Chapitre 2 : modèle linéaire généralisé

Size: px
Start display at page:

Download "Chapitre 2 : modèle linéaire généralisé"

Transcription

1 Chapitre 2 : modèle linéaire généralisé

2 Introduction et jeux de données

3 Avant de commencer Faire pointer R vers votre répertoire setwd("~/dropbox/evry/m1geniomhe/cours/") source(file = "fonction_illustration_logistique.r") ## ## Attaching package: 'dplyr' ## The following objects are masked from 'package:stats': ## ## filter, lag ## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union (Installer et) charger les librairies ISLR, ggplot2,dplyr subsampling # sum(default == "Yes") # sample(which(default == "No"), size = 500, replace =FALSE) # Default_small = slice(default,c(which(default == "Yes"),sample(which(default = # write.table(default_small,file = 'Default_small')

4 les données Default ## [1] ## Observations: 833 ## Variables: 4 ## $ default <fctr> Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes... ## $ student <fctr> Yes, Yes, Yes, No, Yes, Yes, No, No, No, No, No, No,... ## $ balance <dbl> , , , , ,... ## $ income <dbl> , , , , ,

5 scatterplot pairs(default, main="simple Scatterplot Matrix") Simple Scatterplot Matrix default student balance income

6 histogram ggplot(default, aes(x=default)) + geom_bar( fill = "steelblue") + theme_bw() count No default Yes

7 pour les variables balance et income ggplot(default, aes(balance, income)) + geom_point(aes(colour = default)) income default No Yes balance

8 ggplot(default, aes(default, balance)) + geom_boxplot(aes(fill = default)) 2000 balance default No Yes No default Yes

9 ggplot(default, aes(default, income)) + geom_boxplot(aes(fill = default)) income default No Yes No default Yes

10 ggplot(default, aes(balance, as.numeric(default)-1)) + geom_point() + geom_smooth(method = "glm", method.args = list(family = "gaussian")) 1.0 as.numeric(default) balance

11 plt = illustration_logistique(default,default$balance,default$default) plt probability of Default$default $(Default, balance)

12 plt = illustration_logistique(default,default$balance,default$default, log_reg = plt probability of Default$default $(Default, balance)

13 Les données crab crab = read.table("crab.txt",header = TRUE) glimpse(crab) ## Observations: 173 ## Variables: 6 ## $ Obs <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,... ## $ C <int> 2, 3, 3, 4, 2, 1, 4, 2, 2, 2, 1, 3, 2, 2, 3, 3, 2, 2, 2, 2... ## $ S <int> 3, 3, 3, 2, 3, 2, 3, 3, 1, 3, 1, 3, 1, 3, 3, 3, 3, 3, 3, 3... ## $ W <dbl> 28.3, 26.0, 25.6, 21.0, 29.0, 25.0, 26.2, 24.9, 25.7, ## $ Wt <dbl> 3.05, 2.60, 2.15, 1.85, 3.00, 2.30, 1.30, 2.10, 2.00, ## $ Sa <int> 8, 4, 0, 0, 1, 3, 0, 0, 8, 6, 5, 4, 3, 4, 3, 5, 8, 3, 6, 4... crab = mutate(crab, C = factor(c)) crab = mutate(crab, S = factor(s)) glimpse(crab) ## Observations: 173 ## Variables: 6 ## $ Obs <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,... ## $ C <fctr> 2, 3, 3, 4, 2, 1, 4, 2, 2, 2, 1, 3, 2, 2, 3, 3, 2, 2, 2,... ## $ S <fctr> 3, 3, 3, 2, 3, 2, 3, 3, 1, 3, 1, 3, 1, 3, 3, 3, 3, 3, 3,... ## $ W <dbl> 28.3, 26.0, 25.6, 21.0, 29.0, 25.0, 26.2, 24.9, 25.7, ## $ Wt <dbl> 3.05, 2.60, 2.15, 1.85, 3.00, 2.30, 1.30, 2.10, 2.00, ## $ Sa <int> 8, 4, 0, 0, 1, 3, 0, 0, 8, 6, 5, 4, 3, 4, 3, 5, 8, 3, 6, 4... attach(crab)

