Understanding and Recommending Podcast Content

Size: px
Start display at page:

Download "Understanding and Recommending Podcast Content"

Transcription

1 Understanding and Recommending Podcast Content Longqi Yang Computer Science Ph.D. Candidate Twitter Funders: 1

2 Collaborators 2

3 Why Podcast 3

4 Emerging Interfaces for Podcast Content Consumption 2

5 5

6 What s special about podcasts (content) the architecture of the podcast is the precise antidote for the flaws of the present. It is deep where now is shallow. It is insulated from ads where now is completely vulnerable. It is a chance for thinking and reflection; it has an attention span an order of magnitude greater than the Tweet. It is an opportunity for serious (and playful) engagement. It is healthy eating for a brain-scape that now gorges on fast food. --- Lawrence Lessig (Professor of Law at Harvard Law School) 6

7 What s special about podcasts (content) It turns out, certain things humans can only do well if they do it slowly. Eating, cooking, reflecting, thinking, loving: These are the things we need to pace and pause We should all spread the idea that every healthy mind spends time every week in slow thinking --- Lawrence Lessig (Professor of Law at Harvard Law School) 7

8 What s special about podcasts (user) Past (What you listened before) Future (What you aspire to listen in the future, user intentions and aspirations) 8

9 What s special about podcasts (user) People listened to episodes from subscribed channels (subscription-based consumption) 9

10 Computational Support for Podcasts articles posts Aa music rec. Past search 10

11 Computational Support for Podcasts articles posts Aa Podcast music rec. Past search 11

12 Computational Support for Podcasts articles posts Aa Podcast music rec. Past Podcast search 12

13 Agenda More than Just Words (WSDM 19) Debias Offline Recommendation Evaluation (Recsys 18) Intention Informed Recommendations (Under Review) 13

14 Content == Words Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

15 Podcast Content == Words (itunes Podcast directory) Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

16 Podcast Content > Words Conversational Paralinguistic Musical Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

17 Podcast Content > Words Conversational Paralinguistic Musical Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

18 Our Goal: Modeling Non-textual Characteristics of Podcasts feature representation Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

19 A Naïve Solution MFCC IS09 IS13 Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

20 A Naïve Solution MFCC IS09 IS13 Expected to be sub-optimal Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

21 Our approach: Unsupervised Representation Learning large unlabeled podcast corpus Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

22 Our approach: Unsupervised Representation Learning Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

23 Our approach: Unsupervised Representation Learning Fine-grained variations Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

24 Adversarial Learning-based Podcast Representation (ALPR) vectors sampled from a uniform distribution Generator features (ALPR) Discriminator CE Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

25 Adversarial Learning-based Podcast Representation (ALPR) Train the generator vectors sampled from a uniform distribution features (ALPR) Label=1 (real) Generator Discriminator CE Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

26 Adversarial Learning-based Podcast Representation (ALPR) Train the discriminator and the classifier spectrograms of real podcast audio Label=1 (real) CE Discriminator Generator CE Label=0 (generated) Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

27 Adversarial Learning-based Podcast Representation (ALPR) The generator x z fully connected deconv, 5x5 stride 2 deconv, 5x5 stride 2 deconv, 5x5 stride 2 deconv, 5x5 stride 2 Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

28 Adversarial Learning-based Podcast Representation (ALPR) The discriminator conv, 5x5 stride 2 conv, 5x5 stride 2 conv, 5x5 stride 2 conv, 5x5 stride x fully connected 8 32 global average pooling D(x) Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

29 Adversarial Learning-based Podcast Representation (ALPR) Corpus: 88,728 episodes (18,433 channels) Training: 42,370 episodes Evaluation: 46,358 episodes Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

30 Evaluations Attributes Classification (binary) Calm vs. Energetic Humorous vs. Serious Popularity prediction (binary) Top channels on itunes vs. Others Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

31 Attributes Classification How calm or energetic is the audio presentation? calm energetic How humorous or serious is the audio presentation? humorous serious Does the above audio presentation contain men s or women s voices? Men s Women s Both Other Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

32 Attributes Classification 500 negative positive negative positive Count humorous (0) serious (10) calm (0) energetic (10) Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

33 Baselines MFCC IS09 IS13 Autoencoder (AE) and Variational Autoencoder (VAE): AE Discriminator D D x z Generator G VAE µ σ sample Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

34 Attributes Classification Performance Energy Seriousness Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

35 Why does ALPR outperform AE and VAE? Real Adv. VAE AE Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

36 Popularity Prediction Performance Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

37 Popular vs. unpopular channels (Energy score) Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman, and Deborah Estrin. More than just words: Modeling non-textual characteristics of podcasts. In 12th ACM International Conference on Web Search and Data Mining (WSDM),

38 Agenda More than Just Words (WSDM 19) Debias Offline Recommendation Evaluation (Recsys 18) Intention Informed Recommendations (Under Review) 38

39 Offline Evaluation of Recommendation Algorithm user-item interactions (, ) (, ) (, ) recommendation algorithms R rewards Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

40 Offline Evaluation of Recommendation Algorithm user-item interactions (, ) (, ) (, ) recommendation algorithms Pros: Cost effective. Efficient. Iterate faster. R Experiment before deployment. rewards Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

41 Offline Evaluation of Recommendation Algorithm user-item interactions (, ) (, ) (, ) recommendation algorithms Pros: Cost effective. Efficient. Iterate faster. R Experiment before deployment. rewards Cons: The data is Missing-Not-At-Random (MNAR) Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

42 Offline Evaluation procedure item j user i user i interacted with item j Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

43 Offline Evaluation procedure train/test Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

44 Offline Evaluation procedure 1. Train and validate a recommendation model 2. Averaged performance over held-out (user, item) interaction pairs (Average-Over-All) Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

45 Offline Evaluation procedure Rating-based recommendation systems Implicit feedback-based recommendation systems 1. Train and validate a recommendation model 2. Averaged performance over held-out (user, item) interaction pairs (Average-Over-All) Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

46 Previous work: Average-Over-All is biased for rating-based recommendation systems, because ratings are MNAR [Marlin et al. 09], [Schnabel et al. 16], [Steck 10], [Steck 11], and [Steck 13] Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

47 Previous work: Average-Over-All is biased for rating-based recommendation systems, because ratings are MNAR [Marlin et al. 09], [Schnabel et al. 16], [Steck 10], [Steck 11], and [Steck 13] Previous work: Average-Over-All is unbiased for implicit feedback-based recommendation systems, because implicit feedback is missing uniformly at random. [Lim 15] Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

48 This work: Average-Over-All is biased for implicit feedbackbased recommendation systems, because implicit feedback is NOT missing uniformly at random. Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

49 This work: Average-Over-All is biased for implicit feedbackbased recommendation systems, because implicit feedback is NOT missing uniformly at random. trending recommendation Popularity bias (Users are more likely to be exposed to popular items) Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

50 A Hypothetical Example Popular Items Long-tail Items # of liked items (over all items) # of liked items (over observations) 1 : : 1 Algorithm 1 Performance Algorithm 2 Performance Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

51 A Hypothetical Example Popular Items Long-tail Items # of liked items (over all items) # of liked items (over observations) 1 : : 1 Algorithm 1 Performance Algorithm 2 Performance Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

52 A Hypothetical Example Popular Items Long-tail Items # of liked items (over all items) # of liked items (over observations) 1 : : 1 Algorithm 1 Performance Algorithm 2 Performance Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

53 A Hypothetical Example Popular Items Long-tail Items # of liked items (over all items) # of liked items (over observations) 1 : : 1 Algorithm 1 Performance Algorithm 2 Performance Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

54 A Hypothetical Example Popular Items Long-tail Items # of liked items (over all items) # of liked items (over observations) 1 : : 1 Algorithm 1 Performance Algorithm 2 Performance Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

55 A Hypothetical Example Popular Items Long-tail Items # of liked items (over all items) # of liked items (over observations) 1 : : 1 Algorithm 1 Performance Any sensible evaluation Algorithm 2 Performance Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

56 A Hypothetical Example Popular Items Long-tail Items # of liked items (over all items) 1 : 10 # of liked items (over observations) Average-Over- All 10 : 1 Algorithm 1 Performance Algorithm 2 Performance Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

