Chapter 5: Threads. Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads

Size: px
Start display at page:

Download "Chapter 5: Threads. Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads"

Transcription

1 Chapter 5: Threads Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads 5.1 Silberschatz, Galvin and Gagne 2003

2 More About Processes A process encapsulates a running program, providing an execution state along with certain resources, including file handles and registers, along with: a program counter (Instruction Pointer) a process id, a process group id, etc. a process stack one or more data segments a heap for dynamic memory allocation a process state (running, ready, waiting, etc.) Informally, a process is an executing program 5.2 Silberschatz, Galvin and Gagne 2003

3 Multiprocessing A multiprocessing or multitasking operating system (like Unix, as opposed to DOS) can have more than one process executing at any given time This simultaneous execution may either be concurrent, meaning that multiple processes in a run state can be swapped in and out by the OS parallel, meaning that multiple processes are actually running at the same time on multiple processors 5.3 Silberschatz, Galvin and Gagne 2003

4 What is a Thread? A thread is an encapsulation of some flow of control in a program, that can be independently scheduled Each process is given a single thread by default A thread is sometimes called a lightweight process, because it is similar to a process in that it has its own thread id, stack, stack pointer, a signal mask, program counter, registers, etc. All threads within a given process share resource handles, memory segments (heap and data segments), and code. 5.4 Silberschatz, Galvin and Gagne 2003

5 Single and Multithreaded Processes 5.5 Silberschatz, Galvin and Gagne 2003

6 Process/Thread A P R O C E S S A T H R E A D P r o c e s s I D T h r e a d I D P r o g r a m C o u n t e r P r o g r a m C o u n t e r S i g n a l D i s p a t c h T a b l e S i g n a l D i s p a t c h T a b l e R e g i s t e r s R e g i s t e r s P r o c e s s P r i o r i t y T h r e a d P r i o r i t y S t a c k P o i n t e r & S t a c k S t a c k P o i n t e r & S t a c k H e a p M e m o r y M a p F i l e D e s c r i p t o r T a b l e A l l t h r e a d s s h a r e t h e s a m e m e m o r y, h e a p, a n d f i l e h a n d l e s ( a n d o f f s e t s ) 5.6 Silberschatz, Galvin and Gagne 2003

7 Benefits Responsiveness Resource Sharing Economy Utilization of MP Architectures 5.7 Silberschatz, Galvin and Gagne 2003

8 Processes and Threads: Creation Times Because threads are by definition lightweight, they can be created more quickly that heavy processes: Sun Ultra5, 320 Meg Ram, 1 CPU 94 forks()/second 1,737 threads/second (18x faster) Sun Sparc Ultra 1, 256 Meg Ram, 1 CPU 67 forks()/second 1,359 threads/second (20x faster) Sun Enterprise 420R, 5 Gig Ram, 4 CPUs 146 forks()/second 35,640 threads/second (244x faster) Linux 2.4 Kernel,.5 Gig Ram, 2 CPUs 1,811 forks()/second 227,611 threads/second (125x faster) 5.8 Silberschatz, Galvin and Gagne 2003

9 Benefits of Multithreading Performance gains Amdahl s Law: speedup = 1 / ((1 p) + (p/n)) the speedup generated from parallelizing code is the time executing the parallelizable work (p) divided by the number of processors (n) plus 1 minus the parallelizable work (1-p) The more code that can run in parallel, the faster the overall program will run If you can apply multiple processors for 75% of your program s execution time, and you re running on a dual processor box: 1 / ((1 -.75) + (.75 / 2)) = 60% improvement Why is it not strictly linear? How do you calculate p? 5.9 Silberschatz, Galvin and Gagne 2003

10 User Threads Thread management done by user-level threads library Three primary thread libraries: POSIX (IEEE Portable Operating System Interface) Pthreads Java threads Win32 threads 5.10 Silberschatz, Galvin and Gagne 2003

11 Kernel Threads Supported by the Kernel Examples Windows XP/2000 Solaris Linux Tru64 UNIX Mac OS X 5.11 Silberschatz, Galvin and Gagne 2003

12 Many-to-One One-to-One Many-to-Many Multithreading Models 5.12 Silberschatz, Galvin and Gagne 2003

13 Many-to-One Many user-level threads mapped to single kernel thread Examples Solaris Green Threads used by early JVMs GNU Portable Threads 5.13 Silberschatz, Galvin and Gagne 2003

14 Many-to-One Model 5.14 Silberschatz, Galvin and Gagne 2003

15 One-to-One Each user-level thread maps to kernel thread Examples Windows NT/XP/2000 Linux Solaris 9 and later 5.15 Silberschatz, Galvin and Gagne 2003

16 One-to-one Model 5.16 Silberschatz, Galvin and Gagne 2003

17 Many-to-Many Model Allows many user level threads to be mapped to many kernel threads Allows the operating system to create a sufficient number of kernel threads Solaris prior to version 9 Windows NT/2000 with the ThreadFiber package 5.17 Silberschatz, Galvin and Gagne 2003

18 Many-to-Many Model 5.18 Silberschatz, Galvin and Gagne 2003

19 Two-level Model Similar to M:M, except that it allows a user thread to be bound to kernel thread Examples IRIX HP-UX Tru64 UNIX Solaris 8 and earlier 5.19 Silberschatz, Galvin and Gagne 2003