14 scatterplot pairs(crab[-1], main="simple Scatterplot Matrix") Simple Scatterplot Matrix C S W Wt Sa

15 histogram ggplot(crab, aes(x=sa)) + geom_bar( fill = "steelblue") + theme_bw() count Sa

16 pour la variable W plt = illustration_poisson(crab,w,sa) plt mean of Sa W

17 plt = illustration_poisson(crab,w,sa, log_pois = TRUE) plt mean of Sa W

18 Régression logistique

19 Estimation des coefficients fit_logistic = glm(default ~ student + balance + income, family = "binomial", data=default) summary(fit_logistic) ## ## Call: ## glm(formula = default ~ student + balance + income, family = "binomial", ## data = Default) ## ## Deviance Residuals: ## Min 1Q Median 3Q Max ## ## ## Coefficients: ## Estimate Std. Error z value Pr(> z ) ## (Intercept) e e <2e-16 *** ## studentyes e e ## balance 5.330e e <2e-16 *** ## income 1.165e e ## --- ## Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## (Dispersion parameter for binomial family taken to be 1) ## ## Null deviance: on 832 degrees of freedom ## Residual deviance: on 829 degrees of freedom

20 Prédictions # Prédictions predictions = predict(fit_logistic,type = "response") predictions_01 = predict(fit_logistic,type = "response") > 1/2 # Matrice de confusion table(predictions_01,default) ## default ## predictions_01 No Yes ## FALSE ## TRUE

21 ## ## Attaching package: 'gplots' ## The following object is masked from 'package:stats': ## ## lowess

22 Courbe ROC pred <- prediction( predictions, Default$default) perf <- performance( pred, "tpr", "fpr" )

23 plot( perf ) True positive rate False positive rate

24 AUC ROC_auc <- performance( pred,"auc") AUC <- print(auc) ## [1]

25 Test de nullité simultanée des coefficients fit_null = glm(default ~ 1, family = "binomial", data=default) anova(fit_null,fit_logistic,test="chisq") ## Analysis of Deviance Table ## ## Model 1: default ~ 1 ## Model 2: default ~ student + balance + income ## Resid. Df Resid. Dev Df Deviance Pr(>Chi) ## ## < 2.2e-16 *** ## --- ## Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

26 Résidus de déviance / observations aberrantes which(abs(resid(fit_logistic,type="deviance"))>2) ## ## ## ##

27 Attention pas de diagnostic gaussien! n = 100 x <-rnorm(n) p<-exp(x)/(1+exp(x)) #simulate response y <- rbinom(n,1,p) #fit model model = glm(y~x,family="binomial") qqnorm(resid(model, type="deviance")) abline(0,1) Normal Q Q Plot Sample Quantiles Theoretical Quantiles

28 Leviers d observations influences = influence(fit_logistic) hat = influences$hat which(hat > 3*ncol(Default) /nrow(default)) ## ## ## ##

29 Diagnostic sur X library(car) ## ## Attaching package: 'car' ## The following object is masked from 'package:dplyr': ## ## recode vif(fit_logistic) ## student balance income ##