57 <latexit sha1_base64="zyvwipk9uixn125ap0aibwydfrc=">aaacehicdvdpaxnbgj1nq42xaqzhxoygsaewg3yxuqw81fuf5gckixw7+yuzmjo7zhxbccf/ghf/fs8ewopxj978b5ykewzrbwop977h8f5akokodh8flypdj0+pqs9qz49fvhxvf33sd3lpbfzerni7tmghkgz7jenhslaiolu4sjcftv7ggq2tubmivyetdxmjz1iaewlaf/eruhmlzinn3hgfzaqgzhi64ma4qhlujs30tn4im504iaoeh804jjmo8irqd8j2wqnmueod7xe5rf8cz7konroscpwbrwfbkzvykklhpjyuhrygljdhkacgnlrjeldow996jeoz3ppnio/uvxnr0m6tdoovnddcpfa24r+8uumz9mqttvesgnh/0axunhk+xydn0qigtfiehc8ubrclsoansa7mr/jtlp+f9fvnypnpruy33s9rzafsjj2zil1nxxbbllmpcfazfwu37db4enwl7olv96evyj95wx4g+peb612dha==</latexit> <latexit sha1_base64="zyvwipk9uixn125ap0aibwydfrc=">aaacehicdvdpaxnbgj1nq42xaqzhxoygsaewg3yxuqw81fuf5gckixw7+yuzmjo7zhxbccf/ghf/fs8ewopxj978b5ykewzrbwop977h8f5akokodh8flypdj0+pqs9qz49fvhxvf33sd3lpbfzerni7tmghkgz7jenhslaiolu4sjcftv7ggq2tubmivyetdxmjz1iaewlaf/eruhmlzinn3hgfzaqgzhi64ma4qhlujs30tn4im504iaoeh804jjmo8irqd8j2wqnmueod7xe5rf8cz7konroscpwbrwfbkzvykklhpjyuhrygljdhkacgnlrjeldow996jeoz3ppnio/uvxnr0m6tdoovnddcpfa24r+8uumz9mqttvesgnh/0axunhk+xydn0qigtfiehc8ubrclsoansa7mr/jtlp+f9fvnypnpruy33s9rzafsjj2zil1nxxbbllmpcfazfwu37db4enwl7olv96evyj95wx4g+peb612dha==</latexit> <latexit sha1_base64="zyvwipk9uixn125ap0aibwydfrc=">aaacehicdvdpaxnbgj1nq42xaqzhxoygsaewg3yxuqw81fuf5gckixw7+yuzmjo7zhxbccf/ghf/fs8ewopxj978b5ykewzrbwop977h8f5akokodh8flypdj0+pqs9qz49fvhxvf33sd3lpbfzerni7tmghkgz7jenhslaiolu4sjcftv7ggq2tubmivyetdxmjz1iaewlaf/eruhmlzinn3hgfzaqgzhi64ma4qhlujs30tn4im504iaoeh804jjmo8irqd8j2wqnmueod7xe5rf8cz7konroscpwbrwfbkzvykklhpjyuhrygljdhkacgnlrjeldow996jeoz3ppnio/uvxnr0m6tdoovnddcpfa24r+8uumz9mqttvesgnh/0axunhk+xydn0qigtfiehc8ubrclsoansa7mr/jtlp+f9fvnypnpruy33s9rzafsjj2zil1nxxbbllmpcfazfwu37db4enwl7olv96evyj95wx4g+peb612dha==</latexit> <latexit sha1_base64="zyvwipk9uixn125ap0aibwydfrc=">aaacehicdvdpaxnbgj1nq42xaqzhxoygsaewg3yxuqw81fuf5gckixw7+yuzmjo7zhxbccf/ghf/fs8ewopxj978b5ykewzrbwop977h8f5akokodh8flypdj0+pqs9qz49fvhxvf33sd3lpbfzerni7tmghkgz7jenhslaiolu4sjcftv7ggq2tubmivyetdxmjz1iaewlaf/eruhmlzinn3hgfzaqgzhi64ma4qhlujs30tn4im504iaoeh804jjmo8irqd8j2wqnmueod7xe5rf8cz7konroscpwbrwfbkzvykklhpjyuhrygljdhkacgnlrjeldow996jeoz3ppnio/uvxnr0m6tdoovnddcpfa24r+8uumz9mqttvesgnh/0axunhk+xydn0qigtfiehc8ubrclsoansa7mr/jtlp+f9fvnypnpruy33s9rzafsjj2zil1nxxbbllmpcfazfwu37db4enwl7olv96evyj95wx4g+peb612dha==</latexit> Formalize Reward! Item rankings predicted by an algorithm Ideal evaluation: R(Ẑ) = 1 U X u2u 1 S u X i2s u c(ẑu,i) Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

58 <latexit sha1_base64="zyvwipk9uixn125ap0aibwydfrc=">aaacehicdvdpaxnbgj1nq42xaqzhxoygsaewg3yxuqw81fuf5gckixw7+yuzmjo7zhxbccf/ghf/fs8ewopxj978b5ykewzrbwop977h8f5akokodh8flypdj0+pqs9qz49fvhxvf33sd3lpbfzerni7tmghkgz7jenhslaiolu4sjcftv7ggq2tubmivyetdxmjz1iaewlaf/eruhmlzinn3hgfzaqgzhi64ma4qhlujs30tn4im504iaoeh804jjmo8irqd8j2wqnmueod7xe5rf8cz7konroscpwbrwfbkzvykklhpjyuhrygljdhkacgnlrjeldow996jeoz3ppnio/uvxnr0m6tdoovnddcpfa24r+8uumz9mqttvesgnh/0axunhk+xydn0qigtfiehc8ubrclsoansa7mr/jtlp+f9fvnypnpruy33s9rzafsjj2zil1nxxbbllmpcfazfwu37db4enwl7olv96evyj95wx4g+peb612dha==</latexit> <latexit sha1_base64="zyvwipk9uixn125ap0aibwydfrc=">aaacehicdvdpaxnbgj1nq42xaqzhxoygsaewg3yxuqw81fuf5gckixw7+yuzmjo7zhxbccf/ghf/fs8ewopxj978b5ykewzrbwop977h8f5akokodh8flypdj0+pqs9qz49fvhxvf33sd3lpbfzerni7tmghkgz7jenhslaiolu4sjcftv7ggq2tubmivyetdxmjz1iaewlaf/eruhmlzinn3hgfzaqgzhi64ma4qhlujs30tn4im504iaoeh804jjmo8irqd8j2wqnmueod7xe5rf8cz7konroscpwbrwfbkzvykklhpjyuhrygljdhkacgnlrjeldow996jeoz3ppnio/uvxnr0m6tdoovnddcpfa24r+8uumz9mqttvesgnh/0axunhk+xydn0qigtfiehc8ubrclsoansa7mr/jtlp+f9fvnypnpruy33s9rzafsjj2zil1nxxbbllmpcfazfwu37db4enwl7olv96evyj95wx4g+peb612dha==</latexit> <latexit sha1_base64="zyvwipk9uixn125ap0aibwydfrc=">aaacehicdvdpaxnbgj1nq42xaqzhxoygsaewg3yxuqw81fuf5gckixw7+yuzmjo7zhxbccf/ghf/fs8ewopxj978b5ykewzrbwop977h8f5akokodh8flypdj0+pqs9qz49fvhxvf33sd3lpbfzerni7tmghkgz7jenhslaiolu4sjcftv7ggq2tubmivyetdxmjz1iaewlaf/eruhmlzinn3hgfzaqgzhi64ma4qhlujs30tn4im504iaoeh804jjmo8irqd8j2wqnmueod7xe5rf8cz7konroscpwbrwfbkzvykklhpjyuhrygljdhkacgnlrjeldow996jeoz3ppnio/uvxnr0m6tdoovnddcpfa24r+8uumz9mqttvesgnh/0axunhk+xydn0qigtfiehc8ubrclsoansa7mr/jtlp+f9fvnypnpruy33s9rzafsjj2zil1nxxbbllmpcfazfwu37db4enwl7olv96evyj95wx4g+peb612dha==</latexit> <latexit sha1_base64="zyvwipk9uixn125ap0aibwydfrc=">aaacehicdvdpaxnbgj1nq42xaqzhxoygsaewg3yxuqw81fuf5gckixw7+yuzmjo7zhxbccf/ghf/fs8ewopxj978b5ykewzrbwop977h8f5akokodh8flypdj0+pqs9qz49fvhxvf33sd3lpbfzerni7tmghkgz7jenhslaiolu4sjcftv7ggq2tubmivyetdxmjz1iaewlaf/eruhmlzinn3hgfzaqgzhi64ma4qhlujs30tn4im504iaoeh804jjmo8irqd8j2wqnmueod7xe5rf8cz7konroscpwbrwfbkzvykklhpjyuhrygljdhkacgnlrjeldow996jeoz3ppnio/uvxnr0m6tdoovnddcpfa24r+8uumz9mqttvesgnh/0axunhk+xydn0qigtfiehc8ubrclsoansa7mr/jtlp+f9fvnypnpruy33s9rzafsjj2zil1nxxbbllmpcfazfwu37db4enwl7olv96evyj95wx4g+peb612dha==</latexit> Formalize Reward! Item rankings predicted by an algorithm Predicted ranking of item i for user u Ideal evaluation: R(Ẑ) = 1 U X u2u 1 S u X i2s u c(ẑu,i) Items liked by user u among the entire item set scoring metric <latexit sha1_base64="krmqkdady8zbxihq/ornrxywwbe=">aaab9xicdvdlsgmxfm3uv62vqks3wsk4gmamj6m7ghuxfewd2rfk0kwbmkmgjkouof/hxouibv0xd/6n6unq0qmxdufcy733hamjsjvoh5vbw9/y3mpvf3z29/ypiodhbsvsiuklcyzkn0skmmpjs1pnsderbmuhi51wcjn3o3dekir4jz4mjijrinoiyqsndkuwkjspyey0phhqldl2vvop+z507hlnlxtvqzzhr1/uogs7c5tacs1b8b0/fdincdeyiav6rppoiensu8zirnbpfukqnqar6rnkuuxukc2unsezowxhjkqprufc/t6roviparyazhjpsfrtzcw/vf6qo3qquz6kmnc8xbsldgob5xhaizueazy1bgfjza0qj5fewjugciaer0/h/6tt2a5ju9deqvfzxzehj+aunamx+kabrkattaagejyaj/bs3vup1ov1umznwauzy/ad1tsnkxgs5q==</latexit> <latexit sha1_base64="krmqkdady8zbxihq/ornrxywwbe=">aaab9xicdvdlsgmxfm3uv62vqks3wsk4gmamj6m7ghuxfewd2rfk0kwbmkmgjkouof/hxouibv0xd/6n6unq0qmxdufcy733hamjsjvoh5vbw9/y3mpvf3z29/ypiodhbsvsiuklcyzkn0skmmpjs1pnsderbmuhi51wcjn3o3dekir4jz4mjijrinoiyqsndkuwkjspyey0phhqldl2vvop+z507hlnlxtvqzzhr1/uogs7c5tacs1b8b0/fdincdeyiav6rppoiensu8zirnbpfukqnqar6rnkuuxukc2unsezowxhjkqprufc/t6roviparyazhjpsfrtzcw/vf6qo3qquz6kmnc8xbsldgob5xhaizueazy1bgfjza0qj5fewjugciaer0/h/6tt2a5ju9deqvfzxzehj+aunamx+kabrkattaagejyaj/bs3vup1ov1umznwauzy/ad1tsnkxgs5q==</latexit> <latexit sha1_base64="krmqkdady8zbxihq/ornrxywwbe=">aaab9xicdvdlsgmxfm3uv62vqks3wsk4gmamj6m7ghuxfewd2rfk0kwbmkmgjkouof/hxouibv0xd/6n6unq0qmxdufcy733hamjsjvoh5vbw9/y3mpvf3z29/ypiodhbsvsiuklcyzkn0skmmpjs1pnsderbmuhi51wcjn3o3dekir4jz4mjijrinoiyqsndkuwkjspyey0phhqldl2vvop+z507hlnlxtvqzzhr1/uogs7c5tacs1b8b0/fdincdeyiav6rppoiensu8zirnbpfukqnqar6rnkuuxukc2unsezowxhjkqprufc/t6roviparyazhjpsfrtzcw/vf6qo3qquz6kmnc8xbsldgob5xhaizueazy1bgfjza0qj5fewjugciaer0/h/6tt2a5ju9deqvfzxzehj+aunamx+kabrkattaagejyaj/bs3vup1ov1umznwauzy/ad1tsnkxgs5q==</latexit> <latexit sha1_base64="krmqkdady8zbxihq/ornrxywwbe=">aaab9xicdvdlsgmxfm3uv62vqks3wsk4gmamj6m7ghuxfewd2rfk0kwbmkmgjkouof/hxouibv0xd/6n6unq0qmxdufcy733hamjsjvoh5vbw9/y3mpvf3z29/ypiodhbsvsiuklcyzkn0skmmpjs1pnsderbmuhi51wcjn3o3dekir4jz4mjijrinoiyqsndkuwkjspyey0phhqldl2vvop+z507hlnlxtvqzzhr1/uogs7c5tacs1b8b0/fdincdeyiav6rppoiensu8zirnbpfukqnqar6rnkuuxukc2unsezowxhjkqprufc/t6roviparyazhjpsfrtzcw/vf6qo3qquz6kmnc8xbsldgob5xhaizueazy1bgfjza0qj5fewjugciaer0/h/6tt2a5ju9deqvfzxzehj+aunamx+kabrkattaagejyaj/bs3vup1ov1umznwauzy/ad1tsnkxgs5q==</latexit> Reward for (u, i) pair Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

