Background/Review on Numbers and Computers (lecture)

Size: px
Start display at page:

Download "Background/Review on Numbers and Computers (lecture)"

Transcription

1 Bakground/Review on Numbers and Computers (leture) ICS312 Mahine-Level and Systems Programming Henri Casanova

2 Numbers and Computers Throughout this ourse we will use binary and hexadeimal representations of numbers need to be aware of the ways in whih the omputer stores numbers So let us go through a simple review before we start learning how to write assembly ode Numbers in different bases Number representation in omputers and basi arithmeti More to ome later on arithmeti

3 Numbers and bases We are used to thinking of numbers as written in deimal, that is, in base = 2* * = 1* * *10 0 Eah number is deomposed into a sum of terms Eah term is the produt of two fators A digit (from 0 to 9) The base (10) raised to a power orresponding to the digit s position in the number 136 = + 0* * * * *10 0 = We typially don t write (an infinite number of) leading 0 s

4 Numbers and Bases Any number an be written in base b, using b digits If b = 10 we have deimal with 10 digits [0-9] If b = 2 we have binary with 2 digits [0,1], whih are also alled bits If b = 8 we have otal with 8 digits [0-7] If b = 16 we have hexadeimal with 16 digits [0-9,A,B,C,D,E,F] Computers use binary internally It s easy to assoiate two states to a urrent Low voltage = 0, high voltage = 1 Assoiating 16 states to a urrent is more ompliated and error-prone However, binary is umbersome The lower the base the longer the numbers! It s really diffiult for a human to remember binary Therefore we, as humans, like to use higher bases Bases that are powers of 2 make for easy translation to binary, and thus are partiularly useful, and in partiular hexadeimal

5 Binary Numbers Counting in binary: A binary number with d bits orresponds to integer values between 0 and 2 d Example: An integer stored in 8 bits has values between 0 and = 255

6 Converting from Binary to Deimal We denote by XXXX 2 a binary representation of a number and by XXXX 10 a deimal representation Converting from binary to deimal is straightforward: = 1* *2 4 +1*2 2 +1*2 1 = 1* *16 + 1*4 + 1*2 = The rightmost bit of a binary number is alled the least signifiant bit The leftmost non-zero bit of a binary number is alled the most signifiant bit If the least signifiant bit is 0, then the number is even, otherwise it s odd

7 Converting from Deimal to Binary The onversion proeeds by a series of integer divisions by 2, and by reording the remainder of the division Integer division a/b: a = b* q + remainder, where all are integers Example: onverting into binary Divide 37 by 2: 37 = 2* Divide 18 by 2: 18 = 2*9 + 0 Divide 9 by 2: 9 = 2*4 + 1 Divide 4 by 2: 4 = 2*2 + 0 Divide 2 by 2: 2 = 2*1 + 0 Divide 1 by 2: 1 = 2*0 + 1 Result: The least signifiant bit is omputed first The most signifiant bit is omputed last Note that if we ontinue dividing, we get extraneous leading 0s

8 Binary Arithmeti Adding a 0 to the right of a binary number multiplies it by = = = = Adding two binary numbers is just like adding deimal numbers: using a arry With no previous arry = 0 = 1 = 1 = 0 With a previous arry = 1 = 0 = 0 = 1

9 Binary Addition = = = =

10 Counting in Hexadeimal 0 16 =0 10 A 16 = = E 16 = =1 10 B 16 = = F 16 = =2 10 C 16 = = = =3 10 D 16 = = = =4 10 E 16 = = = =5 10 F 16 = = = = = A 16 = = = = B 16 = = = = C 16 = = = = D 16 = =39 10

11 Converting from hex to deimal This is again straightforward A203DE 16 = 10* * * * *16 0 = 10,617,822 10

12 Converting from deimal to hex Use the same idea as for binary Example: onvert = 77* = 4* = 0* Result: 4D5 16

13 Hexadeimal addition A 2 3 F D = D F 5 2 = D 1 F F A 4 D F = D E =

14 Why is hexadeimal useful? We need to think in binary beause omputers operate on binary quantities But binary is umbersome However, hexadeimal makes it possible to represent binary quantities in a ompat form Conversions bak and forth from binary to hex are straightforward Just onvert hex digits into 4-bit numbers Just onvert 4-bit binary numbers into hex digits

15 Converting from hex to binary Consider A43FE2 16 We onvert eah hex digit into a 4-bit binary number: A 16 : : : F 16 : E 16 : : We glue them all together: A43FE2 16 = Note that: You must have the leading 0 s for the 4-bit numbers, whih is what a omputer would store anyway It all works beause F 16 = 15 10, and a 4-bit number has maximum value of = 15 10

16 Converting from binary to hex Let s onvert into hex We split it in 4-bit numbers, whih we onvert separately First we add leading 0 s to have a number of bits that s a multiple of 4: Then we onvert : : : A : F 16 And the result: = 12AF 16

17 Integer representation A omputer needs to store integers in memory/registers Stored using different numbers of bytes (1 byte = 8 bits): 1-byte: byte 2-byte: half word (or word ) 4-byte: word (or double word ) 8-byte: double word (or paragraph, or quadword ) Different omputers have used different word sizes, so it s always a bit onfusing to just talk about a word without any ontext Regardless of the number of bytes, integers are stored in binary Integers ome in two flavors: Unsigned: values from 0 to 2b -1 Signed: negatives values, with about the same number of negative values as the number of positive values You an atually delare variables as signed or unsigned in some high-level programming languages, like C