30 Régression de Poisson

31 Estimation des coefficients glimpse(crab) ## Observations: 173 ## Variables: 6 ## $ Obs <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,... ## $ C <fctr> 2, 3, 3, 4, 2, 1, 4, 2, 2, 2, 1, 3, 2, 2, 3, 3, 2, 2, 2,... ## $ S <fctr> 3, 3, 3, 2, 3, 2, 3, 3, 1, 3, 1, 3, 1, 3, 3, 3, 3, 3, 3,... ## $ W <dbl> 28.3, 26.0, 25.6, 21.0, 29.0, 25.0, 26.2, 24.9, 25.7, ## $ Wt <dbl> 3.05, 2.60, 2.15, 1.85, 3.00, 2.30, 1.30, 2.10, 2.00, ## $ Sa <int> 8, 4, 0, 0, 1, 3, 0, 0, 8, 6, 5, 4, 3, 4, 3, 5, 8, 3, 6, 4... fit_poisson = glm(sa ~ C + S + W + Wt, family = "poisson", data=crab) summary(fit_poisson) ## ## Call: ## glm(formula = Sa ~ C + S + W + Wt, family = "poisson", data = crab) ## ## Deviance Residuals: ## Min 1Q Median 3Q Max ## ## ## Coefficients: ## Estimate Std. Error z value Pr(> z ) ## (Intercept)

32 Prédictions # Prédictions predictions = predict(fit_poisson,type = "response")

33 Test de nullité simultanée des coefficients fit_null = glm(sa ~ 1, family = "poisson", data=crab) anova(fit_null,fit_poisson,test="chisq") ## Analysis of Deviance Table ## ## Model 1: Sa ~ 1 ## Model 2: Sa ~ C + S + W + Wt ## Resid. Df Resid. Dev Df Deviance Pr(>Chi) ## ## e-15 *** ## --- ## Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

34 Résidus de déviance / observations aberrantes which(abs(resid(fit_poisson,type="deviance"))>2) ## ## ## ## ## ##

35 Leviers d observations influences = influence(fit_poisson) hat = influences$hat which(hat > 3*(ncol(crab)-1) /nrow(crab)) ## ## ## ##

36 Diagnostic sur X library(car) vif(fit_poisson) ## GVIF Df GVIF^(1/(2*Df)) ## C ## S ## W ## Wt

Discriminant analysis in R QMMA

Discriminant analysis in R QMMA Discriminant analysis in R QMMA Emanuele Taufer file:///c:/users/emanuele.taufer/google%20drive/2%20corsi/5%20qmma%20-%20mim/0%20labs/l4-lda-eng.html#(1) 1/26 Default data Get the data set Default library(islr)

More information

Predictive Checking. Readings GH Chapter 6-8. February 8, 2017

Predictive Checking. Readings GH Chapter 6-8. February 8, 2017 Predictive Checking Readings GH Chapter 6-8 February 8, 2017 Model Choice and Model Checking 2 Questions: 1. Is my Model good enough? (no alternative models in mind) 2. Which Model is best? (comparison

More information

STENO Introductory R-Workshop: Loading a Data Set Tommi Suvitaival, Steno Diabetes Center June 11, 2015

STENO Introductory R-Workshop: Loading a Data Set Tommi Suvitaival, Steno Diabetes Center June 11, 2015 STENO Introductory R-Workshop: Loading a Data Set Tommi Suvitaival, tsvv@steno.dk, Steno Diabetes Center June 11, 2015 Contents 1 Introduction 1 2 Recap: Variables 2 3 Data Containers 2 3.1 Vectors................................................

More information

Poisson Regression and Model Checking

Poisson Regression and Model Checking Poisson Regression and Model Checking Readings GH Chapter 6-8 September 27, 2017 HIV & Risk Behaviour Study The variables couples and women_alone code the intervention: control - no counselling (both 0)

More information

Stat 4510/7510 Homework 4

Stat 4510/7510 Homework 4 Stat 45/75 1/7. Stat 45/75 Homework 4 Instructions: Please list your name and student number clearly. In order to receive credit for a problem, your solution must show sufficient details so that the grader

More information

1 The SAS System 23:01 Friday, November 9, 2012

1 The SAS System 23:01 Friday, November 9, 2012 2101f12HW9chickwts.log Saved: Wednesday, November 14, 2012 6:50:49 PM Page 1 of 3 1 The SAS System 23:01 Friday, November 9, 2012 NOTE: Copyright (c) 2002-2010 by SAS Institute Inc., Cary, NC, USA. NOTE:

More information

Generalized Additive Models

Generalized Additive Models Generalized Additive Models Statistics 135 Autumn 2005 Copyright c 2005 by Mark E. Irwin Generalized Additive Models GAMs are one approach to non-parametric regression in the multiple predictor setting.