59 <latexit sha1_base64="zyvwipk9uixn125ap0aibwydfrc=">aaacehicdvdpaxnbgj1nq42xaqzhxoygsaewg3yxuqw81fuf5gckixw7+yuzmjo7zhxbccf/ghf/fs8ewopxj978b5ykewzrbwop977h8f5akokodh8flypdj0+pqs9qz49fvhxvf33sd3lpbfzerni7tmghkgz7jenhslaiolu4sjcftv7ggq2tubmivyetdxmjz1iaewlaf/eruhmlzinn3hgfzaqgzhi64ma4qhlujs30tn4im504iaoeh804jjmo8irqd8j2wqnmueod7xe5rf8cz7konroscpwbrwfbkzvykklhpjyuhrygljdhkacgnlrjeldow996jeoz3ppnio/uvxnr0m6tdoovnddcpfa24r+8uumz9mqttvesgnh/0axunhk+xydn0qigtfiehc8ubrclsoansa7mr/jtlp+f9fvnypnpruy33s9rzafsjj2zil1nxxbbllmpcfazfwu37db4enwl7olv96evyj95wx4g+peb612dha==</latexit> <latexit sha1_base64="zyvwipk9uixn125ap0aibwydfrc=">aaacehicdvdpaxnbgj1nq42xaqzhxoygsaewg3yxuqw81fuf5gckixw7+yuzmjo7zhxbccf/ghf/fs8ewopxj978b5ykewzrbwop977h8f5akokodh8flypdj0+pqs9qz49fvhxvf33sd3lpbfzerni7tmghkgz7jenhslaiolu4sjcftv7ggq2tubmivyetdxmjz1iaewlaf/eruhmlzinn3hgfzaqgzhi64ma4qhlujs30tn4im504iaoeh804jjmo8irqd8j2wqnmueod7xe5rf8cz7konroscpwbrwfbkzvykklhpjyuhrygljdhkacgnlrjeldow996jeoz3ppnio/uvxnr0m6tdoovnddcpfa24r+8uumz9mqttvesgnh/0axunhk+xydn0qigtfiehc8ubrclsoansa7mr/jtlp+f9fvnypnpruy33s9rzafsjj2zil1nxxbbllmpcfazfwu37db4enwl7olv96evyj95wx4g+peb612dha==</latexit> <latexit sha1_base64="zyvwipk9uixn125ap0aibwydfrc=">aaacehicdvdpaxnbgj1nq42xaqzhxoygsaewg3yxuqw81fuf5gckixw7+yuzmjo7zhxbccf/ghf/fs8ewopxj978b5ykewzrbwop977h8f5akokodh8flypdj0+pqs9qz49fvhxvf33sd3lpbfzerni7tmghkgz7jenhslaiolu4sjcftv7ggq2tubmivyetdxmjz1iaewlaf/eruhmlzinn3hgfzaqgzhi64ma4qhlujs30tn4im504iaoeh804jjmo8irqd8j2wqnmueod7xe5rf8cz7konroscpwbrwfbkzvykklhpjyuhrygljdhkacgnlrjeldow996jeoz3ppnio/uvxnr0m6tdoovnddcpfa24r+8uumz9mqttvesgnh/0axunhk+xydn0qigtfiehc8ubrclsoansa7mr/jtlp+f9fvnypnpruy33s9rzafsjj2zil1nxxbbllmpcfazfwu37db4enwl7olv96evyj95wx4g+peb612dha==</latexit> <latexit sha1_base64="zyvwipk9uixn125ap0aibwydfrc=">aaacehicdvdpaxnbgj1nq42xaqzhxoygsaewg3yxuqw81fuf5gckixw7+yuzmjo7zhxbccf/ghf/fs8ewopxj978b5ykewzrbwop977h8f5akokodh8flypdj0+pqs9qz49fvhxvf33sd3lpbfzerni7tmghkgz7jenhslaiolu4sjcftv7ggq2tubmivyetdxmjz1iaewlaf/eruhmlzinn3hgfzaqgzhi64ma4qhlujs30tn4im504iaoeh804jjmo8irqd8j2wqnmueod7xe5rf8cz7konroscpwbrwfbkzvykklhpjyuhrygljdhkacgnlrjeldow996jeoz3ppnio/uvxnr0m6tdoovnddcpfa24r+8uumz9mqttvesgnh/0axunhk+xydn0qigtfiehc8ubrclsoansa7mr/jtlp+f9fvnypnpruy33s9rzafsjj2zil1nxxbbllmpcfazfwu37db4enwl7olv96evyj95wx4g+peb612dha==</latexit> Formalize Reward! Item rankings predicted by an algorithm Predicted ranking of item i for user u Ideal evaluation: R(Ẑ) = 1 U X u2u 1 S u X i2s u c(ẑu,i) Items liked by user u among the entire item set scoring metric <latexit sha1_base64="krmqkdady8zbxihq/ornrxywwbe=">aaab9xicdvdlsgmxfm3uv62vqks3wsk4gmamj6m7ghuxfewd2rfk0kwbmkmgjkouof/hxouibv0xd/6n6unq0qmxdufcy733hamjsjvoh5vbw9/y3mpvf3z29/ypiodhbsvsiuklcyzkn0skmmpjs1pnsderbmuhi51wcjn3o3dekir4jz4mjijrinoiyqsndkuwkjspyey0phhqldl2vvop+z507hlnlxtvqzzhr1/uogs7c5tacs1b8b0/fdincdeyiav6rppoiensu8zirnbpfukqnqar6rnkuuxukc2unsezowxhjkqprufc/t6roviparyazhjpsfrtzcw/vf6qo3qquz6kmnc8xbsldgob5xhaizueazy1bgfjza0qj5fewjugciaer0/h/6tt2a5ju9deqvfzxzehj+aunamx+kabrkattaagejyaj/bs3vup1ov1umznwauzy/ad1tsnkxgs5q==</latexit> <latexit sha1_base64="krmqkdady8zbxihq/ornrxywwbe=">aaab9xicdvdlsgmxfm3uv62vqks3wsk4gmamj6m7ghuxfewd2rfk0kwbmkmgjkouof/hxouibv0xd/6n6unq0qmxdufcy733hamjsjvoh5vbw9/y3mpvf3z29/ypiodhbsvsiuklcyzkn0skmmpjs1pnsderbmuhi51wcjn3o3dekir4jz4mjijrinoiyqsndkuwkjspyey0phhqldl2vvop+z507hlnlxtvqzzhr1/uogs7c5tacs1b8b0/fdincdeyiav6rppoiensu8zirnbpfukqnqar6rnkuuxukc2unsezowxhjkqprufc/t6roviparyazhjpsfrtzcw/vf6qo3qquz6kmnc8xbsldgob5xhaizueazy1bgfjza0qj5fewjugciaer0/h/6tt2a5ju9deqvfzxzehj+aunamx+kabrkattaagejyaj/bs3vup1ov1umznwauzy/ad1tsnkxgs5q==</latexit> <latexit sha1_base64="krmqkdady8zbxihq/ornrxywwbe=">aaab9xicdvdlsgmxfm3uv62vqks3wsk4gmamj6m7ghuxfewd2rfk0kwbmkmgjkouof/hxouibv0xd/6n6unq0qmxdufcy733hamjsjvoh5vbw9/y3mpvf3z29/ypiodhbsvsiuklcyzkn0skmmpjs1pnsderbmuhi51wcjn3o3dekir4jz4mjijrinoiyqsndkuwkjspyey0phhqldl2vvop+z507hlnlxtvqzzhr1/uogs7c5tacs1b8b0/fdincdeyiav6rppoiensu8zirnbpfukqnqar6rnkuuxukc2unsezowxhjkqprufc/t6roviparyazhjpsfrtzcw/vf6qo3qquz6kmnc8xbsldgob5xhaizueazy1bgfjza0qj5fewjugciaer0/h/6tt2a5ju9deqvfzxzehj+aunamx+kabrkattaagejyaj/bs3vup1ov1umznwauzy/ad1tsnkxgs5q==</latexit> <latexit sha1_base64="krmqkdady8zbxihq/ornrxywwbe=">aaab9xicdvdlsgmxfm3uv62vqks3wsk4gmamj6m7ghuxfewd2rfk0kwbmkmgjkouof/hxouibv0xd/6n6unq0qmxdufcy733hamjsjvoh5vbw9/y3mpvf3z29/ypiodhbsvsiuklcyzkn0skmmpjs1pnsderbmuhi51wcjn3o3dekir4jz4mjijrinoiyqsndkuwkjspyey0phhqldl2vvop+z507hlnlxtvqzzhr1/uogs7c5tacs1b8b0/fdincdeyiav6rppoiensu8zirnbpfukqnqar6rnkuuxukc2unsezowxhjkqprufc/t6roviparyazhjpsfrtzcw/vf6qo3qquz6kmnc8xbsldgob5xhaizueazy1bgfjza0qj5fewjugciaer0/h/6tt2a5ju9deqvfzxzehj+aunamx+kabrkattaagejyaj/bs3vup1ov1umznwauzy/ad1tsnkxgs5q==</latexit> Reward for user u Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