20 Two-level Model 5.20 Silberschatz, Galvin and Gagne 2003

21 Threading Issues Semantics of fork() and exec() system calls Thread cancellation Signal handling Thread pools Thread specific data Scheduler activations Does fork() duplicate only the calling thread or all threads? 5.21 Silberschatz, Galvin and Gagne 2003

22 Thread Cancellation Terminating a thread before it has finished Two general approaches: Asynchronous cancellation terminates the target thread immediately Deferred cancellation allows the target thread to periodically check if it should be cancelled 5.22 Silberschatz, Galvin and Gagne 2003

23 Signal Handling Signals are used in UNIX systems to notify a process that a particular event has occurred A signal handler is used to process signals Signal is generated by particular event CPU interrupt, I/O completion, mouse click,... Signal is delivered to a process Signal is handled Options: Deliver the signal to the thread to which the signal applies Deliver the signal to every thread in the process Deliver the signal to certain threads in the process Assign a specific threa to receive all signals for the process 5.23 Silberschatz, Galvin and Gagne 2003

24 Thread Pools Create a number of threads in a pool where they await work Advantages: Usually slightly faster to service a request with an existing thread than create a new thread Allows the number of threads in the application(s) to be bound to the size of the pool 5.24 Silberschatz, Galvin and Gagne 2003

25 Pthreads A POSIX standard (IEEE c) API for thread creation and synchronization API specifies behavior of the thread library, implementation is up to development of the library Common in UNIX operating systems (Solaris, Linux, Mac OS X) 5.25 Silberschatz, Galvin and Gagne 2003

26 POSIX Each OS had its own thread library and style That made writing multithreaded programs difficult because: you had to learn a new API with each new OS you had to modify your code with each port to a new OS POSIX (IEEE c-1995) provided a standard known as Pthreads Unix International (UI) threads (Solaris threads) are available on Solaris (which also supports POSIX threads) 5.26 Silberschatz, Galvin and Gagne 2003

27 Windows XP Threads Implements the one-to-one mapping Each thread contains A thread id Register set Separate user and kernel stacks Private data storage area The register set, stacks, and private storage area are known as the context of the threads The primary data structures of a thread include: ETHREAD (executive thread block) KTHREAD (kernel thread block) TEB (thread environment block) 5.27 Silberschatz, Galvin and Gagne 2003

28 Linux Threads Linux refers to them as tasks rather than threads Thread creation is done through clone() system call clone() allows a child task to share the address space of the parent task (process) 5.28 Silberschatz, Galvin and Gagne 2003

29 Java Threads Java threads are managed by the JVM Java threads may be created by: Extending Thread class Implementing the Runnable interface 5.29 Silberschatz, Galvin and Gagne 2003

30 Java Thread States 5.30 Silberschatz, Galvin and Gagne 2003

31 On the Scheduling of Threads Threads may be scheduled by the system scheduler (OS) or by a scheduler in the thread library (depending on the threading model). The scheduler in the thread library: will preempt currently running threads on the basis of priority does NOT time-slice (i.e., is not fair). A running thread will continue to run forever unless: a thread call is made into the thread library a blocking call is made the running thread calls sched_yield() 5.31 Silberschatz, Galvin and Gagne 2003

32 Chapter 5 Homework Write a multithreaded program Java, or Pthreads pg 169, 5.9, 5.10, 5.11, OR an MT program of your choice write, compile, run, and monitor your program as it runs show source code, output of run show results of monitoring the program run...execution time, memory use, thread execution write a program means read/research/understand existing code fragments and examples, prepare a source file, compile and run the program, explain the execution and output it does NOT mean simply copy/modify other's solution to the assignment 5.32 Silberschatz, Galvin and Gagne 2003

Chapter 4: Threads. Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads. Operating System Concepts

Chapter 4: Threads. Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads. Operating System Concepts Chapter 4: Threads Chapter 4: Threads Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads 4.2 Silberschatz, Galvin and Gagne 2005 Single and Multithreaded

More information

Chapter 4: Threads. Chapter 4: Threads

Chapter 4: Threads. Chapter 4: Threads Chapter 4: Threads Silberschatz, Galvin and Gagne 2009 Chapter 4: Threads Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples Windows XP Threads Linux Threads 4.2

More information

I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed CHAPTER 4: MULTITHREADED PROGRAMMING

I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed CHAPTER 4: MULTITHREADED PROGRAMMING I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed CHAPTER 4: MULTITHREADED PROGRAMMING Chapter 4: Multithreaded Programming Overview Multithreading Models Thread Libraries Threading

More information

CS 450 Operating System Week 4 Lecture Notes

CS 450 Operating System Week 4 Lecture Notes CS 450 Operating System Week 4 Lecture Notes Reading: Operating System Concepts (7 th Edition) - Silberschatz, Galvin, Gagne Chapter 5 - Pages 129 147 Objectives: 1. Explain the main Objective of Threads

More information

Chapter 4: Threads. Operating System Concepts. Silberschatz, Galvin and Gagne

Chapter 4: Threads. Operating System Concepts. Silberschatz, Galvin and Gagne Chapter 4: Threads Silberschatz, Galvin and Gagne Chapter 4: Threads Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples Linux Threads 4.2 Silberschatz, Galvin and