18 Sign-Magnitude Storing unsigned integers is easy: just store the bits of the integer s binary representation Storing signed integer raises a question: how to store the sign? One approah is alled sign-magnitude: reserve the leftmost bit to represent the sign denotes denotes It s very easy to negate a number: just flip the leftmost bit Unfortunately, sign-magnitude ompliates the logi of the CPU (i.e., ICS331-type stuff) There are two representations for zero: and Some operations are thus more ompliated to implement in hardware

19 One s omplement Another idea to store a negative number is to take the omplement (i.e., flip all bits) of its positive ounterpart Example: I want to store integer = = Simple, but still two representations for zero: and It turns out that omputer logi to deal with 1 s omplement arithmeti is ompliated Note: it s easy to ompute the 1 s omplement of a number represented in hexadeimal let s onsider: Subtrat eah hex digit from F: F-5=A, F-7=8 1 s omplement of is A8 16

20 Two s omplement While sign-magnitude and 1 s omplement were used in older omputers, nowadays all omputers use 2 s omplement Computing the 2 s omplement is in two steps: Compute the 1 s omplement of the positive number Add 1 to the result The gives the representation of the negative number Example: Let s represent = or s omplement: or A8 Add one: or A9 Let s invert again We start with A9 Invert: 56 Add one: 57, whih represents 87 10

21 Two s omplement Note that when adding 1 in the seond step a arry may be generated but is ignored! Differene between arithmeti and omputer arithmeti When adding two X-bit quantities in a omputer one always obtain another X-bit quantity (X=8, 16, 32, ) Example: Computing 2 s omplement of Take the invert: Add one: with a arry generated! Should be a 9-bit quantity: Therefore 0 has only one representation: a signed byte an store values from -128 to +127 (128 <0 values, and 128 >=0 values) It turns out that 2 s omplement makes for very simple arithmeti logi when building ALUs From now on we always assumed 2 s omplement representation Important: The leftmost bit still indiates the sign of the number (0: positive, 1: negative) In hex, if the left-most digit is 8, 9, A, B, C, D, E, or F, then the number is negative, otherwise it is positive

22 Ranges of Numbers For 1-byte values Unsigned Smallest value: 00 (010) Largest value: FF (25510) Signed Smallest value: 80 (-12810) Largest value: 7F (+12710) For 2-byte values et. Unsigned Smallest value: 0000 (010) Largest value: FFFF (65,53510) Signed Smallest value: 8000 (-32,76810) Largest value: 7FFF (+32,76710)

23 The Task of the (Assembly) Programmer The omputer simply stores data as bits The omputer internally has no idea what the data means It doesn t know whether numbers are signed or unsigned We, as programmers have preise interpretations of what bits mean I store a 4-byte signed integer, I store a 1-byte integer whih is an ASCII ode When using a high-level language like C, we say what data means I delare x as an int and y as an unsigned har But when writing assembly ode, we don t have a notion of data types The ISA provides many instrutions that operate on all types of data It s our role to use the instrutions that orrespond to the data e.g., if you used the signed multipliation instrution on unsigned numbers, you ll just get a wrong results but no warning/error This is one of the diffiulties of assembly programming And 2 s omplement appears magi...

24 The Magi of 2 s Complement Say I have two 1-byte values, A3 and 17, and I add them together: A = BA16 If my interpretation of the numbers is unsigned: A3 16 = = 2310 BA 16 = and indeed, = If my interpretation of the numbers is signed: A3 16 = = 2310 BA 16 = and indeed, = So, as long as I stik to my interpretation, the binary addition does the right thing assuming 2 s omplement notation!!! Same thing for the subtration

25 Conlusion We ll ome bak to numbers and arithmeti when we use arithmeti assembly instrutions

Digital Arithmetic. Digital Arithmetic: Operations and Circuits Dr. Farahmand

Digital Arithmetic. Digital Arithmetic: Operations and Circuits Dr. Farahmand Digital Arithmetic Digital Arithmetic: Operations and Circuits Dr. Farahmand Binary Arithmetic Digital circuits are frequently used for arithmetic operations Fundamental arithmetic operations on binary

More information

Level ISA3: Information Representation

Level ISA3: Information Representation Level ISA3: Information Representation 1 Information as electrical current At the lowest level, each storage unit in a computer s memory is equipped to contain either a high or low voltage signal Each

More information

Reading Object Code. A Visible/Z Lesson

Reading Object Code. A Visible/Z Lesson Reading Objet Code A Visible/Z Lesson The Idea: When programming in a high-level language, we rarely have to think about the speifi ode that is generated for eah instrution by a ompiler. But as an assembly

More information

Reading Object Code. A Visible/Z Lesson

Reading Object Code. A Visible/Z Lesson Reading Objet Code A Visible/Z Lesson The Idea: When programming in a high-level language, we rarely have to think about the speifi ode that is generated for eah instrution by a ompiler. But as an assembly

More information

Groups of two-state devices are used to represent data in a computer. In general, we say the states are either: high/low, on/off, 1/0,...