60 <latexit sha1_base64="zyvwipk9uixn125ap0aibwydfrc=">aaacehicdvdpaxnbgj1nq42xaqzhxoygsaewg3yxuqw81fuf5gckixw7+yuzmjo7zhxbccf/ghf/fs8ewopxj978b5ykewzrbwop977h8f5akokodh8flypdj0+pqs9qz49fvhxvf33sd3lpbfzerni7tmghkgz7jenhslaiolu4sjcftv7ggq2tubmivyetdxmjz1iaewlaf/eruhmlzinn3hgfzaqgzhi64ma4qhlujs30tn4im504iaoeh804jjmo8irqd8j2wqnmueod7xe5rf8cz7konroscpwbrwfbkzvykklhpjyuhrygljdhkacgnlrjeldow996jeoz3ppnio/uvxnr0m6tdoovnddcpfa24r+8uumz9mqttvesgnh/0axunhk+xydn0qigtfiehc8ubrclsoansa7mr/jtlp+f9fvnypnpruy33s9rzafsjj2zil1nxxbbllmpcfazfwu37db4enwl7olv96evyj95wx4g+peb612dha==</latexit> <latexit sha1_base64="zyvwipk9uixn125ap0aibwydfrc=">aaacehicdvdpaxnbgj1nq42xaqzhxoygsaewg3yxuqw81fuf5gckixw7+yuzmjo7zhxbccf/ghf/fs8ewopxj978b5ykewzrbwop977h8f5akokodh8flypdj0+pqs9qz49fvhxvf33sd3lpbfzerni7tmghkgz7jenhslaiolu4sjcftv7ggq2tubmivyetdxmjz1iaewlaf/eruhmlzinn3hgfzaqgzhi64ma4qhlujs30tn4im504iaoeh804jjmo8irqd8j2wqnmueod7xe5rf8cz7konroscpwbrwfbkzvykklhpjyuhrygljdhkacgnlrjeldow996jeoz3ppnio/uvxnr0m6tdoovnddcpfa24r+8uumz9mqttvesgnh/0axunhk+xydn0qigtfiehc8ubrclsoansa7mr/jtlp+f9fvnypnpruy33s9rzafsjj2zil1nxxbbllmpcfazfwu37db4enwl7olv96evyj95wx4g+peb612dha==</latexit> <latexit sha1_base64="zyvwipk9uixn125ap0aibwydfrc=">aaacehicdvdpaxnbgj1nq42xaqzhxoygsaewg3yxuqw81fuf5gckixw7+yuzmjo7zhxbccf/ghf/fs8ewopxj978b5ykewzrbwop977h8f5akokodh8flypdj0+pqs9qz49fvhxvf33sd3lpbfzerni7tmghkgz7jenhslaiolu4sjcftv7ggq2tubmivyetdxmjz1iaewlaf/eruhmlzinn3hgfzaqgzhi64ma4qhlujs30tn4im504iaoeh804jjmo8irqd8j2wqnmueod7xe5rf8cz7konroscpwbrwfbkzvykklhpjyuhrygljdhkacgnlrjeldow996jeoz3ppnio/uvxnr0m6tdoovnddcpfa24r+8uumz9mqttvesgnh/0axunhk+xydn0qigtfiehc8ubrclsoansa7mr/jtlp+f9fvnypnpruy33s9rzafsjj2zil1nxxbbllmpcfazfwu37db4enwl7olv96evyj95wx4g+peb612dha==</latexit> <latexit sha1_base64="zyvwipk9uixn125ap0aibwydfrc=">aaacehicdvdpaxnbgj1nq42xaqzhxoygsaewg3yxuqw81fuf5gckixw7+yuzmjo7zhxbccf/ghf/fs8ewopxj978b5ykewzrbwop977h8f5akokodh8flypdj0+pqs9qz49fvhxvf33sd3lpbfzerni7tmghkgz7jenhslaiolu4sjcftv7ggq2tubmivyetdxmjz1iaewlaf/eruhmlzinn3hgfzaqgzhi64ma4qhlujs30tn4im504iaoeh804jjmo8irqd8j2wqnmueod7xe5rf8cz7konroscpwbrwfbkzvykklhpjyuhrygljdhkacgnlrjeldow996jeoz3ppnio/uvxnr0m6tdoovnddcpfa24r+8uumz9mqttvesgnh/0axunhk+xydn0qigtfiehc8ubrclsoansa7mr/jtlp+f9fvnypnpruy33s9rzafsjj2zil1nxxbbllmpcfazfwu37db4enwl7olv96evyj95wx4g+peb612dha==</latexit> Formalize Reward! Item rankings predicted by an algorithm Predicted ranking of item i for user u Ideal evaluation: R(Ẑ) = 1 U X u2u 1 S u X i2s u c(ẑu,i) Items liked by user u among the entire item set scoring metric <latexit sha1_base64="krmqkdady8zbxihq/ornrxywwbe=">aaab9xicdvdlsgmxfm3uv62vqks3wsk4gmamj6m7ghuxfewd2rfk0kwbmkmgjkouof/hxouibv0xd/6n6unq0qmxdufcy733hamjsjvoh5vbw9/y3mpvf3z29/ypiodhbsvsiuklcyzkn0skmmpjs1pnsderbmuhi51wcjn3o3dekir4jz4mjijrinoiyqsndkuwkjspyey0phhqldl2vvop+z507hlnlxtvqzzhr1/uogs7c5tacs1b8b0/fdincdeyiav6rppoiensu8zirnbpfukqnqar6rnkuuxukc2unsezowxhjkqprufc/t6roviparyazhjpsfrtzcw/vf6qo3qquz6kmnc8xbsldgob5xhaizueazy1bgfjza0qj5fewjugciaer0/h/6tt2a5ju9deqvfzxzehj+aunamx+kabrkattaagejyaj/bs3vup1ov1umznwauzy/ad1tsnkxgs5q==</latexit> <latexit sha1_base64="krmqkdady8zbxihq/ornrxywwbe=">aaab9xicdvdlsgmxfm3uv62vqks3wsk4gmamj6m7ghuxfewd2rfk0kwbmkmgjkouof/hxouibv0xd/6n6unq0qmxdufcy733hamjsjvoh5vbw9/y3mpvf3z29/ypiodhbsvsiuklcyzkn0skmmpjs1pnsderbmuhi51wcjn3o3dekir4jz4mjijrinoiyqsndkuwkjspyey0phhqldl2vvop+z507hlnlxtvqzzhr1/uogs7c5tacs1b8b0/fdincdeyiav6rppoiensu8zirnbpfukqnqar6rnkuuxukc2unsezowxhjkqprufc/t6roviparyazhjpsfrtzcw/vf6qo3qquz6kmnc8xbsldgob5xhaizueazy1bgfjza0qj5fewjugciaer0/h/6tt2a5ju9deqvfzxzehj+aunamx+kabrkattaagejyaj/bs3vup1ov1umznwauzy/ad1tsnkxgs5q==</latexit> <latexit sha1_base64="krmqkdady8zbxihq/ornrxywwbe=">aaab9xicdvdlsgmxfm3uv62vqks3wsk4gmamj6m7ghuxfewd2rfk0kwbmkmgjkouof/hxouibv0xd/6n6unq0qmxdufcy733hamjsjvoh5vbw9/y3mpvf3z29/ypiodhbsvsiuklcyzkn0skmmpjs1pnsderbmuhi51wcjn3o3dekir4jz4mjijrinoiyqsndkuwkjspyey0phhqldl2vvop+z507hlnlxtvqzzhr1/uogs7c5tacs1b8b0/fdincdeyiav6rppoiensu8zirnbpfukqnqar6rnkuuxukc2unsezowxhjkqprufc/t6roviparyazhjpsfrtzcw/vf6qo3qquz6kmnc8xbsldgob5xhaizueazy1bgfjza0qj5fewjugciaer0/h/6tt2a5ju9deqvfzxzehj+aunamx+kabrkattaagejyaj/bs3vup1ov1umznwauzy/ad1tsnkxgs5q==</latexit> <latexit sha1_base64="krmqkdady8zbxihq/ornrxywwbe=">aaab9xicdvdlsgmxfm3uv62vqks3wsk4gmamj6m7ghuxfewd2rfk0kwbmkmgjkouof/hxouibv0xd/6n6unq0qmxdufcy733hamjsjvoh5vbw9/y3mpvf3z29/ypiodhbsvsiuklcyzkn0skmmpjs1pnsderbmuhi51wcjn3o3dekir4jz4mjijrinoiyqsndkuwkjspyey0phhqldl2vvop+z507hlnlxtvqzzhr1/uogs7c5tacs1b8b0/fdincdeyiav6rppoiensu8zirnbpfukqnqar6rnkuuxukc2unsezowxhjkqprufc/t6roviparyazhjpsfrtzcw/vf6qo3qquz6kmnc8xbsldgob5xhaizueazy1bgfjza0qj5fewjugciaer0/h/6tt2a5ju9deqvfzxzehj+aunamx+kabrkattaagejyaj/bs3vup1ov1umznwauzy/ad1tsnkxgs5q==</latexit> Reward for the algorithm <latexit sha1_base64="58zcswwb0/mrbmw4ak6tfutvoiw=">aaacaxicdvdlsgmxfm3uv62vqhvbtbairkpa+3inuhgpylwopwtso21ozjikd5rs6szfcencebf+htv/xvqhqohzhmm593jzjh8razgxdy81mzs3v5bezcwtr6yuzdc3lqxojic60eqbk59budkcokpucbub4kgv4nlvhy38yxswvurohpsxnepeiwqgbucntbjbz3dltzsg2ldsauwqo43ebtjk5lie1ur7rezzvliqfytvr9x7uga0kgdj5mguj63s+3vbiysecixi1jyklmbmgbuuqsewc51yilno8q40hi14cly5gccy0l2ntd4r6ajpwp2+mechtf3qd5mhx6797y3ev7xggkgtozbrncbeyniosbrftud10ly0ifd1hehcbzecii43xkarlenk+epk/ycxxxzb8dni7ra0rsnntsko2smfuiwh5jickdor5i48kcfy7n17j96l9zoztxntnu3ya97bj5yylve=</latexit> <latexit sha1_base64="58zcswwb0/mrbmw4ak6tfutvoiw=">aaacaxicdvdlsgmxfm3uv62vqhvbtbairkpa+3inuhgpylwopwtso21ozjikd5rs6szfcencebf+htv/xvqhqohzhmm593jzjh8razgxdy81mzs3v5bezcwtr6yuzdc3lqxojic60eqbk59budkcokpucbub4kgv4nlvhy38yxswvurohpsxnepeiwqgbucntbjbz3dltzsg2ldsauwqo43ebtjk5lie1ur7rezzvliqfytvr9x7uga0kgdj5mguj63s+3vbiysecixi1jyklmbmgbuuqsewc51yilno8q40hi14cly5gccy0l2ntd4r6ajpwp2+mechtf3qd5mhx6797y3ev7xggkgtozbrncbeyniosbrftud10ly0ifd1hehcbzecii43xkarlenk+epk/ycxxxzb8dni7ra0rsnntsko2smfuiwh5jickdor5i48kcfy7n17j96l9zoztxntnu3ya97bj5yylve=</latexit> <latexit sha1_base64="58zcswwb0/mrbmw4ak6tfutvoiw=">aaacaxicdvdlsgmxfm3uv62vqhvbtbairkpa+3inuhgpylwopwtso21ozjikd5rs6szfcencebf+htv/xvqhqohzhmm593jzjh8razgxdy81mzs3v5bezcwtr6yuzdc3lqxojic60eqbk59budkcokpucbub4kgv4nlvhy38yxswvurohpsxnepeiwqgbucntbjbz3dltzsg2ldsauwqo43ebtjk5lie1ur7rezzvliqfytvr9x7uga0kgdj5mguj63s+3vbiysecixi1jyklmbmgbuuqsewc51yilno8q40hi14cly5gccy0l2ntd4r6ajpwp2+mechtf3qd5mhx6797y3ev7xggkgtozbrncbeyniosbrftud10ly0ifd1hehcbzecii43xkarlenk+epk/ycxxxzb8dni7ra0rsnntsko2smfuiwh5jickdor5i48kcfy7n17j96l9zoztxntnu3ya97bj5yylve=</latexit> <latexit sha1_base64="58zcswwb0/mrbmw4ak6tfutvoiw=">aaacaxicdvdlsgmxfm3uv62vqhvbtbairkpa+3inuhgpylwopwtso21ozjikd5rs6szfcencebf+htv/xvqhqohzhmm593jzjh8razgxdy81mzs3v5bezcwtr6yuzdc3lqxojic60eqbk59budkcokpucbub4kgv4nlvhy38yxswvurohpsxnepeiwqgbucntbjbz3dltzsg2ldsauwqo43ebtjk5lie1ur7rezzvliqfytvr9x7uga0kgdj5mguj63s+3vbiysecixi1jyklmbmgbuuqsewc51yilno8q40hi14cly5gccy0l2ntd4r6ajpwp2+mechtf3qd5mhx6797y3ev7xggkgtozbrncbeyniosbrftud10ly0ifd1hehcbzecii43xkarlenk+epk/ycxxxzb8dni7ra0rsnntsko2smfuiwh5jickdor5i48kcfy7n17j96l9zoztxntnu3ya97bj5yylve=</latexit> Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