More information

CS307: Operating Systems

CS307: Operating Systems CS307: Operating Systems Chentao Wu 吴晨涛 Associate Professor Dept. of Computer Science and Engineering Shanghai Jiao Tong University SEIEE Building 3-513 wuct@cs.sjtu.edu.cn Download Lectures ftp://public.sjtu.edu.cn

More information

Chapter 4: Threads. Chapter 4: Threads

Chapter 4: Threads. Chapter 4: Threads Chapter 4: Threads Silberschatz, Galvin and Gagne 2013 Chapter 4: Threads Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues Operating System Examples

More information

Chapter 4: Multithreaded Programming. Operating System Concepts 8 th Edition,

Chapter 4: Multithreaded Programming. Operating System Concepts 8 th Edition, Chapter 4: Multithreaded Programming, Silberschatz, Galvin and Gagne 2009 Chapter 4: Multithreaded Programming Overview Multithreading Models Thread Libraries Threading Issues 4.2 Silberschatz, Galvin

More information

Chapter 4: Multi-Threaded Programming

Chapter 4: Multi-Threaded Programming Chapter 4: Multi-Threaded Programming Chapter 4: Threads 4.1 Overview 4.2 Multicore Programming 4.3 Multithreading Models 4.4 Thread Libraries Pthreads Win32 Threads Java Threads 4.5 Implicit Threading

More information

OPERATING SYSTEM. Chapter 4: Threads

OPERATING SYSTEM. Chapter 4: Threads OPERATING SYSTEM Chapter 4: Threads Chapter 4: Threads Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues Operating System Examples Objectives To

More information

Chapter 4: Multithreaded Programming Dr. Varin Chouvatut. Operating System Concepts 8 th Edition,

Chapter 4: Multithreaded Programming Dr. Varin Chouvatut. Operating System Concepts 8 th Edition, Chapter 4: Multithreaded Programming Dr. Varin Chouvatut, Silberschatz, Galvin and Gagne 2010 Chapter 4: Multithreaded Programming Overview Multithreading Models Thread Libraries Threading Issues Operating

More information

Outline. Threads. Single and Multithreaded Processes. Benefits of Threads. Eike Ritter 1. Modified: October 16, 2012

Outline. Threads. Single and Multithreaded Processes. Benefits of Threads. Eike Ritter 1. Modified: October 16, 2012 Eike Ritter 1 Modified: October 16, 2012 Lecture 8: Operating Systems with C/C++ School of Computer Science, University of Birmingham, UK 1 Based on material by Matt Smart and Nick Blundell Outline 1 Concurrent

More information

Chapter 4: Threads. Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples Windows XP Threads Linux Threads

Chapter 4: Threads. Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples Windows XP Threads Linux Threads Chapter 4: Threads Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples Windows XP Threads Linux Threads Chapter 4: Threads Objectives To introduce the notion of a

More information

Chapter 4: Multithreaded Programming

Chapter 4: Multithreaded Programming Chapter 4: Multithreaded Programming Silberschatz, Galvin and Gagne 2013! Chapter 4: Multithreaded Programming Overview Multicore Programming Multithreading Models Threading Issues Operating System Examples

More information

Chapter 4: Threads. Chapter 4: Threads. Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues

Chapter 4: Threads. Chapter 4: Threads. Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues Chapter 4: Threads Silberschatz, Galvin and Gagne 2013 Chapter 4: Threads Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues 4.2 Silberschatz, Galvin

More information

Chapter 4: Threads. Operating System Concepts 9 th Edit9on

Chapter 4: Threads. Operating System Concepts 9 th Edit9on Chapter 4: Threads Operating System Concepts 9 th Edit9on Silberschatz, Galvin and Gagne 2013 Chapter 4: Threads 1. Overview 2. Multicore Programming 3. Multithreading Models 4. Thread Libraries 5. Implicit

More information

Chapter 4: Multithreaded

Chapter 4: Multithreaded Chapter 4: Multithreaded Programming Chapter 4: Multithreaded Programming Overview Multithreading Models Thread Libraries Threading Issues Operating-System Examples 2009/10/19 2 4.1 Overview A thread is

More information

Chapter 4: Threads. Operating System Concepts 9 th Edition

Chapter 4: Threads. Operating System Concepts 9 th Edition Chapter 4: Threads Silberschatz, Galvin and Gagne 2013 Chapter 4: Threads Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues Operating System Examples

More information

Chapter 4: Multithreaded Programming

Chapter 4: Multithreaded Programming Chapter 4: Multithreaded Programming Silberschatz, Galvin and Gagne 2013 Chapter 4: Multithreaded Programming Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading

More information

Threads. What is a thread? Motivation. Single and Multithreaded Processes. Benefits

Threads. What is a thread? Motivation. Single and Multithreaded Processes. Benefits CS307 What is a thread? Threads A thread is a basic unit of CPU utilization contains a thread ID, a program counter, a register set, and a stack shares with other threads belonging to the same process

More information

Chapter 4: Threads. Operating System Concepts 9 th Edition

Chapter 4: Threads. Operating System Concepts 9 th Edition Chapter 4: Threads Silberschatz, Galvin and Gagne 2013 Chapter 4: Threads Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues Operating System Examples

