paper The Geometry

More information

AMD Pacifica Virtualization Technology

AMD Pacifica Virtualization Technology AMD Pacifica Virtualization Technology AMD Unveils Virtualization Platform AMD Pacifica Tutorial 2 Virtual Machine Approaches Carve a Server into Many Virtual Machines Hosted Virtualization Hypervisor-based

More information

Shells and Processes. Bryce Boe 2012/08/08 CS32, Summer 2012 B

Shells and Processes. Bryce Boe 2012/08/08 CS32, Summer 2012 B Shells and Processes Bryce Boe 2012/08/08 CS32, Summer 2012 B Outline Opera>ng Systems and Linux Review Shells Project 1 Part 1 Overview Processes Overview for Monday (Sor>ng Presenta>ons) OS Review Opera>ng

More information

Spring 2017 :: CSE 506. Introduction to. Virtual Machines. Nima Honarmand

Spring 2017 :: CSE 506. Introduction to. Virtual Machines. Nima Honarmand Introduction to Virtual Machines Nima Honarmand Virtual Machines & Hypervisors Virtual Machine: an abstraction of a complete compute environment through the combined virtualization of the processor, memory,

More information

System Virtual Machines

System Virtual Machines System Virtual Machines Outline Need and genesis of system Virtual Machines Basic concepts User Interface and Appearance State Management Resource Control Bare Metal and Hosted Virtual Machines Co-designed

More information