61 Formalize Reward! Average-Over-All: ˆRAOA (Ẑ) = 1 U X u2u 1 S u X i2s u c(ẑu,i) Items liked by user u (observed) Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

62 Formalize Bias E O h ˆRAOA (Ẑ) i 6= R(Ẑ) O u,i =1if(u, i) is observed, and O u,i = 0 otherwise O u,i B(1,P u,i ) Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

63 Inverse-Propensity-Scoring (IPS) ˆR AOA (Ẑ) = 1 U X u2u 1 S u X i2s u c(ẑu,i) 1 ˆR IPS (Ẑ P )= U X u2u 1 S u X i2s u c(ẑu,i) P u,i Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

64 Inverse-Propensity-Scoring (IPS) ˆR AOA (Ẑ) = 1 U X u2u 1 S u X i2s u c(ẑu,i) 1 ˆR IPS (Ẑ P )= U X u2u 1 S u X i2s u c(ẑu,i) P u,i E O h ˆRIPS (Ẑ P ) i = R(Ẑ) Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

65 Self-Normalized Inverse-Propensity-Scoring (SNIPS) [Swaminathan et al.15] 1 ˆR IPS (Ẑ P )= U X u2u 1 S u X i2s u c(ẑu,i) P u,i 1 ˆR SNIPS (Ẑ P )= U X u2u 1 P i2s u 1 P u,i X i2s u c(ẑu,i) P u,i Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

66 Estimating Propensity Scores Factor: Popularity bias (Users are more likely to be exposed to popular items) Assumptions: User-independence assumption P u,i = P (O u,i = 1) = P (O,i = 1) = P,i Two-steps assumption P,i = P select,i P interact select,i User preference is not affected by item presentation P interact select,i = P interact,i Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

67 Estimating Propensity Scores Popularity bias model [Steck 11]: ˆP select,i / (n i ) Observed item popularity Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

68 Estimating Propensity Scores Popularity bias model [Steck 11]: ˆP select,i / (n i ) ˆP,i / (n i ) ( +1 2 ) Estimated from known online content serving policy Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

69 Measuring bias in recommender evaluation (Yahoo! music rating dataset) Mean Absolute Error (MAE), Recall Model Average- Over-All! SNIPS (# = 1.5)! SNIPS (# = 2.0)! SNIPS (# = 2.5)! SNIPS (# = 3.0) U-CML A-CML BPR PMF R SNIPS produces significantly lower MAE Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

70 Measuring bias in recommender evaluation (Yahoo! music rating dataset) Mean Absolute Error (MAE), Recall Model Average- Over-All! SNIPS (# = 1.5)! SNIPS (# = 2.0)! SNIPS (# = 2.5)! SNIPS (# = 3.0) The accuracy of recommending popular items is a significant overestimation of the true recommendation performance U-CML A-CML BPR PMF R SNIPS produces significantly lower MAE Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In 12th ACM Conference on Recommender Systems (Recsys),

71 Agenda More than Just Words (WSDM 19) Debias Offline Recommendation Evaluation (Recsys 18) Intention Informed Recommendations (Under Review) 71

72 2-by-2 Randomized Controlled Trial RS: How do intention-informed recommendations modulate users podcast content choices? Longqi Yang, Michael Sobolev, Yu Wang, Jenny Chen, Drew Dunne, Christina Tsangouri, Nicola Dell, Mor Naaman, and Deborah Estrin. How intention informed recommendations modulate choices: A field study of spoken word content. Under Review,

73 2-by-2 Randomized Controlled Trial RS: How do intention-informed recommendations modulate users podcast content choices? Intended topics-informed Rec. No Rec. (Trending chart) X Intended channels-informed Rec. No Rec. (Subscription-only) Longqi Yang, Michael Sobolev, Yu Wang, Jenny Chen, Drew Dunne, Christina Tsangouri, Nicola Dell, Mor Naaman, and Deborah Estrin. How intention informed recommendations modulate choices: A field study of spoken word content. Under Review,

74 Main Findings 72% related onboarding subs. Intended topics-informed Rec. 36% related field subs. 24% related field listening Intended channels-informed Rec. 127% listening exploration Longqi Yang, Michael Sobolev, Yu Wang, Jenny Chen, Drew Dunne, Christina Tsangouri, Nicola Dell, Mor Naaman, and Deborah Estrin. How intention informed recommendations modulate choices: A field study of spoken word content. Under Review,

75 Main Findings Intended topics-informed Rec. X Intended channels-informed Rec. User satisfaction No Rec. (Trending chart) X Intended channels-informed Rec. User satisfaction Longqi Yang, Michael Sobolev, Yu Wang, Jenny Chen, Drew Dunne, Christina Tsangouri, Nicola Dell, Mor Naaman, and Deborah Estrin. How intention informed recommendations modulate choices: A field study of spoken word content. Under Review,

76 Longqi Yang Ph.D. candidate Computer Science, Cornell Tech, Cornell University Web: bit.ly/longqi Twitter Github link, documents, and tutorials Connected Experiences Lab Small Data Lab Funders: 76

Collaborative Metric Learning

Collaborative Metric Learning Collaborative Metric Learning Andy Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, Deborah Estrin Connected Experience Lab, Cornell Tech AOL CONNECTED EXPERIENCES LAB CORNELL TECH 1 Collaborative

More information

STREAMING RANKING BASED RECOMMENDER SYSTEMS

STREAMING RANKING BASED RECOMMENDER SYSTEMS STREAMING RANKING BASED RECOMMENDER SYSTEMS Weiqing Wang, Hongzhi Yin, Zi Huang, Qinyong Wang, Xingzhong Du, Quoc Viet Hung Nguyen University of Queensland, Australia & Griffith University, Australia July

More information

A Brief Review of Representation Learning in Recommender 赵鑫 RUC

A Brief Review of Representation Learning in Recommender 赵鑫 RUC A Brief Review of Representation Learning in Recommender Systems @ 赵鑫 RUC batmanfly@qq.com Representation learning Overview of recommender systems Tasks Rating prediction Item recommendation Basic models

More information

Learning to Match. Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li

Learning to Match. Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li Learning to Match Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li 1. Introduction The main tasks in many applications can be formalized as matching between heterogeneous objects, including search, recommendation,

More information

KDD 10 Tutorial: Recommender Problems for Web Applications. Deepak Agarwal and Bee-Chung Chen Yahoo! Research

KDD 10 Tutorial: Recommender Problems for Web Applications. Deepak Agarwal and Bee-Chung Chen Yahoo! Research KDD 10 Tutorial: Recommender Problems for Web Applications Deepak Agarwal and Bee-Chung Chen Yahoo! Research Agenda Focus: Recommender problems for dynamic, time-sensitive applications Content Optimization