More information

Regression on the trees data with R

Regression on the trees data with R > trees Girth Height Volume 1 8.3 70 10.3 2 8.6 65 10.3 3 8.8 63 10.2 4 10.5 72 16.4 5 10.7 81 18.8 6 10.8 83 19.7 7 11.0 66 15.6 8 11.0 75 18.2 9 11.1 80 22.6 10 11.2 75 19.9 11 11.3 79 24.2 12 11.4 76

More information

Binary Regression in S-Plus

Binary Regression in S-Plus Fall 200 STA 216 September 7, 2000 1 Getting Started in UNIX Binary Regression in S-Plus Create a class working directory and.data directory for S-Plus 5.0. If you have used Splus 3.x before, then it is

More information

Multinomial Logit Models with R

Multinomial Logit Models with R Multinomial Logit Models with R > rm(list=ls()); options(scipen=999) # To avoid scientific notation > # install.packages("mlogit", dependencies=true) # Only need to do this once > library(mlogit) # Load

More information

Subsetting, dplyr, magrittr Author: Lloyd Low; add:

Subsetting, dplyr, magrittr Author: Lloyd Low;  add: Subsetting, dplyr, magrittr Author: Lloyd Low; Email add: wai.low@adelaide.edu.au Introduction So you have got a table with data that might be a mixed of categorical, integer, numeric, etc variables? And

More information

Ben Baumer Instructor

Ben Baumer Instructor MULTIPLE AND LOGISTIC REGRESSION What is logistic regression? Ben Baumer Instructor A categorical response variable ggplot(data = hearttr, aes(x = age, y = survived)) + geom_jitter(width = 0, height =

More information

Lecture 24: Generalized Additive Models Stat 704: Data Analysis I, Fall 2010

Lecture 24: Generalized Additive Models Stat 704: Data Analysis I, Fall 2010 Lecture 24: Generalized Additive Models Stat 704: Data Analysis I, Fall 2010 Tim Hanson, Ph.D. University of South Carolina T. Hanson (USC) Stat 704: Data Analysis I, Fall 2010 1 / 26 Additive predictors

More information

STAT:5201 Applied Statistic II

STAT:5201 Applied Statistic II STAT:5201 Applied Statistic II Two-Factor Experiment (one fixed blocking factor, one fixed factor of interest) Randomized complete block design (RCBD) Primary Factor: Day length (short or long) Blocking

More information

Math 263 Excel Assignment 3

Math 263 Excel Assignment 3 ath 263 Excel Assignment 3 Sections 001 and 003 Purpose In this assignment you will use the same data as in Excel Assignment 2. You will perform an exploratory data analysis using R. You shall reproduce

More information

1 Simple Linear Regression

1 Simple Linear Regression Math 158 Jo Hardin R code 1 Simple Linear Regression Consider a dataset from ISLR on credit scores. Because we don t know the sampling mechanism used to collect the data, we are unable to generalize the

More information

More data analysis examples

More data analysis examples More data analysis examples R packages used library(ggplot2) library(tidyr) library(mass) library(leaps) library(dplyr) ## ## Attaching package: dplyr ## The following object is masked from package:mass

More information

Nina Zumel and John Mount Win-Vector LLC

Nina Zumel and John Mount Win-Vector LLC SUPERVISED LEARNING IN R: REGRESSION Logistic regression to predict probabilities Nina Zumel and John Mount Win-Vector LLC Predicting Probabilities Predicting whether an event occurs (yes/no): classification