Groups of two-state devices are used to represent data in a computer. In general, we say the states are either: high/low, on/off, 1/0,... Chapter 9 Computer Arithmetic Reading: Section 9.1 on pp. 290-296 Computer Representation of Data Groups of two-state devices are used to represent data in a computer. In general, we say the states are

More information

1010 2?= ?= CS 64 Lecture 2 Data Representation. Decimal Numbers: Base 10. Reading: FLD Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

1010 2?= ?= CS 64 Lecture 2 Data Representation. Decimal Numbers: Base 10. Reading: FLD Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 CS 64 Lecture 2 Data Representation Reading: FLD 1.2-1.4 Decimal Numbers: Base 10 Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Example: 3271 = (3x10 3 ) + (2x10 2 ) + (7x10 1 ) + (1x10 0 ) 1010 10?= 1010 2?= 1

More information

COMP2611: Computer Organization. Data Representation

COMP2611: Computer Organization. Data Representation COMP2611: Computer Organization Comp2611 Fall 2015 2 1. Binary numbers and 2 s Complement Numbers 3 Bits: are the basis for binary number representation in digital computers What you will learn here: How

More information

Signed umbers. Sign/Magnitude otation

Signed umbers. Sign/Magnitude otation Signed umbers So far we have discussed unsigned number representations. In particular, we have looked at the binary number system and shorthand methods in representing binary codes. With m binary digits,

More information

Harry H. Porter, 2006

Harry H. Porter, 2006 The SPARC Computer Architecture Harry Porter Portland State University 1 CS-321 Lexer Parser Type Checking Intermediate Code Generation All semantic error checking finished in this phase IR - Intermediate

More information

A complement number system is used to represent positive and negative integers. A complement number system is based on a fixed length representation

A complement number system is used to represent positive and negative integers. A complement number system is based on a fixed length representation Complement Number Systems A complement number system is used to represent positive and negative integers A complement number system is based on a fixed length representation of numbers Pretend that integers

More information

World Inside a Computer is Binary

World Inside a Computer is Binary C Programming 1 Representation of int data World Inside a Computer is Binary C Programming 2 Decimal Number System Basic symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Radix-10 positional number system. The radix

More information

UNIT 7A Data Representation: Numbers and Text. Digital Data

UNIT 7A Data Representation: Numbers and Text. Digital Data UNIT 7A Data Representation: Numbers and Text 1 Digital Data 10010101011110101010110101001110 What does this binary sequence represent? It could be: an integer a floating point number text encoded with

More information

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University.

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University. Data Representation ti and Arithmetic for Computers Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Questions What do you know about

More information

ECOM 2325 Computer Organization and Assembly Language. Instructor: Ruba A.Salamah INTRODUCTION

ECOM 2325 Computer Organization and Assembly Language. Instructor: Ruba A.Salamah INTRODUCTION ECOM 2325 Computer Organization and Assembly Language Instructor: Ruba A.Salamah INTRODUCTION Overview Welcome to ECOM 2325 Assembly-, Machine-, and High-Level Languages Assembly Language Programming Tools

More information

Binary Representations and Arithmetic

Binary Representations and Arithmetic Binary Representations and Arithmetic 9--26 Common number systems. Base : decimal Base 2: binary Base 6: hexadecimal (memory addresses) Base 8: octal (obsolete computer systems) Base 64 (email attachments,

More information

BINARY SYSTEM. Binary system is used in digital systems because it is:

BINARY SYSTEM. Binary system is used in digital systems because it is: CHAPTER 2 CHAPTER CONTENTS 2.1 Binary System 2.2 Binary Arithmetic Operation 2.3 Signed & Unsigned Numbers 2.4 Arithmetic Operations of Signed Numbers 2.5 Hexadecimal Number System 2.6 Octal Number System

More information

Integers. N = sum (b i * 2 i ) where b i = 0 or 1. This is called unsigned binary representation. i = 31. i = 0

Integers. N = sum (b i * 2 i ) where b i = 0 or 1. This is called unsigned binary representation. i = 31. i = 0 Integers So far, we've seen how to convert numbers between bases. How do we represent particular kinds of data in a certain (32-bit) architecture? We will consider integers floating point characters What

More information

Data Representation COE 301. Computer Organization Prof. Muhamed Mudawar

Data Representation COE 301. Computer Organization Prof. Muhamed Mudawar Data Representation COE 30 Computer Organization Prof. Muhamed Mudawar College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals Presentation Outline Positional Number

More information

Representation of Non Negative Integers

Representation of Non Negative Integers Representation of Non Negative Integers In each of one s complement and two s complement arithmetic, no special steps are required to represent a non negative integer. All conversions to the complement

More information

Signed Binary Numbers

Signed Binary Numbers Signed Binary Numbers Unsigned Binary Numbers We write numbers with as many digits as we need: 0, 99, 65536, 15000, 1979, However, memory locations and CPU registers always hold a constant, fixed number

More information

Chapter 2 Number System

Chapter 2 Number System Chapter 2 Number System Embedded Systems with ARM Cortext-M Updated: Tuesday, January 16, 2018 What you should know.. Before coming to this class Decimal Binary Octal Hex 0 0000 00 0x0 1 0001 01 0x1 2