More information

Music Recommendation with Implicit Feedback and Side Information

Music Recommendation with Implicit Feedback and Side Information Music Recommendation with Implicit Feedback and Side Information Shengbo Guo Yahoo! Labs shengbo@yahoo-inc.com Behrouz Behmardi Criteo b.behmardi@criteo.com Gary Chen Vobile gary.chen@vobileinc.com Abstract

More information

Combining Review Text Content and Reviewer-Item Rating Matrix to Predict Review Rating

Combining Review Text Content and Reviewer-Item Rating Matrix to Predict Review Rating Combining Review Text Content and Reviewer-Item Rating Matrix to Predict Review Rating Dipak J Kakade, Nilesh P Sable Department of Computer Engineering, JSPM S Imperial College of Engg. And Research,

More information

Real-time Collaborative Filtering Recommender Systems

Real-time Collaborative Filtering Recommender Systems Real-time Collaborative Filtering Recommender Systems Huizhi Liang, Haoran Du, Qing Wang Presenter: Qing Wang Research School of Computer Science The Australian National University Australia Partially

More information

Learning Similarity Metrics for Event Identification in Social Media. Hila Becker, Luis Gravano

Learning Similarity Metrics for Event Identification in Social Media. Hila Becker, Luis Gravano Learning Similarity Metrics for Event Identification in Social Media Hila Becker, Luis Gravano Columbia University Mor Naaman Rutgers University Event Content in Social Media Sites Event Content in Social

More information

Opportunities and challenges in personalization of online hotel search

Opportunities and challenges in personalization of online hotel search Opportunities and challenges in personalization of online hotel search David Zibriczky Data Science & Analytics Lead, User Profiling Introduction 2 Introduction About Mission: Helping the travelers to

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6 - Section - Spring 7 Lecture Jan-Willem van de Meent (credit: Andrew Ng, Alex Smola, Yehuda Koren, Stanford CS6) Project Project Deadlines Feb: Form teams of - people 7 Feb:

More information

Automatic Domain Partitioning for Multi-Domain Learning

Automatic Domain Partitioning for Multi-Domain Learning Automatic Domain Partitioning for Multi-Domain Learning Di Wang diwang@cs.cmu.edu Chenyan Xiong cx@cs.cmu.edu William Yang Wang ww@cmu.edu Abstract Multi-Domain learning (MDL) assumes that the domain labels

More information

Recommender Systems - Content, Collaborative, Hybrid

Recommender Systems - Content, Collaborative, Hybrid BOBBY B. LYLE SCHOOL OF ENGINEERING Department of Engineering Management, Information and Systems EMIS 8331 Advanced Data Mining Recommender Systems - Content, Collaborative, Hybrid Scott F Eisenhart 1

More information

Implementing Games User Research Processes Throughout Development: Beyond Playtesting

Implementing Games User Research Processes Throughout Development: Beyond Playtesting Implementing Games User Research Processes Throughout Development: Beyond Playtesting Graham McAllister Founder, Player Research @grmcall Introduction Founder - Player Research, a User Research studio

More information

Impact of Search Engines on Page Popularity

Impact of Search Engines on Page Popularity Impact of Search Engines on Page Popularity Junghoo John Cho (cho@cs.ucla.edu) Sourashis Roy (roys@cs.ucla.edu) University of California, Los Angeles Impact of Search Engines on Page Popularity J. Cho,

More information

Evaluation Metrics. (Classifiers) CS229 Section Anand Avati

Evaluation Metrics. (Classifiers) CS229 Section Anand Avati Evaluation Metrics (Classifiers) CS Section Anand Avati Topics Why? Binary classifiers Metrics Rank view Thresholding Confusion Matrix Point metrics: Accuracy, Precision, Recall / Sensitivity, Specificity,

More information

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering INF4820 Algorithms for AI and NLP Evaluating Classifiers Clustering Erik Velldal & Stephan Oepen Language Technology Group (LTG) September 23, 2015 Agenda Last week Supervised vs unsupervised learning.

More information

Similarity by Metadata

Similarity by Metadata Similarity by Metadata Simon Putzke Mirco Semper Freie Universität Berlin Institut für Informatik Seminar Music Information Retrieval Outline Motivation Metadata Tagging Similarities Webmining Example

More information

A study of Video Response Spam Detection on YouTube

A study of Video Response Spam Detection on YouTube A study of Video Response Spam Detection on YouTube Suman 1 and Vipin Arora 2 1 Research Scholar, Department of CSE, BITS, Bhiwani, Haryana (India) 2 Asst. Prof., Department of CSE, BITS, Bhiwani, Haryana

More information

CPSC 340: Machine Learning and Data Mining. Probabilistic Classification Fall 2017

CPSC 340: Machine Learning and Data Mining. Probabilistic Classification Fall 2017 CPSC 340: Machine Learning and Data Mining Probabilistic Classification Fall 2017 Admin Assignment 0 is due tonight: you should be almost done. 1 late day to hand it in Monday, 2 late days for Wednesday.

More information

The Comparative Study of Machine Learning Algorithms in Text Data Classification*

The Comparative Study of Machine Learning Algorithms in Text Data Classification* The Comparative Study of Machine Learning Algorithms in Text Data Classification* Wang Xin School of Science, Beijing Information Science and Technology University Beijing, China Abstract Classification

More information

Search Engines Chapter 8 Evaluating Search Engines Felix Naumann

Search Engines Chapter 8 Evaluating Search Engines Felix Naumann Search Engines Chapter 8 Evaluating Search Engines 9.7.2009 Felix Naumann Evaluation 2 Evaluation is key to building effective and efficient search engines. Drives advancement of search engines When intuition

More information

Telling Experts from Spammers Expertise Ranking in Folksonomies

Telling Experts from Spammers Expertise Ranking in Folksonomies 32 nd Annual ACM SIGIR 09 Boston, USA, Jul 19-23 2009 Telling Experts from Spammers Expertise Ranking in Folksonomies Michael G. Noll (Albert) Ching-Man Au Yeung Christoph Meinel Nicholas Gibbins Nigel

More information

Mining Social Media Users Interest

Mining Social Media Users Interest Mining Social Media Users Interest Presenters: Heng Wang,Man Yuan April, 4 th, 2016 Agenda Introduction to Text Mining Tool & Dataset Data Pre-processing Text Mining on Twitter Summary & Future Improvement

More information

CSE 258. Web Mining and Recommender Systems. Advanced Recommender Systems

CSE 258. Web Mining and Recommender Systems. Advanced Recommender Systems CSE 258 Web Mining and Recommender Systems Advanced Recommender Systems This week Methodological papers Bayesian Personalized Ranking Factorizing Personalized Markov Chains Personalized Ranking Metric

More information

CS 229 Final Project - Using machine learning to enhance a collaborative filtering recommendation system for Yelp

CS 229 Final Project - Using machine learning to enhance a collaborative filtering recommendation system for Yelp CS 229 Final Project - Using machine learning to enhance a collaborative filtering recommendation system for Yelp Chris Guthrie Abstract In this paper I present my investigation of machine learning as

More information

Text Categorization (I)

Text Categorization (I) CS473 CS-473 Text Categorization (I) Luo Si Department of Computer Science Purdue University Text Categorization (I) Outline Introduction to the task of text categorization Manual v.s. automatic text categorization

More information

Supplemental Material: Multi-Class Open Set Recognition Using Probability of Inclusion

Supplemental Material: Multi-Class Open Set Recognition Using Probability of Inclusion Supplemental Material: Multi-Class Open Set Recognition Using Probability of Inclusion Lalit P. Jain, Walter J. Scheirer,2, and Terrance E. Boult,3 University of Colorado Colorado Springs 2 Harvard University

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu Can we identify node groups? (communities, modules, clusters) 2/13/2014 Jure Leskovec, Stanford C246: Mining

More information

Master Project. Various Aspects of Recommender Systems. Prof. Dr. Georg Lausen Dr. Michael Färber Anas Alzoghbi Victor Anthony Arrascue Ayala

Master Project. Various Aspects of Recommender Systems. Prof. Dr. Georg Lausen Dr. Michael Färber Anas Alzoghbi Victor Anthony Arrascue Ayala Master Project Various Aspects of Recommender Systems May 2nd, 2017 Master project SS17 Albert-Ludwigs-Universität Freiburg Prof. Dr. Georg Lausen Dr. Michael Färber Anas Alzoghbi Victor Anthony Arrascue

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 60 - Section - Fall 06 Lecture Jan-Willem van de Meent (credit: Andrew Ng, Alex Smola, Yehuda Koren, Stanford CS6) Recommender Systems The Long Tail (from: https://www.wired.com/00/0/tail/)

More information

Statistical Performance Comparisons of Computers

Statistical Performance Comparisons of Computers Tianshi Chen 1, Yunji Chen 1, Qi Guo 1, Olivier Temam 2, Yue Wu 1, Weiwu Hu 1 1 State Key Laboratory of Computer Architecture, Institute of Computing Technology (ICT), Chinese Academy of Sciences, Beijing,

More information

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering Erik Velldal University of Oslo Sept. 18, 2012 Topics for today 2 Classification Recap Evaluating classifiers Accuracy, precision,

More information

Chapter 8. Evaluating Search Engine

Chapter 8. Evaluating Search Engine Chapter 8 Evaluating Search Engine Evaluation Evaluation is key to building effective and efficient search engines Measurement usually carried out in controlled laboratory experiments Online testing can

More information

Advanced Topics in Information Retrieval. Learning to Rank. ATIR July 14, 2016

Advanced Topics in Information Retrieval. Learning to Rank. ATIR July 14, 2016 Advanced Topics in Information Retrieval Learning to Rank Vinay Setty vsetty@mpi-inf.mpg.de Jannik Strötgen jannik.stroetgen@mpi-inf.mpg.de ATIR July 14, 2016 Before we start oral exams July 28, the full

More information

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering INF4820 Algorithms for AI and NLP Evaluating Classifiers Clustering Murhaf Fares & Stephan Oepen Language Technology Group (LTG) September 27, 2017 Today 2 Recap Evaluation of classifiers Unsupervised

More information

Math Information Retrieval: User Requirements and Prototype Implementation. Jin Zhao, Min Yen Kan and Yin Leng Theng