More information

Chapter 4: Threads. Operating System Concepts with Java 8 th Edition

Chapter 4: Threads. Operating System Concepts with Java 8 th Edition Chapter 4: Threads 14.1 Silberschatz, Galvin and Gagne 2009 Chapter 4: Threads Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples 14.2 Silberschatz, Galvin and Gagne

More information

Chapter 5: Threads. Single and Multithreaded Processes

Chapter 5: Threads. Single and Multithreaded Processes Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads Chapter 5: Threads 5.1 Silberschatz, Galvin and Gagne 2003 Single and Multithreaded Processes 5.2

More information

Operating Systems Prof. Ashok K Agrawala

Operating Systems Prof. Ashok K Agrawala CSMC 412 Operating Systems Prof. Ashok K Agrawala 2005 Ashok Agrawala Set 4 4.1 Silberschatz, Galvin and Gagne 2005 Threads Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux

More information

Chapter 4 Multithreaded Programming

Chapter 4 Multithreaded Programming Chapter 4 Multithreaded Programming Da-Wei Chang CSIE.NCKU Source: Abraham Silberschatz, Peter B. Galvin, and Greg Gagne, "Operating System Concepts", 9th Edition, Wiley. 1 1 Outline Overview Multithreading

More information

Chapter 5: Threads. Outline

Chapter 5: Threads. Outline Department of Electr rical Eng ineering, Chapter 5: Threads 王振傑 (Chen-Chieh Wang) ccwang@mail.ee.ncku.edu.tw ncku edu Feng-Chia Unive ersity Outline Overview Multithreading Models Threading Issues 2 Depar

More information

CSE 4/521 Introduction to Operating Systems

CSE 4/521 Introduction to Operating Systems CSE 4/521 Introduction to Operating Systems Lecture 5 Threads (Overview, Multicore Programming, Multithreading Models, Thread Libraries, Implicit Threading, Operating- System Examples) Summer 2018 Overview

More information

CSCE 313 Introduction to Computer Systems. Instructor: Dezhen Song

CSCE 313 Introduction to Computer Systems. Instructor: Dezhen Song CSCE 313 Introduction to Computer Systems Instructor: Dezhen Song Programs, Processes, and Threads Programs and Processes Threads Programs, Processes, and Threads Programs and Processes Threads Processes

More information

Chapter 4: Multithreaded Programming

Chapter 4: Multithreaded Programming Chapter 4: Multithreaded Programming Chapter 4: Multithreaded Programming Overview Multicore Programming Multithreading Models Threading Issues Operating System Examples Objectives To introduce the notion

More information

CSCE 313: Intro to Computer Systems

CSCE 313: Intro to Computer Systems CSCE 313 Introduction to Computer Systems Instructor: Dr. Guofei Gu http://courses.cse.tamu.edu/guofei/csce313/ Programs, Processes, and Threads Programs and Processes Threads 1 Programs, Processes, and

More information

Chapter 4: Multithreaded Programming

Chapter 4: Multithreaded Programming Chapter 4: Multithreaded Programming Chapter 4: Multithreaded Programming Overview Multicore Programming Multithreading Models Threading Issues Operating System Examples Objectives To introduce the notion

More information

EI 338: Computer Systems Engineering (Operating Systems & Computer Architecture)

EI 338: Computer Systems Engineering (Operating Systems & Computer Architecture) EI 338: Computer Systems Engineering (Operating Systems & Computer Architecture) Dept. of Computer Science & Engineering Chentao Wu wuct@cs.sjtu.edu.cn Download lectures ftp://public.sjtu.edu.cn User:

More information

Processes and Threads

Processes and Threads Processes and Threads Giuseppe Anastasi g.anastasi@iet.unipi.it Pervasive Computing & Networking Lab. () Dept. of Information Engineering, University of Pisa Based on original slides by Silberschatz, Galvin

More information

Processes and Threads

Processes and Threads TDDI04 Concurrent Programming, Operating Systems, and Real-time Operating Systems Processes and Threads [SGG7] Chapters 3 and 4 Copyright Notice: The lecture notes are mainly based on Silberschatz s, Galvin

More information

Chapter 3: Processes. Operating System Concepts 8th Edition

Chapter 3: Processes. Operating System Concepts 8th Edition Chapter 3: Processes Chapter 3: Processes Process Concept Process Scheduling Operations on Processes Interprocess Communication Examples of IPC Systems Communication in Client-Server Systems 3.2 Objectives

More information

Operating Systems 2 nd semester 2016/2017. Chapter 4: Threads

Operating Systems 2 nd semester 2016/2017. Chapter 4: Threads Operating Systems 2 nd semester 2016/2017 Chapter 4: Threads Mohamed B. Abubaker Palestine Technical College Deir El-Balah Note: Adapted from the resources of textbox Operating System Concepts, 9 th edition

More information

CS420: Operating Systems

CS420: Operating Systems Threads James Moscola Department of Physical Sciences York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz, Galvin, Gagne Threads A thread is a basic unit of processing

More information

Chapter 5: Processes & Process Concept. Objectives. Process Concept Process Scheduling Operations on Processes. Communication in Client-Server Systems