More information

run ld50 /* Plot the onserved proportions and the fitted curve */ DATA SETR1 SET SETR1 PROB=X1/(X1+X2) /* Use this to create graphs in Windows */ gopt

run ld50 /* Plot the onserved proportions and the fitted curve */ DATA SETR1 SET SETR1 PROB=X1/(X1+X2) /* Use this to create graphs in Windows */ gopt /* This program is stored as bliss.sas */ /* This program uses PROC LOGISTIC in SAS to fit models with logistic, probit, and complimentary log-log link functions to the beetle mortality data collected

More information

Discussion Notes 3 Stepwise Regression and Model Selection

Discussion Notes 3 Stepwise Regression and Model Selection Discussion Notes 3 Stepwise Regression and Model Selection Stepwise Regression There are many different commands for doing stepwise regression. Here we introduce the command step. There are many arguments

More information

STAT Statistical Learning. Predictive Modeling. Statistical Learning. Overview. Predictive Modeling. Classification Methods.

STAT Statistical Learning. Predictive Modeling. Statistical Learning. Overview. Predictive Modeling. Classification Methods. STAT 48 - STAT 48 - December 5, 27 STAT 48 - STAT 48 - Here are a few questions to consider: What does statistical learning mean to you? Is statistical learning different from statistics as a whole? What

More information

Unit 5 Logistic Regression Practice Problems

Unit 5 Logistic Regression Practice Problems Unit 5 Logistic Regression Practice Problems SOLUTIONS R Users Source: Afifi A., Clark VA and May S. Computer Aided Multivariate Analysis, Fourth Edition. Boca Raton: Chapman and Hall, 2004. Exercises

More information

Analysis of variance - ANOVA

Analysis of variance - ANOVA Analysis of variance - ANOVA Based on a book by Julian J. Faraway University of Iceland (UI) Estimation 1 / 50 Anova In ANOVAs all predictors are categorical/qualitative. The original thinking was to try

More information

NEURAL NETWORKS. Cement. Blast Furnace Slag. Fly Ash. Water. Superplasticizer. Coarse Aggregate. Fine Aggregate. Age

NEURAL NETWORKS. Cement. Blast Furnace Slag. Fly Ash. Water. Superplasticizer. Coarse Aggregate. Fine Aggregate. Age NEURAL NETWORKS As an introduction, we ll tackle a prediction task with a continuous variable. We ll reproduce research from the field of cement and concrete manufacturing that seeks to model the compressive

More information

Lab #13 - Resampling Methods Econ 224 October 23rd, 2018

Lab #13 - Resampling Methods Econ 224 October 23rd, 2018 Lab #13 - Resampling Methods Econ 224 October 23rd, 2018 Introduction In this lab you will work through Section 5.3 of ISL and record your code and results in an RMarkdown document. I have added section

More information

Statistics Lab #7 ANOVA Part 2 & ANCOVA

Statistics Lab #7 ANOVA Part 2 & ANCOVA Statistics Lab #7 ANOVA Part 2 & ANCOVA PSYCH 710 7 Initialize R Initialize R by entering the following commands at the prompt. You must type the commands exactly as shown. options(contrasts=c("contr.sum","contr.poly")

More information

Solution to Series 7

Solution to Series 7 Dr. Marcel Dettling Applied Statistical Regression AS 2015 Solution to Series 7 1. a) We begin the analysis by plotting histograms and barplots for all variables. > ## load data > load("customerwinback.rda")

More information

Lecture 3 - Object-oriented programming and statistical programming examples

Lecture 3 - Object-oriented programming and statistical programming examples Lecture 3 - Object-oriented programming and statistical programming examples Björn Andersson (w/ Ronnie Pingel) Department of Statistics, Uppsala University February 1, 2013 Table of Contents 1 Some notes

More information

THE UNIVERSITY OF BRITISH COLUMBIA FORESTRY 430 and 533. Time: 50 minutes 40 Marks FRST Marks FRST 533 (extra questions)