Math Information Retrieval: User Requirements and Prototype Implementation. Jin Zhao, Min Yen Kan and Yin Leng Theng Math Information Retrieval: User Requirements and Prototype Implementation Jin Zhao, Min Yen Kan and Yin Leng Theng Why Math Information Retrieval? Examples: Looking for formulas Collect teaching resources

More information

Ranking Algorithms For Digital Forensic String Search Hits

Ranking Algorithms For Digital Forensic String Search Hits DIGITAL FORENSIC RESEARCH CONFERENCE Ranking Algorithms For Digital Forensic String Search Hits By Nicole Beebe and Lishu Liu Presented At The Digital Forensic Research Conference DFRWS 2014 USA Denver,

More information

A Constrained Spreading Activation Approach to Collaborative Filtering

A Constrained Spreading Activation Approach to Collaborative Filtering A Constrained Spreading Activation Approach to Collaborative Filtering Josephine Griffith 1, Colm O Riordan 1, and Humphrey Sorensen 2 1 Dept. of Information Technology, National University of Ireland,

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Data Matrices and Vector Space Model Denis Helic KTI, TU Graz Nov 6, 2014 Denis Helic (KTI, TU Graz) KDDM1 Nov 6, 2014 1 / 55 Big picture: KDDM Probability

More information

Bayesian Personalized Ranking for Las Vegas Restaurant Recommendation

Bayesian Personalized Ranking for Las Vegas Restaurant Recommendation Bayesian Personalized Ranking for Las Vegas Restaurant Recommendation Kiran Kannar A53089098 kkannar@eng.ucsd.edu Saicharan Duppati A53221873 sduppati@eng.ucsd.edu Akanksha Grover A53205632 a2grover@eng.ucsd.edu

More information

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL., NO., DEC User Action Interpretation for Online Content Optimization

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL., NO., DEC User Action Interpretation for Online Content Optimization IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL., NO., DEC 2011 1 User Action Interpretation for Online Content Optimization Jiang Bian, Anlei Dong, Xiaofeng He, Srihari Reddy, and Yi Chang Abstract

More information

Extracting Information from Complex Networks

Extracting Information from Complex Networks Extracting Information from Complex Networks 1 Complex Networks Networks that arise from modeling complex systems: relationships Social networks Biological networks Distinguish from random networks uniform

More information

arxiv: v1 [cs.mm] 12 Jan 2016

arxiv: v1 [cs.mm] 12 Jan 2016 Learning Subclass Representations for Visually-varied Image Classification Xinchao Li, Peng Xu, Yue Shi, Martha Larson, Alan Hanjalic Multimedia Information Retrieval Lab, Delft University of Technology

More information

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013 ISSN:

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013 ISSN: Semi Automatic Annotation Exploitation Similarity of Pics in i Personal Photo Albums P. Subashree Kasi Thangam 1 and R. Rosy Angel 2 1 Assistant Professor, Department of Computer Science Engineering College,

More information

Partitioning Data. IRDS: Evaluation, Debugging, and Diagnostics. Cross-Validation. Cross-Validation for parameter tuning

Partitioning Data. IRDS: Evaluation, Debugging, and Diagnostics. Cross-Validation. Cross-Validation for parameter tuning Partitioning Data IRDS: Evaluation, Debugging, and Diagnostics Charles Sutton University of Edinburgh Training Validation Test Training : Running learning algorithms Validation : Tuning parameters of learning

More information

Search Engines Considered Harmful In Search of an Unbiased Web Ranking

Search Engines Considered Harmful In Search of an Unbiased Web Ranking Search Engines Considered Harmful In Search of an Unbiased Web Ranking Junghoo John Cho cho@cs.ucla.edu UCLA Search Engines Considered Harmful Junghoo John Cho 1/38 Motivation If you are not indexed by

More information

Feature Selection. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Feature Selection. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Feature Selection CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Dimensionality reduction Feature selection vs. feature extraction Filter univariate

More information

Improving Stack Overflow Tag Prediction Using Eye Tracking Alina Lazar Youngstown State University Bonita Sharif, Youngstown State University

Improving Stack Overflow Tag Prediction Using Eye Tracking Alina Lazar Youngstown State University Bonita Sharif, Youngstown State University Improving Stack Overflow Tag Prediction Using Eye Tracking Alina Lazar, Youngstown State University Bonita Sharif, Youngstown State University Jenna Wise, Youngstown State University Alyssa Pawluk, Youngstown

More information

A Novel Categorized Search Strategy using Distributional Clustering Neenu Joseph. M 1, Sudheep Elayidom 2

A Novel Categorized Search Strategy using Distributional Clustering Neenu Joseph. M 1, Sudheep Elayidom 2 A Novel Categorized Search Strategy using Distributional Clustering Neenu Joseph. M 1, Sudheep Elayidom 2 1 Student, M.E., (Computer science and Engineering) in M.G University, India, 2 Associate Professor

More information

CAP 6412 Advanced Computer Vision

CAP 6412 Advanced Computer Vision CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong April 21st, 2016 Today Administrivia Free parameters in an approach, model, or algorithm? Egocentric videos by Aisha

More information

Lecture 19: Generative Adversarial Networks

Lecture 19: Generative Adversarial Networks Lecture 19: Generative Adversarial Networks Roger Grosse 1 Introduction Generative modeling is a type of machine learning where the aim is to model the distribution that a given set of data (e.g. images,

More information

DIGIT.B4 Big Data PoC

DIGIT.B4 Big Data PoC DIGIT.B4 Big Data PoC DIGIT 01 Social Media D02.01 PoC Requirements Table of contents 1 Introduction... 5 1.1 Context... 5 1.2 Objective... 5 2 Data SOURCES... 6 2.1 Data sources... 6 2.2 Data fields...

More information

research How Manual Tasks Sabotage the Potential of Natural Search Marketers

research How Manual Tasks Sabotage the Potential of Natural Search Marketers research How Manual Tasks Sabotage the Potential of Natural Search Marketers Executive Summary Due to the technical nature of the SEO industry and its immaturity relative to other marketing disciplines,

More information

Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound. Lecture 12: Deep Reinforcement Learning

Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound. Lecture 12: Deep Reinforcement Learning Topics in AI (CPSC 532L): Multimodal Learning with Vision, Language and Sound Lecture 12: Deep Reinforcement Learning Types of Learning Supervised training Learning from the teacher Training data includes

More information

arxiv: v1 [cs.ir] 11 Oct 2018

arxiv: v1 [cs.ir] 11 Oct 2018 Offline Comparison of Ranking Functions using Randomized Data Aman Agarwal, Xuanhui Wang, Cheng Li, Michael Bendersky, Marc Najork Google Mountain View, CA {agaman,xuanhui,chgli,bemike,najork}@google.com

More information

Automatically Building Research Reading Lists

Automatically Building Research Reading Lists Automatically Building Research Reading Lists Michael D. Ekstrand 1 Praveen Kanaan 1 James A. Stemper 2 John T. Butler 2 Joseph A. Konstan 1 John T. Riedl 1 ekstrand@cs.umn.edu 1 GroupLens Research Department

More information

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

1 Introduction. 3 Data Preprocessing. 2 Literature Review

1 Introduction. 3 Data Preprocessing. 2 Literature Review Rock or not? This sure does. [Category] Audio & Music CS 229 Project Report Anand Venkatesan(anand95), Arjun Parthipan(arjun777), Lakshmi Manoharan(mlakshmi) 1 Introduction Music Genre Classification continues

More information

CCRMA MIR Workshop 2014 Evaluating Information Retrieval Systems. Leigh M. Smith Humtap Inc.

CCRMA MIR Workshop 2014 Evaluating Information Retrieval Systems. Leigh M. Smith Humtap Inc. CCRMA MIR Workshop 2014 Evaluating Information Retrieval Systems Leigh M. Smith Humtap Inc. leigh@humtap.com Basic system overview Segmentation (Frames, Onsets, Beats, Bars, Chord Changes, etc) Feature

More information

University of Pittsburgh at TREC 2014 Microblog Track

University of Pittsburgh at TREC 2014 Microblog Track University of Pittsburgh at TREC 2014 Microblog Track Zheng Gao School of Information Science University of Pittsburgh zhg15@pitt.edu Rui Bi School of Information Science University of Pittsburgh rub14@pitt.edu

More information

Part 11: Collaborative Filtering. Francesco Ricci

Part 11: Collaborative Filtering. Francesco Ricci Part : Collaborative Filtering Francesco Ricci Content An example of a Collaborative Filtering system: MovieLens The collaborative filtering method n Similarity of users n Methods for building the rating

More information

Automated Online News Classification with Personalization

Automated Online News Classification with Personalization Automated Online News Classification with Personalization Chee-Hong Chan Aixin Sun Ee-Peng Lim Center for Advanced Information Systems, Nanyang Technological University Nanyang Avenue, Singapore, 639798

More information

CS 6604: Data Mining Large Networks and Time-Series

CS 6604: Data Mining Large Networks and Time-Series CS 6604: Data Mining Large Networks and Time-Series Soumya Vundekode Lecture #12: Centrality Metrics Prof. B Aditya Prakash Agenda Link Analysis and Web Search Searching the Web: The Problem of Ranking

More information

CS224W Project Write-up Static Crawling on Social Graph Chantat Eksombatchai Norases Vesdapunt Phumchanit Watanaprakornkul

CS224W Project Write-up Static Crawling on Social Graph Chantat Eksombatchai Norases Vesdapunt Phumchanit Watanaprakornkul 1 CS224W Project Write-up Static Crawling on Social Graph Chantat Eksombatchai Norases Vesdapunt Phumchanit Watanaprakornkul Introduction Our problem is crawling a static social graph (snapshot). Given

More information

Information Retrieval

Information Retrieval Multimedia Computing: Algorithms, Systems, and Applications: Information Retrieval and Search Engine By Dr. Yu Cao Department of Computer Science The University of Massachusetts Lowell Lowell, MA 01854,

More information

Unsupervised Learning

Unsupervised Learning Deep Learning for Graphics Unsupervised Learning Niloy Mitra Iasonas Kokkinos Paul Guerrero Vladimir Kim Kostas Rematas Tobias Ritschel UCL UCL/Facebook UCL Adobe Research U Washington UCL Timetable Niloy

More information

Keywords APSE: Advanced Preferred Search Engine, Google Android Platform, Search Engine, Click-through data, Location and Content Concepts.