Chapter 5: Processes & Process Concept. Objectives. Process Concept Process Scheduling Operations on Processes. Communication in Client-Server Systems Chapter 5: Processes Chapter 5: Processes & Threads Process Concept Process Scheduling Operations on Processes Interprocess Communication Communication in Client-Server Systems, Silberschatz, Galvin and

More information

Chapter 4: Threads. Operating System Concepts 8 th Edition,

Chapter 4: Threads. Operating System Concepts 8 th Edition, Chapter 4: Threads, Silberschatz, Galvin and Gagne 2009 Chapter 4: Threads Overview Multithreading Models Thread Libraries 4.2 Silberschatz, Galvin and Gagne 2009 Objectives To introduce the notion of

More information

CSMC 412. Operating Systems Prof. Ashok K Agrawala Ashok Agrawala Set 4. September 2006 CMSC 412 Set 4

CSMC 412. Operating Systems Prof. Ashok K Agrawala Ashok Agrawala Set 4. September 2006 CMSC 412 Set 4 CSMC 412 Operating Systems Prof. Ashok K Agrawala 2005 Ashok Agrawala Set 4 1 Threads Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads 2 Single and

More information

Multithreaded Programming

Multithreaded Programming Multithreaded Programming The slides do not contain all the information and cannot be treated as a study material for Operating System. Please refer the text book for exams. September 4, 2014 Topics Overview

More information

Lecture 4 Threads. (chapter 4)

Lecture 4 Threads. (chapter 4) Bilkent University Department of Computer Engineering CS342 Operating Systems Lecture 4 Threads (chapter 4) Dr. İbrahim Körpeoğlu http://www.cs.bilkent.edu.tr/~korpe 1 References The slides here are adapted/modified

More information

CISC2200 Threads Spring 2015

CISC2200 Threads Spring 2015 CISC2200 Threads Spring 2015 Process We learn the concept of process A program in execution A process owns some resources A process executes a program => execution state, PC, We learn that bash creates

More information

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University Che-Wei Chang chewei@mail.cgu.edu.tw Department of Computer Science and Information Engineering, Chang Gung University 1. Introduction 2. System Structures 3. Process Concept 4. Multithreaded Programming

More information

COP 4610: Introduction to Operating Systems (Spring 2015) Chapter 4: Threads. Zhi Wang Florida State University

COP 4610: Introduction to Operating Systems (Spring 2015) Chapter 4: Threads. Zhi Wang Florida State University COP 4610: Introduction to Operating Systems (Spring 2015) Chapter 4: Threads Zhi Wang Florida State University Contents Thread overview Multithreading models Thread libraries Threading issues Operating

More information

Semantics of fork() and exec()

Semantics of fork() and exec() Threads Week 3.2 Threading Issues Semantics of fork() and exec() system calls Signal handling Synchronous and asynchronous Thread cancellation of target thread Asynchronous or deferred Thread-local storage

More information

Agenda Process Concept Process Scheduling Operations on Processes Interprocess Communication 3.2

Agenda Process Concept Process Scheduling Operations on Processes Interprocess Communication 3.2 Lecture 3: Processes Agenda Process Concept Process Scheduling Operations on Processes Interprocess Communication 3.2 Process in General 3.3 Process Concept Process is an active program in execution; process

More information

CS420: Operating Systems

CS420: Operating Systems Threading Issues James Moscola Department of Engineering & Computer Science York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz, Galvin, Gagne Threading Issues

More information

Process Description and Control

Process Description and Control Process Description and Control 1 Process:the concept Process = a program in execution Example processes: OS kernel OS shell Program executing after compilation www-browser Process management by OS : Allocate

More information

Process Concept Process in Memory Process State new running waiting ready terminated Diagram of Process State

Process Concept Process in Memory Process State new running waiting ready terminated Diagram of Process State Process Concept An operating system executes a variety of programs: Batch system jobs Time-shared systems user programs or tasks Textbook uses the terms job and process almost interchangeably Process a

More information

Lecture 2 Process Management

Lecture 2 Process Management Lecture 2 Process Management Process Concept An operating system executes a variety of programs: Batch system jobs Time-shared systems user programs or tasks The terms job and process may be interchangeable

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 Lecture 7 Threads Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ How many processes can a core

More information

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto Ricardo Rocha Department of Computer Science Faculty of Sciences University of Porto Slides based on the book Operating System Concepts, 9th Edition, Abraham Silberschatz, Peter B. Galvin and Greg Gagne,

More information

Threads. CS3026 Operating Systems Lecture 06

Threads. CS3026 Operating Systems Lecture 06 Threads CS3026 Operating Systems Lecture 06 Multithreading Multithreading is the ability of an operating system to support multiple threads of execution within a single process Processes have at least

More information

Threads. Thread Concept Multithreading Models User & Kernel Threads Pthreads Threads in Solaris, Linux, Windows. 2/13/11 CSE325 - Threads 1

Threads. Thread Concept Multithreading Models User & Kernel Threads Pthreads Threads in Solaris, Linux, Windows. 2/13/11 CSE325 - Threads 1 Threads Thread Concept Multithreading Models User & Kernel Threads Pthreads Threads in Solaris, Linux, Windows 2/13/11 CSE325 - Threads 1 Threads The process concept incorporates two abstractions: a virtual