More information

Module 2: Computer Arithmetic

Module 2: Computer Arithmetic Module 2: Computer Arithmetic 1 B O O K : C O M P U T E R O R G A N I Z A T I O N A N D D E S I G N, 3 E D, D A V I D L. P A T T E R S O N A N D J O H N L. H A N N E S S Y, M O R G A N K A U F M A N N

More information

Number representations

Number representations Number representations Number bases Three number bases are of interest: Binary, Octal and Hexadecimal. We look briefly at conversions among them and between each of them and decimal. Binary Base-two, or

More information

Numbers and Computers. Debdeep Mukhopadhyay Assistant Professor Dept of Computer Sc and Engg IIT Madras

Numbers and Computers. Debdeep Mukhopadhyay Assistant Professor Dept of Computer Sc and Engg IIT Madras Numbers and Computers Debdeep Mukhopadhyay Assistant Professor Dept of Computer Sc and Engg IIT Madras 1 Think of a number between 1 and 15 8 9 10 11 12 13 14 15 4 5 6 7 12 13 14 15 2 3 6 7 10 11 14 15

More information

Finding the Equation of a Straight Line

Finding the Equation of a Straight Line Finding the Equation of a Straight Line You should have, before now, ome aross the equation of a straight line, perhaps at shool. Engineers use this equation to help determine how one quantity is related

More information

P( Hit 2nd ) = P( Hit 2nd Miss 1st )P( Miss 1st ) = (1/15)(15/16) = 1/16. P( Hit 3rd ) = (1/14) * P( Miss 2nd and 1st ) = (1/14)(14/15)(15/16) = 1/16

P( Hit 2nd ) = P( Hit 2nd Miss 1st )P( Miss 1st ) = (1/15)(15/16) = 1/16. P( Hit 3rd ) = (1/14) * P( Miss 2nd and 1st ) = (1/14)(14/15)(15/16) = 1/16 CODING and INFORMATION We need encodings for data. How many questions must be asked to be certain where the ball is. (cases: avg, worst, best) P( Hit 1st ) = 1/16 P( Hit 2nd ) = P( Hit 2nd Miss 1st )P(

More information

Learning the Binary System

Learning the Binary System Learning the Binary System www.brainlubeonline.com/counting_on_binary/ Formated to L A TEX: /25/22 Abstract This is a document on the base-2 abstract numerical system, or Binary system. This is a VERY

More information

Computer Architecture and System Software Lecture 02: Overview of Computer Systems & Start of Chapter 2

Computer Architecture and System Software Lecture 02: Overview of Computer Systems & Start of Chapter 2 Computer Architecture and System Software Lecture 02: Overview of Computer Systems & Start of Chapter 2 Instructor: Rob Bergen Applied Computer Science University of Winnipeg Announcements Website is up

More information

MACHINE LEVEL REPRESENTATION OF DATA

MACHINE LEVEL REPRESENTATION OF DATA MACHINE LEVEL REPRESENTATION OF DATA CHAPTER 2 1 Objectives Understand how integers and fractional numbers are represented in binary Explore the relationship between decimal number system and number systems

More information

Number System. Introduction. Decimal Numbers

Number System. Introduction. Decimal Numbers Number System Introduction Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26

More information

Data Representation 1

Data Representation 1 1 Data Representation Outline Binary Numbers Adding Binary Numbers Negative Integers Other Operations with Binary Numbers Floating Point Numbers Character Representation Image Representation Sound Representation

More information

Slide Set 1. for ENEL 339 Fall 2014 Lecture Section 02. Steve Norman, PhD, PEng

Slide Set 1. for ENEL 339 Fall 2014 Lecture Section 02. Steve Norman, PhD, PEng Slide Set 1 for ENEL 339 Fall 2014 Lecture Section 02 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 2014 ENEL 353 F14 Section

More information

Decimal & Binary Representation Systems. Decimal & Binary Representation Systems

Decimal & Binary Representation Systems. Decimal & Binary Representation Systems Decimal & Binary Representation Systems Decimal & binary are positional representation systems each position has a value: d*base i for example: 321 10 = 3*10 2 + 2*10 1 + 1*10 0 for example: 101000001

More information

CS & IT Conversions. Magnitude 10,000 1,

CS & IT Conversions. Magnitude 10,000 1, CS & IT Conversions There are several number systems that you will use when working with computers. These include decimal, binary, octal, and hexadecimal. Knowing how to convert between these number systems

More information

Arithmetic for Computers

Arithmetic for Computers MIPS Arithmetic Instructions Cptr280 Dr Curtis Nelson Arithmetic for Computers Operations on integers Addition and subtraction; Multiplication and division; Dealing with overflow; Signed vs. unsigned numbers.