Keywords APSE: Advanced Preferred Search Engine, Google Android Platform, Search Engine, Click-through data, Location and Content Concepts. Volume 5, Issue 3, March 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Advanced Preferred

More information

Building Rich User Profiles for Personalized News Recommendation

Building Rich User Profiles for Personalized News Recommendation Building Rich User Profiles for Personalized News Recommendation Youssef Meguebli 1, Mouna Kacimi 2, Bich-liên Doan 1, and Fabrice Popineau 1 1 SUPELEC Systems Sciences (E3S), Gif sur Yvette, France, {youssef.meguebli,bich-lien.doan,fabrice.popineau}@supelec.fr

More information

Recommendation Systems

Recommendation Systems Recommendation Systems CS 534: Machine Learning Slides adapted from Alex Smola, Jure Leskovec, Anand Rajaraman, Jeff Ullman, Lester Mackey, Dietmar Jannach, and Gerhard Friedrich Recommender Systems (RecSys)

More information

Recommender Systems (RSs)

Recommender Systems (RSs) Recommender Systems Recommender Systems (RSs) RSs are software tools providing suggestions for items to be of use to users, such as what items to buy, what music to listen to, or what online news to read

More information

Supervised Reranking for Web Image Search

Supervised Reranking for Web Image Search for Web Image Search Query: Red Wine Current Web Image Search Ranking Ranking Features http://www.telegraph.co.uk/306737/red-wineagainst-radiation.html 2 qd, 2.5.5 0.5 0 Linjun Yang and Alan Hanjalic 2

More information

A Comparative study of Clustering Algorithms using MapReduce in Hadoop

A Comparative study of Clustering Algorithms using MapReduce in Hadoop A Comparative study of Clustering Algorithms using MapReduce in Hadoop Dweepna Garg 1, Khushboo Trivedi 2, B.B.Panchal 3 1 Department of Computer Science and Engineering, Parul Institute of Engineering

More information

Social Interaction Based Video Recommendation: Recommending YouTube Videos to Facebook Users

Social Interaction Based Video Recommendation: Recommending YouTube Videos to Facebook Users Social Interaction Based Video Recommendation: Recommending YouTube Videos to Facebook Users Bin Nie, Honggang Zhang, Yong Liu Fordham University, Bronx, NY. Email: {bnie, hzhang44}@fordham.edu NYU Poly,

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Recommender Systems II Instructor: Yizhou Sun yzsun@cs.ucla.edu May 31, 2017 Recommender Systems Recommendation via Information Network Analysis Hybrid Collaborative Filtering

More information

Classification. 1 o Semestre 2007/2008

Classification. 1 o Semestre 2007/2008 Classification Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2007/2008 Slides baseados nos slides oficiais do livro Mining the Web c Soumen Chakrabarti. Outline 1 2 3 Single-Class

More information

Supervised classification of law area in the legal domain

Supervised classification of law area in the legal domain AFSTUDEERPROJECT BSC KI Supervised classification of law area in the legal domain Author: Mees FRÖBERG (10559949) Supervisors: Evangelos KANOULAS Tjerk DE GREEF June 24, 2016 Abstract Search algorithms

More information

Twitter data Analytics using Distributed Computing

Twitter data Analytics using Distributed Computing Twitter data Analytics using Distributed Computing Uma Narayanan Athrira Unnikrishnan Dr. Varghese Paul Dr. Shelbi Joseph Research Scholar M.tech Student Professor Assistant Professor Dept. of IT, SOE

More information

Real-time Recommendations on Spark. Jan Neumann, Sridhar Alla (Comcast Labs) DC Spark Interactive Meetup East May

Real-time Recommendations on Spark. Jan Neumann, Sridhar Alla (Comcast Labs) DC Spark Interactive Meetup East May Real-time Recommendations on Spark Jan Neumann, Sridhar Alla (Comcast Labs) DC Spark Interactive Meetup East May 19 2015 Who am I? Jan Neumann, Lead of Big Data and Content Analysis Research Teams This

More information

Comment Extraction from Blog Posts and Its Applications to Opinion Mining

Comment Extraction from Blog Posts and Its Applications to Opinion Mining Comment Extraction from Blog Posts and Its Applications to Opinion Mining Huan-An Kao, Hsin-Hsi Chen Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan

More information

Decomposing Fit Semantics for Product Size Recommendation in Metric Spaces

Decomposing Fit Semantics for Product Size Recommendation in Metric Spaces Decomposing Fit Semantics for Product Size Recommendation in Metric Spaces Rishabh Misra r1misra@eng.ucsd.edu ABSTRACT Product size recommendation and fit prediction are critical in order to improve customers

More information

Predictive Analysis: Evaluation and Experimentation. Heejun Kim

Predictive Analysis: Evaluation and Experimentation. Heejun Kim Predictive Analysis: Evaluation and Experimentation Heejun Kim June 19, 2018 Evaluation and Experimentation Evaluation Metrics Cross-Validation Significance Tests Evaluation Predictive analysis: training

More information

Spoken Document Retrieval (SDR) for Broadcast News in Indian Languages

Spoken Document Retrieval (SDR) for Broadcast News in Indian Languages Spoken Document Retrieval (SDR) for Broadcast News in Indian Languages Chirag Shah Dept. of CSE IIT Madras Chennai - 600036 Tamilnadu, India. chirag@speech.iitm.ernet.in A. Nayeemulla Khan Dept. of CSE

More information

CS473: Course Review CS-473. Luo Si Department of Computer Science Purdue University

CS473: Course Review CS-473. Luo Si Department of Computer Science Purdue University CS473: CS-473 Course Review Luo Si Department of Computer Science Purdue University Basic Concepts of IR: Outline Basic Concepts of Information Retrieval: Task definition of Ad-hoc IR Terminologies and

More information

Sentiment Classification of Food Reviews

Sentiment Classification of Food Reviews Sentiment Classification of Food Reviews Hua Feng Department of Electrical Engineering Stanford University Stanford, CA 94305 fengh15@stanford.edu Ruixi Lin Department of Electrical Engineering Stanford

More information

Search Engines Considered Harmful In Search of an Unbiased Web Ranking

Search Engines Considered Harmful In Search of an Unbiased Web Ranking Search Engines Considered Harmful In Search of an Unbiased Web Ranking Junghoo John Cho cho@cs.ucla.edu UCLA Search Engines Considered Harmful Junghoo John Cho 1/45 World-Wide Web 10 years ago With Web

More information

Neural Network Weight Selection Using Genetic Algorithms

Neural Network Weight Selection Using Genetic Algorithms Neural Network Weight Selection Using Genetic Algorithms David Montana presented by: Carl Fink, Hongyi Chen, Jack Cheng, Xinglong Li, Bruce Lin, Chongjie Zhang April 12, 2005 1 Neural Networks Neural networks

More information

Problem 1: Complexity of Update Rules for Logistic Regression

Problem 1: Complexity of Update Rules for Logistic Regression Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 16 th, 2014 1

More information

Multi-label classification using rule-based classifier systems

Multi-label classification using rule-based classifier systems Multi-label classification using rule-based classifier systems Shabnam Nazmi (PhD candidate) Department of electrical and computer engineering North Carolina A&T state university Advisor: Dr. A. Homaifar

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

Evaluation. Evaluate what? For really large amounts of data... A: Use a validation set.

Evaluation. Evaluate what? For really large amounts of data... A: Use a validation set. Evaluate what? Evaluation Charles Sutton Data Mining and Exploration Spring 2012 Do you want to evaluate a classifier or a learning algorithm? Do you want to predict accuracy or predict which one is better?

More information

Notes: Notes: Primo Ranking Customization

Notes: Notes: Primo Ranking Customization Primo Ranking Customization Hello, and welcome to today s lesson entitled Ranking Customization in Primo. Like most search engines, Primo aims to present results in descending order of relevance, with

More information

NYU CSCI-GA Fall 2016

NYU CSCI-GA Fall 2016 1 / 45 Information Retrieval: Personalization Fernando Diaz Microsoft Research NYC November 7, 2016 2 / 45 Outline Introduction to Personalization Topic-Specific PageRank News Personalization Deciding

More information

arxiv: v4 [cs.ir] 28 Jul 2016

arxiv: v4 [cs.ir] 28 Jul 2016 Review-Based Rating Prediction arxiv:1607.00024v4 [cs.ir] 28 Jul 2016 Tal Hadad Dept. of Information Systems Engineering, Ben-Gurion University E-mail: tah@post.bgu.ac.il Abstract Recommendation systems

More information

Metrics for Performance Evaluation How to evaluate the performance of a model? Methods for Performance Evaluation How to obtain reliable estimates?

Metrics for Performance Evaluation How to evaluate the performance of a model? Methods for Performance Evaluation How to obtain reliable estimates? Model Evaluation Metrics for Performance Evaluation How to evaluate the performance of a model? Methods for Performance Evaluation How to obtain reliable estimates? Methods for Model Comparison How to

More information

Evaluation Strategies for Network Classification

Evaluation Strategies for Network Classification Evaluation Strategies for Network Classification Jennifer Neville Departments of Computer Science and Statistics Purdue University (joint work with Tao Wang, Brian Gallagher, and Tina Eliassi-Rad) 1 Given

More information

Semantic Estimation for Texts in Software Engineering

Semantic Estimation for Texts in Software Engineering Semantic Estimation for Texts in Software Engineering 汇报人 : Reporter:Xiaochen Li Dalian University of Technology, China 大连理工大学 2016 年 11 月 29 日 Oscar Lab 2 Ph.D. candidate at OSCAR Lab, in Dalian University

More information

A Study of Position Bias in Digital Library Recommender Systems

A Study of Position Bias in Digital Library Recommender Systems A Study of Position Bias in Digital Library Recommender Systems Andrew Collins 1,2, Dominika Tkaczyk 1, Akiko Aizawa 2, and Joeran Beel 1,2 1 Trinity College Dublin, School of Computer Science and Statistics,

More information

Principles of Machine Learning

Principles of Machine Learning Principles of Machine Learning Lab 3 Improving Machine Learning Models Overview In this lab you will explore techniques for improving and evaluating the performance of machine learning models. You will

More information