More information

ICS Principles of Operating Systems

ICS Principles of Operating Systems ICS 143 - Principles of Operating Systems Lectures 3 and 4 - Processes and Threads Prof. Nalini Venkatasubramanian nalini@ics.uci.edu Some slides adapted from http://www-inst.eecs.berkeley.edu/~cs162/

More information

Thread Concept. Thread. No. 3. Multiple single-threaded Process. One single-threaded Process. Process vs. Thread. One multi-threaded Process

Thread Concept. Thread. No. 3. Multiple single-threaded Process. One single-threaded Process. Process vs. Thread. One multi-threaded Process EECS 3221 Operating System Fundamentals What is thread? Thread Concept No. 3 Thread Difference between a process and a thread Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University

More information

THREADS. Jo, Heeseung

THREADS. Jo, Heeseung THREADS Jo, Heeseung TODAY'S TOPICS Why threads? Threading issues 2 PROCESSES Heavy-weight A process includes many things: - An address space (all the code and data pages) - OS resources (e.g., open files)

More information

Threads Implementation. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Threads Implementation. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Threads Implementation Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics How to implement threads? User-level threads Kernel-level

More information

Definition Multithreading Models Threading Issues Pthreads (Unix)

Definition Multithreading Models Threading Issues Pthreads (Unix) Chapter 4: Threads Definition Multithreading Models Threading Issues Pthreads (Unix) Solaris 2 Threads Windows 2000 Threads Linux Threads Java Threads 1 Thread A Unix process (heavy-weight process HWP)

More information

TDIU25: Operating Systems II. Processes, Threads and Scheduling

TDIU25: Operating Systems II. Processes, Threads and Scheduling TDIU25: Operating Systems II. Processes, Threads and Scheduling SGG9: 3.1-3.3, 4.1-4.3, 5.1-5.4 o Process concept: context switch, scheduling queues, creation o Multithreaded programming o Process scheduling

More information

Yi Shi Fall 2017 Xi an Jiaotong University

Yi Shi Fall 2017 Xi an Jiaotong University Threads Yi Shi Fall 2017 Xi an Jiaotong University Goals for Today Case for Threads Thread details Case for Parallelism main() read_data() for(all data) compute(); write_data(); endfor main() read_data()

More information

Exercise (could be a quiz) Solution. Concurrent Programming. Roadmap. Tevfik Koşar. CSE 421/521 - Operating Systems Fall Lecture - IV Threads

Exercise (could be a quiz) Solution. Concurrent Programming. Roadmap. Tevfik Koşar. CSE 421/521 - Operating Systems Fall Lecture - IV Threads Exercise (could be a quiz) 1 2 Solution CSE 421/521 - Operating Systems Fall 2013 Lecture - IV Threads Tevfik Koşar 3 University at Buffalo September 12 th, 2013 4 Roadmap Threads Why do we need them?

More information

CSE Opera,ng System Principles

CSE Opera,ng System Principles CSE 30341 Opera,ng System Principles Lecture 5 Processes / Threads Recap Processes What is a process? What is in a process control bloc? Contrast stac, heap, data, text. What are process states? Which

More information

Computer Systems Laboratory Sungkyunkwan University

Computer Systems Laboratory Sungkyunkwan University Threads Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics Why threads? Threading issues 2 Processes Heavy-weight A process includes

More information

CHAPTER 2: PROCESS MANAGEMENT

CHAPTER 2: PROCESS MANAGEMENT 1 CHAPTER 2: PROCESS MANAGEMENT Slides by: Ms. Shree Jaswal TOPICS TO BE COVERED Process description: Process, Process States, Process Control Block (PCB), Threads, Thread management. Process Scheduling:

More information

4.8 Summary. Practice Exercises

4.8 Summary. Practice Exercises Practice Exercises 191 structures of the parent process. A new task is also created when the clone() system call is made. However, rather than copying all data structures, the new task points to the data

More information

Page 1. Analogy: Problems: Operating Systems Lecture 7. Operating Systems Lecture 7

Page 1. Analogy: Problems: Operating Systems Lecture 7. Operating Systems Lecture 7 Os-slide#1 /*Sequential Producer & Consumer*/ int i=0; repeat forever Gather material for item i; Produce item i; Use item i; Discard item i; I=I+1; end repeat Analogy: Manufacturing and distribution Print

More information

Threads. CS-3013 Operating Systems Hugh C. Lauer. CS-3013, C-Term 2012 Threads 1

Threads. CS-3013 Operating Systems Hugh C. Lauer. CS-3013, C-Term 2012 Threads 1 Threads CS-3013 Operating Systems Hugh C. Lauer (Slides include materials from Slides include materials from Modern Operating Systems, 3 rd ed., by Andrew Tanenbaum and from Operating System Concepts,

More information

Chapter 3 Process Description and Control

Chapter 3 Process Description and Control Operating Systems: Internals and Design Principles Chapter 3 Process Description and Control Seventh Edition By William Stallings Process Control Block Structure of Process Images in Virtual Memory How

More information

Chapter 4: Threads. Operating System Concepts 9 th Edition

Chapter 4: Threads. Operating System Concepts 9 th Edition Chapter 4: Threads Silberschatz, Galvin and Gagne 2013 Objectives To introduce the notion of a thread a fundamental unit of CPU utilization that forms the basis of multithreaded computer systems To discuss

More information

Concurrency, Thread. Dongkun Shin, SKKU

Concurrency, Thread. Dongkun Shin, SKKU Concurrency, Thread 1 Thread Classic view a single point of execution within a program a single PC where instructions are being fetched from and executed), Multi-threaded program Has more than one point

More information

Last Class: CPU Scheduling. Pre-emptive versus non-preemptive schedulers Goals for Scheduling: CS377: Operating Systems.