More information

Introduction to Computers and Programming. Numeric Values

Introduction to Computers and Programming. Numeric Values Introduction to Computers and Programming Prof. I. K. Lundqvist Lecture 5 Reading: B pp. 47-71 Sept 1 003 Numeric Values Storing the value of 5 10 using ASCII: 00110010 00110101 Binary notation: 00000000

More information

IT 1204 Section 2.0. Data Representation and Arithmetic. 2009, University of Colombo School of Computing 1

IT 1204 Section 2.0. Data Representation and Arithmetic. 2009, University of Colombo School of Computing 1 IT 1204 Section 2.0 Data Representation and Arithmetic 2009, University of Colombo School of Computing 1 What is Analog and Digital The interpretation of an analog signal would correspond to a signal whose

More information

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1.1 Introduction Given that digital logic and memory devices are based on two electrical states (on and off), it is natural to use a number

More information

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS Aleksandar Milenković The LaCASA Laboratory, ECE Department, The University of Alabama in Huntsville Email: milenka@uah.edu Web:

More information

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS Aleksandar Milenković The LaCASA Laboratory, ECE Department, The University of Alabama in Huntsville Email: milenka@uah.edu Web:

More information

Number Systems. Binary Numbers. Appendix. Decimal notation represents numbers as powers of 10, for example

Number Systems. Binary Numbers. Appendix. Decimal notation represents numbers as powers of 10, for example Appendix F Number Systems Binary Numbers Decimal notation represents numbers as powers of 10, for example 1729 1 103 7 102 2 101 9 100 decimal = + + + There is no particular reason for the choice of 10,

More information

COMP Overview of Tutorial #2

COMP Overview of Tutorial #2 COMP 1402 Winter 2008 Tutorial #2 Overview of Tutorial #2 Number representation basics Binary conversions Octal conversions Hexadecimal conversions Signed numbers (signed magnitude, one s and two s complement,

More information

data within a computer system are stored in one of 2 physical states (hence the use of binary digits)

data within a computer system are stored in one of 2 physical states (hence the use of binary digits) Binary Digits (bits) data within a computer system are stored in one of 2 physical states (hence the use of binary digits) 0V and 5V charge / NO charge on a transistor gate ferrite core magnetised clockwise

More information

P( Hit 2nd ) = P( Hit 2nd Miss 1st )P( Miss 1st ) = (1/15)(15/16) = 1/16. P( Hit 3rd ) = (1/14) * P( Miss 2nd and 1st ) = (1/14)(14/15)(15/16) = 1/16

P( Hit 2nd ) = P( Hit 2nd Miss 1st )P( Miss 1st ) = (1/15)(15/16) = 1/16. P( Hit 3rd ) = (1/14) * P( Miss 2nd and 1st ) = (1/14)(14/15)(15/16) = 1/16 CODING and INFORMATION We need encodings for data. How many questions must be asked to be certain where the ball is. (cases: avg, worst, best) P( Hit 1st ) = 1/16 P( Hit 2nd ) = P( Hit 2nd Miss 1st )P(

More information

Number Systems and Binary Arithmetic. Quantitative Analysis II Professor Bob Orr

Number Systems and Binary Arithmetic. Quantitative Analysis II Professor Bob Orr Number Systems and Binary Arithmetic Quantitative Analysis II Professor Bob Orr Introduction to Numbering Systems We are all familiar with the decimal number system (Base 10). Some other number systems

More information

Chapter 3: Number Systems and Codes. Textbook: Petruzella, Frank D., Programmable Logic Controllers. McGraw Hill Companies Inc.

Chapter 3: Number Systems and Codes. Textbook: Petruzella, Frank D., Programmable Logic Controllers. McGraw Hill Companies Inc. Chapter 3: Number Systems and Codes Textbook: Petruzella, Frank D., Programmable Logic Controllers. McGraw Hill Companies Inc., 5 th edition Decimal System The radix or base of a number system determines

More information

CS 261 Fall Mike Lam, Professor Integer Encodings

CS 261 Fall Mike Lam, Professor   Integer Encodings CS 261 Fall 2018 Mike Lam, Professor https://xkcd.com/571/ Integer Encodings Integers Topics C integer data types Unsigned encoding Signed encodings Conversions Integer data types in C99 1 byte 2 bytes

More information

unused unused unused unused unused unused

unused unused unused unused unused unused BCD numbers. In some applications, such as in the financial industry, the errors that can creep in due to converting numbers back and forth between decimal and binary is unacceptable. For these applications

More information

Number Systems and Their Representations

Number Systems and Their Representations Number Representations Cptr280 Dr Curtis Nelson Number Systems and Their Representations In this presentation you will learn about: Representation of numbers in computers; Signed vs. unsigned numbers;

More information

2. MACHINE REPRESENTATION OF TYPICAL ARITHMETIC DATA FORMATS (NATURAL AND INTEGER NUMBERS).

2. MACHINE REPRESENTATION OF TYPICAL ARITHMETIC DATA FORMATS (NATURAL AND INTEGER NUMBERS). 2. MACHINE REPRESENTATION OF TYPICAL ARITHMETIC DATA FORMATS (NATURAL AND INTEGER NUMBERS). 2.. Natural Binary Code (NBC). The positional code with base 2 (B=2), introduced in Exercise, is used to encode

More information

Arithmetic Processing

Arithmetic Processing CS/EE 5830/6830 VLSI ARCHITECTURE Chapter 1 Basic Number Representations and Arithmetic Algorithms Arithmetic Processing AP = (operands, operation, results, conditions, singularities) Operands are: Set

More information

CS 31: Intro to Systems Binary Representation. Kevin Webb Swarthmore College January 27, 2015

CS 31: Intro to Systems Binary Representation. Kevin Webb Swarthmore College January 27, 2015 CS 3: Intro to Systems Binary Representation Kevin Webb Swarthmore College January 27, 25 Reading Quiz Abstraction User / Programmer Wants low complexity Applications Specific functionality Software library