Last Class: CPU Scheduling. Pre-emptive versus non-preemptive schedulers Goals for Scheduling: CS377: Operating Systems. Last Class: CPU Scheduling Pre-emptive versus non-preemptive schedulers Goals for Scheduling: Minimize average response time Maximize throughput Share CPU equally Other goals? Scheduling Algorithms: Selecting

More information

Motivation. Threads. Multithreaded Server Architecture. Thread of execution. Chapter 4

Motivation. Threads. Multithreaded Server Architecture. Thread of execution. Chapter 4 Motivation Threads Chapter 4 Most modern applications are multithreaded Threads run within application Multiple tasks with the application can be implemented by separate Update display Fetch data Spell

More information

Multithreading. Reading: Silberschatz chapter 5 Additional Reading: Stallings chapter 4

Multithreading. Reading: Silberschatz chapter 5 Additional Reading: Stallings chapter 4 Multithreading Reading: Silberschatz chapter 5 Additional Reading: Stallings chapter 4 Understanding Linux/Unix Programming, Bruce Molay, Prentice-Hall, 2003. EEL 602 1 Outline Process and Threads Multithreading

More information

Threads. Still Chapter 2 (Based on Silberchatz s text and Nachos Roadmap.) 3/9/2003 B.Ramamurthy 1

Threads. Still Chapter 2 (Based on Silberchatz s text and Nachos Roadmap.) 3/9/2003 B.Ramamurthy 1 Threads Still Chapter 2 (Based on Silberchatz s text and Nachos Roadmap.) 3/9/2003 B.Ramamurthy 1 Single and Multithreaded Processes Thread specific Data (TSD) Code 3/9/2003 B.Ramamurthy 2 User Threads

More information

COP 4610: Introduction to Operating Systems (Fall 2016) Chapter 4: Threads. Zhi Wang Florida State University

COP 4610: Introduction to Operating Systems (Fall 2016) Chapter 4: Threads. Zhi Wang Florida State University COP 4610: Introduction to Operating Systems (Fall 2016) Chapter 4: Threads Zhi Wang Florida State University Contents Thread overview Multithreading models Thread libraries Threading issues Operating system

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 Lecture 8 Threads and Scheduling Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ How many threads

More information

Distributed Systems Operation System Support

Distributed Systems Operation System Support Hajussüsteemid MTAT.08.009 Distributed Systems Operation System Support slides are adopted from: lecture: Operating System(OS) support (years 2016, 2017) book: Distributed Systems: Concepts and Design,

More information

Processes & Threads. Recap of the Last Class. Microkernel System Architecture. Layered Structure

Processes & Threads. Recap of the Last Class. Microkernel System Architecture. Layered Structure Recap of the Last Class Processes & Threads CS 256/456 Dept. of Computer Science, University of Rochester Hardware protection kernel and user mode System components process management, memory management,

More information

Lecture 9. Remote Procedure Calls Introduction to Multithreaded Programming

Lecture 9. Remote Procedure Calls Introduction to Multithreaded Programming Lecture 9 Remote Procedure Calls Introduction to Multithreaded Programming 1 Remote Procedure Calls Digital ONC RPC 2 The Point What s the difference between local and remote procedure calling? Very little

More information

Questions from last time

Questions from last time Questions from last time Pthreads vs regular thread? Pthreads are POSIX-standard threads (1995). There exist earlier and newer standards (C++11). Pthread is probably most common. Pthread API: about a 100

More information

CS420: Operating Systems. OS Services & System Calls

CS420: Operating Systems. OS Services & System Calls OS Services & System Calls James Moscola Department of Engineering & Computer Science York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz, Galvin, Gagne Operating

More information

Lecture 17: Threads and Scheduling. Thursday, 05 Nov 2009

Lecture 17: Threads and Scheduling. Thursday, 05 Nov 2009 CS211: Programming and Operating Systems Lecture 17: Threads and Scheduling Thursday, 05 Nov 2009 CS211 Lecture 17: Threads and Scheduling 1/22 Today 1 Introduction to threads Advantages of threads 2 User

More information

Thread. Operating Systems (Fall/Winter 2018) Yajin Zhou ( Zhejiang University

Thread. Operating Systems (Fall/Winter 2018) Yajin Zhou (  Zhejiang University Operating Systems (Fall/Winter 2018) Thread Yajin Zhou (http://yajin.org) Zhejiang University Acknowledgement: some pages are based on the slides from Zhi Wang(fsu). Review Process Multiple parts: text,

More information

!! How is a thread different from a process? !! Why are threads useful? !! How can POSIX threads be useful?

!! How is a thread different from a process? !! Why are threads useful? !! How can POSIX threads be useful? Chapter 2: Threads: Questions CSCI [4 6]730 Operating Systems Threads!! How is a thread different from a process?!! Why are threads useful?!! How can OSIX threads be useful?!! What are user-level and kernel-level

More information

Agenda. Threads. Single and Multi-threaded Processes. What is Thread. CSCI 444/544 Operating Systems Fall 2008

Agenda. Threads. Single and Multi-threaded Processes. What is Thread. CSCI 444/544 Operating Systems Fall 2008 Agenda Threads CSCI 444/544 Operating Systems Fall 2008 Thread concept Thread vs process Thread implementation - user-level - kernel-level - hybrid Inter-process (inter-thread) communication What is Thread

More information

CSE 4/521 Introduction to Operating Systems. Lecture 29 Windows 7 (History, Design Principles, System Components, Programmer Interface) Summer 2018

CSE 4/521 Introduction to Operating Systems. Lecture 29 Windows 7 (History, Design Principles, System Components, Programmer Interface) Summer 2018 CSE 4/521 Introduction to Operating Systems Lecture 29 Windows 7 (History, Design Principles, System Components, Programmer Interface) Summer 2018 Overview Objective: To explore the principles upon which

More information

Process and Its Image An operating system executes a variety of programs: A program that browses the Web A program that serves Web requests

Process and Its Image An operating system executes a variety of programs: A program that browses the Web A program that serves Web requests Recap of the Last Class System protection and kernel mode System calls and the interrupt interface Processes Process concept A process s image in a computer Operations on processes Context switches and

More information

Lecture Topics. Announcements. Today: Threads (Stallings, chapter , 4.6) Next: Concurrency (Stallings, chapter , 5.

Lecture Topics. Announcements. Today: Threads (Stallings, chapter , 4.6) Next: Concurrency (Stallings, chapter , 5. Lecture Topics Today: Threads (Stallings, chapter 4.1-4.3, 4.6) Next: Concurrency (Stallings, chapter 5.1-5.4, 5.7) 1 Announcements Make tutorial Self-Study Exercise #4 Project #2 (due 9/20) Project #3

More information

Questions answered in this lecture: CS 537 Lecture 19 Threads and Cooperation. What s in a process? Organizing a Process

Questions answered in this lecture: CS 537 Lecture 19 Threads and Cooperation. What s in a process? Organizing a Process Questions answered in this lecture: CS 537 Lecture 19 Threads and Cooperation Why are threads useful? How does one use POSIX pthreads? Michael Swift 1 2 What s in a process? Organizing a Process A process

More information

CS 5523 Operating Systems: Midterm II - reivew Instructor: Dr. Tongping Liu Department Computer Science The University of Texas at San Antonio

CS 5523 Operating Systems: Midterm II - reivew Instructor: Dr. Tongping Liu Department Computer Science The University of Texas at San Antonio CS 5523 Operating Systems: Midterm II - reivew Instructor: Dr. Tongping Liu Department Computer Science The University of Texas at San Antonio Fall 2017 1 Outline Inter-Process Communication (20) Threads

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective. Part I: Operating system overview: Processes and threads

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective. Part I: Operating system overview: Processes and threads ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part I: Operating system overview: Processes and threads 1 Overview Process concept Process scheduling Thread

More information

Chapter 3: Processes. Operating System Concepts 9 th Edit9on

Chapter 3: Processes. Operating System Concepts 9 th Edit9on Chapter 3: Processes Operating System Concepts 9 th Edit9on Silberschatz, Galvin and Gagne 2013 Chapter 3: Processes 1. Process Concept 2. Process Scheduling 3. Operations on Processes 4. Interprocess

More information

Operating Systems: Internals and Design Principles. Chapter 4 Threads Seventh Edition By William Stallings

Operating Systems: Internals and Design Principles. Chapter 4 Threads Seventh Edition By William Stallings Operating Systems: Internals and Design Principles Chapter 4 Threads Seventh Edition By William Stallings Operating Systems: Internals and Design Principles The basic idea is that the several components

More information

Operating Systems CMPSCI 377 Spring Mark Corner University of Massachusetts Amherst

Operating Systems CMPSCI 377 Spring Mark Corner University of Massachusetts Amherst Operating Systems CMPSCI 377 Spring 2017 Mark Corner University of Massachusetts Amherst Multilevel Feedback Queues (MLFQ) Multilevel feedback queues use past behavior to predict the future and assign

More information

Chapter 3: Processes. Operating System Concepts 9 th Edition

Chapter 3: Processes. Operating System Concepts 9 th Edition Chapter 3: Processes Silberschatz, Galvin and Gagne 2013 Chapter 3: Processes Process Concept Process Scheduling Operations on Processes Interprocess Communication Examples of IPC Systems Communication

More information

! How is a thread different from a process? ! Why are threads useful? ! How can POSIX threads be useful?

! How is a thread different from a process? ! Why are threads useful? ! How can POSIX threads be useful? Chapter 2: Threads: Questions CSCI [4 6]730 Operating Systems Threads! How is a thread different from a process?! Why are threads useful?! How can OSIX threads be useful?! What are user-level and kernel-level

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2019 Lecture 6 Processes Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Fork( ) causes a branch

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 8 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ How many partners can we cave for project:

More information