More information

Basic Definition INTEGER DATA. Unsigned Binary and Binary-Coded Decimal. BCD: Binary-Coded Decimal

Basic Definition INTEGER DATA. Unsigned Binary and Binary-Coded Decimal. BCD: Binary-Coded Decimal Basic Definition REPRESENTING INTEGER DATA Englander Ch. 4 An integer is a number which has no fractional part. Examples: -2022-213 0 1 514 323434565232 Unsigned and -Coded Decimal BCD: -Coded Decimal

More information

Chapter 2: Number Systems

Chapter 2: Number Systems Chapter 2: Number Systems Logic circuits are used to generate and transmit 1s and 0s to compute and convey information. This two-valued number system is called binary. As presented earlier, there are many

More information

Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 1: Basic Concepts. Chapter Overview. Welcome to Assembly Language

Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 1: Basic Concepts. Chapter Overview. Welcome to Assembly Language Assembly Language for Intel-Based Computers, 4 th Edition Kip R. Irvine Chapter 1: Basic Concepts Slides prepared by Kip R. Irvine Revision date: 09/15/2002 Chapter corrections (Web) Printing a slide show

More information

Number Systems. Decimal numbers. Binary numbers. Chapter 1 <1> 8's column. 1000's column. 2's column. 4's column

Number Systems. Decimal numbers. Binary numbers. Chapter 1 <1> 8's column. 1000's column. 2's column. 4's column 1's column 10's column 100's column 1000's column 1's column 2's column 4's column 8's column Number Systems Decimal numbers 5374 10 = Binary numbers 1101 2 = Chapter 1 1's column 10's column 100's

More information

CS 101: Computer Programming and Utilization

CS 101: Computer Programming and Utilization CS 101: Computer Programming and Utilization Jul-Nov 2017 Umesh Bellur (cs101@cse.iitb.ac.in) Lecture 3: Number Representa.ons Representing Numbers Digital Circuits can store and manipulate 0 s and 1 s.

More information

Positional notation Ch Conversions between Decimal and Binary. /continued. Binary to Decimal

Positional notation Ch Conversions between Decimal and Binary. /continued. Binary to Decimal Positional notation Ch.. /continued Conversions between Decimal and Binary Binary to Decimal - use the definition of a number in a positional number system with base - evaluate the definition formula using

More information

Lecture 2: Number Systems

Lecture 2: Number Systems Lecture 2: Number Systems Syed M. Mahmud, Ph.D ECE Department Wayne State University Original Source: Prof. Russell Tessier of University of Massachusetts Aby George of Wayne State University Contents

More information

1.1. Unit 1. Integer Representation

1.1. Unit 1. Integer Representation 1.1 Unit 1 Integer Representation 1.2 Skills & Outcomes You should know and be able to apply the following skills with confidence Convert an unsigned binary number to and from decimal Understand the finite

More information

Logic, Words, and Integers

Logic, Words, and Integers Computer Science 52 Logic, Words, and Integers 1 Words and Data The basic unit of information in a computer is the bit; it is simply a quantity that takes one of two values, 0 or 1. A sequence of k bits

More information

TOPICS. Other Number Systems. Other Number Systems 9/9/2017. Octal Hexadecimal Number conversion

TOPICS. Other Number Systems. Other Number Systems 9/9/2017. Octal Hexadecimal Number conversion Topic : Introduction To computers Faculty : Department of commerce and Management BY: Prof.Meeta R. Gujarathi E mail: meetargujarathi@gmail.com Octal Hexadecimal Number conversion TOPICS Other Number Systems

More information

Representing numbers on the computer. Computer memory/processors consist of items that exist in one of two possible states (binary states).

Representing numbers on the computer. Computer memory/processors consist of items that exist in one of two possible states (binary states). Representing numbers on the computer. Computer memory/processors consist of items that exist in one of two possible states (binary states). These states are usually labeled 0 and 1. Each item in memory

More information

DLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 1 DLD P VIDYA SAGAR

DLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 1 DLD P VIDYA SAGAR UNIT I Digital Systems: Binary Numbers, Octal, Hexa Decimal and other base numbers, Number base conversions, complements, signed binary numbers, Floating point number representation, binary codes, error

More information

Slide Set 1. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary

Slide Set 1. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary Slide Set 1 for ENEL 353 Fall 2017 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 2017 SN s ENEL 353 Fall 2017 Slide Set 1 slide

More information

Chapter 2 Bits, Data Types, and Operations

Chapter 2 Bits, Data Types, and Operations Chapter Bits, Data Types, and Operations How do we represent data in a computer? At the lowest level, a computer is an electronic machine. works by controlling the flow of electrons Easy to recognize two

More information

Number systems and binary

Number systems and binary CS101 Fundamentals of Computer and Information Sciences LIU 1 of 8 Number systems and binary Here are some informal notes on number systems and binary numbers. See also sections 3.1 3.2 of the textbook.

More information

10.1. Unit 10. Signed Representation Systems Binary Arithmetic

10.1. Unit 10. Signed Representation Systems Binary Arithmetic 0. Unit 0 Signed Representation Systems Binary Arithmetic 0.2 BINARY REPRESENTATION SYSTEMS REVIEW 0.3 Interpreting Binary Strings Given a string of s and 0 s, you need to know the representation system

More information

History of Computing. Ahmed Sallam 11/28/2014 1

History of Computing. Ahmed Sallam 11/28/2014 1 History of Computing Ahmed Sallam 11/28/2014 1 Outline Blast from the past Layered Perspective of Computing Why Assembly? Data Representation Base 2, 8, 10, 16 Number systems Boolean operations and algebra

More information

Introduction to Numbering Systems

Introduction to Numbering Systems NUMBER SYSTEM Introduction to Numbering Systems We are all familiar with the decimal number system (Base 10). Some other number systems that we will work with are Binary Base 2 Octal Base 8 Hexadecimal

More information

Bits, Words, and Integers

Bits, Words, and Integers Computer Science 52 Bits, Words, and Integers Spring Semester, 2017 In this document, we look at how bits are organized into meaningful data. In particular, we will see the details of how integers are

More information

Chapter 2. Positional number systems. 2.1 Signed number representations Signed magnitude

Chapter 2. Positional number systems. 2.1 Signed number representations Signed magnitude Chapter 2 Positional number systems A positional number system represents numeric values as sequences of one or more digits. Each digit in the representation is weighted according to its position in the

More information

Chapter 2. Data Representation in Computer Systems

Chapter 2. Data Representation in Computer Systems Chapter 2 Data Representation in Computer Systems Chapter 2 Objectives Understand the fundamentals of numerical data representation and manipulation in digital computers. Master the skill of converting

More information

Numeral Systems. -Numeral System -Positional systems -Decimal -Binary -Octal. Subjects:

Numeral Systems. -Numeral System -Positional systems -Decimal -Binary -Octal. Subjects: Numeral Systems -Numeral System -Positional systems -Decimal -Binary -Octal Subjects: Introduction A numeral system (or system of numeration) is a writing system for expressing numbers, that is a mathematical

More information

Fundamentals of Programming Session 2

Fundamentals of Programming Session 2 Fundamentals of Programming Session 2 Instructor: Reza Entezari-Maleki Email: entezari@ce.sharif.edu 1 Fall 2013 Sharif University of Technology Outlines Programming Language Binary numbers Addition Subtraction

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-278: Digital Logic Design Fall Notes - Unit 4. hundreds.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-278: Digital Logic Design Fall Notes - Unit 4. hundreds. ECE-78: Digital Logic Design Fall 6 UNSIGNED INTEGER NUMBERS Notes - Unit 4 DECIMAL NUMBER SYSTEM A decimal digit can take values from to 9: Digit-by-digit representation of a positive integer number (powers

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Winter Notes - Unit 4. hundreds.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Winter Notes - Unit 4. hundreds. UNSIGNED INTEGER NUMBERS Notes - Unit 4 DECIMAL NUMBER SYSTEM A decimal digit can take values from to 9: Digit-by-digit representation of a positive integer number (powers of ): DIGIT 3 4 5 6 7 8 9 Number:

More information

Electronic Data and Instructions

Electronic Data and Instructions Lecture 2 - The information Layer Binary Values and Number Systems, Data Representation. Know the different types of numbers Describe positional notation Convert numbers in other bases to base 10 Convert

More information

Data Representation Type of Data Representation Integers Bits Unsigned 2 s Comp Excess 7 Excess 8

Data Representation Type of Data Representation Integers Bits Unsigned 2 s Comp Excess 7 Excess 8 Data Representation At its most basic level, all digital information must reduce to 0s and 1s, which can be discussed as binary, octal, or hex data. There s no practical limit on how it can be interpreted

More information

Math in MIPS. Subtracting a binary number from another binary number also bears an uncanny resemblance to the way it s done in decimal.

Math in MIPS. Subtracting a binary number from another binary number also bears an uncanny resemblance to the way it s done in decimal. Page < 1 > Math in MIPS Adding and Subtracting Numbers Adding two binary numbers together is very similar to the method used with decimal numbers, except simpler. When you add two binary numbers together,

More information

COMP2121: Microprocessors and Interfacing. Number Systems

COMP2121: Microprocessors and Interfacing. Number Systems COMP2121: Microprocessors and Interfacing Number Systems http://www.cse.unsw.edu.au/~cs2121 Lecturer: Hui Wu Session 2, 2017 1 1 Overview Positional notation Decimal, hexadecimal, octal and binary Converting

More information

Chapter 2 Bits, Data Types, and Operations

Chapter 2 Bits, Data Types, and Operations Chapter 2 Bits, Data Types, and Operations Original slides from Gregory Byrd, North Carolina State University Modified slides by Chris Wilcox, Colorado State University How do we represent data in a computer?!

More information

Number Systems and Conversions UNIT 1 NUMBER SYSTEMS & CONVERSIONS. Number Systems (2/2) Number Systems (1/2) Iris Hui-Ru Jiang Spring 2010

Number Systems and Conversions UNIT 1 NUMBER SYSTEMS & CONVERSIONS. Number Systems (2/2) Number Systems (1/2) Iris Hui-Ru Jiang Spring 2010 Contents Number systems and conversion Binary arithmetic Representation of negative numbers Addition of two s complement numbers Addition of one s complement numbers Binary s Readings Unit.~. UNIT NUMBER

More information

Number Systems for Computers. Outline of Introduction. Binary, Octal and Hexadecimal numbers. Issues for Binary Representation of Numbers

Number Systems for Computers. Outline of Introduction. Binary, Octal and Hexadecimal numbers. Issues for Binary Representation of Numbers Outline of Introduction Administrivia What is computer architecture? What do computers do? Representing high level things in binary Data objects: integers, decimals, characters, etc. Memory locations (We

More information

Octal and Hexadecimal Integers

Octal and Hexadecimal Integers Octal and Hexadecimal Integers CS 350: Computer Organization & Assembler Language Programming A. Why? Octal and hexadecimal numbers are useful for abbreviating long bitstrings. Some operations on octal

More information

Chapter 2 Bits, Data Types, and Operations

Chapter 2 Bits, Data Types, and Operations Chapter 2 Bits, Data Types, and Operations How do we represent data in a computer? At the lowest level, a computer is an electronic machine. works by controlling the flow of electrons Easy to recognize

More information

Number Systems. Readings: , Problem: Implement simple pocket calculator Need: Display, adders & subtractors, inputs

Number Systems. Readings: , Problem: Implement simple pocket calculator Need: Display, adders & subtractors, inputs Number Systems Readings: 3-3.3.3, 3.3.5 Problem: Implement simple pocket calculator Need: Display, adders & subtractors, inputs Display: Seven segment displays Inputs: Switches Missing: Way to implement

More information

COMPUTER ARITHMETIC (Part 1)

COMPUTER ARITHMETIC (Part 1) Eastern Mediterranean University School of Computing and Technology ITEC255 Computer Organization & Architecture COMPUTER ARITHMETIC (Part 1) Introduction The two principal concerns for computer arithmetic

More information

1 The Knuth-Morris-Pratt Algorithm

1 The Knuth-Morris-Pratt Algorithm 5-45/65: Design & Analysis of Algorithms September 26, 26 Leture #9: String Mathing last hanged: September 26, 27 There s an entire field dediated to solving problems on strings. The book Algorithms on

More information

Computer Organization and Assembly Language. Lab Session 01

Computer Organization and Assembly Language. Lab Session 01 Objective: Lab Session 01 Introduction to Assembly Language Tools and Familiarization with Emu8086 environment To be able to understand Data Representation and perform conversions from one system to another

More information

Excerpt from "Art of Problem Solving Volume 1: the Basics" 2014 AoPS Inc.

Excerpt from Art of Problem Solving Volume 1: the Basics 2014 AoPS Inc. Chapter 5 Using the Integers In spite of their being a rather restricted class of numbers, the integers have a lot of interesting properties and uses. Math which involves the properties of integers is

More information

DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS C H A P T E R 6 DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS OUTLINE 6- Binary Addition 6-2 Representing Signed Numbers 6-3 Addition in the 2 s- Complement System 6-4 Subtraction in the 2 s- Complement

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Bits and Bytes and Numbers

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Bits and Bytes and Numbers Computer Science 324 Computer Architecture Mount Holyoke College Fall 2007 Topic Notes: Bits and Bytes and Numbers Number Systems Much of this is review, given the 221 prerequisite Question: how high can

More information

Excerpt from: Stephen H. Unger, The Essence of Logic Circuits, Second Ed., Wiley, 1997

Excerpt from: Stephen H. Unger, The Essence of Logic Circuits, Second Ed., Wiley, 1997 Excerpt from: Stephen H. Unger, The Essence of Logic Circuits, Second Ed., Wiley, 1997 APPENDIX A.1 Number systems and codes Since ten-fingered humans are addicted to the decimal system, and since computers

More information

Arithmetic and Bitwise Operations on Binary Data

Arithmetic and Bitwise Operations on Binary Data Arithmetic and Bitwise Operations on Binary Data CSCI 2400: Computer Architecture ECE 3217: Computer Architecture and Organization Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides

More information

CHW 261: Logic Design

CHW 261: Logic Design CHW 261: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed14 http://bu.edu.eg/staff/ahmedshalaby14# Slide 1 Slide 2 Slide 3 Digital Fundamentals CHAPTER

More information

Appendix. Numbering Systems. In This Appendix...

Appendix. Numbering Systems. In This Appendix... Numbering Systems ppendix In This ppendix... Introduction... inary Numbering System... exadecimal Numbering System... Octal Numbering System... inary oded ecimal () Numbering System... 5 Real (Floating

More information

NUMBER OPERATIONS. Mahdi Nazm Bojnordi. CS/ECE 3810: Computer Organization. Assistant Professor School of Computing University of Utah

NUMBER OPERATIONS. Mahdi Nazm Bojnordi. CS/ECE 3810: Computer Organization. Assistant Professor School of Computing University of Utah NUMBER OPERATIONS Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 3810: Computer Organization Overview Homework 4 is due tonight Verify your uploaded file before the

More information

9/3/2015. Data Representation II. 2.4 Signed Integer Representation. 2.4 Signed Integer Representation

9/3/2015. Data Representation II. 2.4 Signed Integer Representation. 2.4 Signed Integer Representation Data Representation II CMSC 313 Sections 01, 02 The conversions we have so far presented have involved only unsigned numbers. To represent signed integers, computer systems allocate the high-order bit

More information

Complex Rational Expressions

Complex Rational Expressions Comple ational Epressions What is a Comple ational Epression? A omple rational epression is similar to a omple fration whih has one or more frations in its numerator, denominator, or both The following

More information