THE UNIVERSITY OF BRITISH COLUMBIA FORESTRY 430 and 533. Time: 50 minutes 40 Marks FRST Marks FRST 533 (extra questions) THE UNIVERSITY OF BRITISH COLUMBIA FORESTRY 430 and 533 MIDTERM EXAMINATION: October 14, 2005 Instructor: Val LeMay Time: 50 minutes 40 Marks FRST 430 50 Marks FRST 533 (extra questions) This examination

More information

Practice in R. 1 Sivan s practice. 2 Hetroskadasticity. January 28, (pdf version)

Practice in R. 1 Sivan s practice. 2 Hetroskadasticity. January 28, (pdf version) Practice in R January 28, 2010 (pdf version) 1 Sivan s practice Her practice file should be (here), or check the web for a more useful pointer. 2 Hetroskadasticity ˆ Let s make some hetroskadastic data:

More information

Non-Linear Regression. Business Analytics Practice Winter Term 2015/16 Stefan Feuerriegel

Non-Linear Regression. Business Analytics Practice Winter Term 2015/16 Stefan Feuerriegel Non-Linear Regression Business Analytics Practice Winter Term 2015/16 Stefan Feuerriegel Today s Lecture Objectives 1 Understanding the need for non-parametric regressions 2 Familiarizing with two common

More information

This is called a linear basis expansion, and h m is the mth basis function For example if X is one-dimensional: f (X) = β 0 + β 1 X + β 2 X 2, or

This is called a linear basis expansion, and h m is the mth basis function For example if X is one-dimensional: f (X) = β 0 + β 1 X + β 2 X 2, or STA 450/4000 S: February 2 2005 Flexible modelling using basis expansions (Chapter 5) Linear regression: y = Xβ + ɛ, ɛ (0, σ 2 ) Smooth regression: y = f (X) + ɛ: f (X) = E(Y X) to be specified Flexible

More information

Dynamic Network Regression Using R Package dnr

Dynamic Network Regression Using R Package dnr Dynamic Network Regression Using R Package dnr Abhirup Mallik July 26, 2018 R package dnr enables the user to fit dynamic network regression models for time variate network data available mostly in social

More information

Stat 5303 (Oehlert): Response Surfaces 1

Stat 5303 (Oehlert): Response Surfaces 1 Stat 5303 (Oehlert): Response Surfaces 1 > data

More information

URLs identification task: Istat current status. Istat developed and applied a procedure consisting of the following steps:

URLs identification task: Istat current status. Istat developed and applied a procedure consisting of the following steps: ESSnet BIG DATA WorkPackage 2 URLs identification task: Istat current status Giulio Barcaroli, Monica Scannapieco, Donato Summa Istat developed and applied a procedure consisting of the following steps:

More information

Reliability Coefficients

Reliability Coefficients Reliability Coefficients Introductory notes That data used for these computations is the pre-treatment scores of all subjects. There are three items in the SIAS (5, 9 and 11) that require reverse-scoring.

More information

R Graphics. SCS Short Course March 14, 2008

R Graphics. SCS Short Course March 14, 2008 R Graphics SCS Short Course March 14, 2008 Archeology Archeological expedition Basic graphics easy and flexible Lattice (trellis) graphics powerful but less flexible Rgl nice 3d but challenging Tons of

More information

SYS 6021 Linear Statistical Models

SYS 6021 Linear Statistical Models SYS 6021 Linear Statistical Models Project 2 Spam Filters Jinghe Zhang Summary The spambase data and time indexed counts of spams and hams are studied to develop accurate spam filters. Static models are

More information

Regression Analysis and Linear Regression Models

Regression Analysis and Linear Regression Models Regression Analysis and Linear Regression Models University of Trento - FBK 2 March, 2015 (UNITN-FBK) Regression Analysis and Linear Regression Models 2 March, 2015 1 / 33 Relationship between numerical

More information

Logistic Regression. (Dichotomous predicted variable) Tim Frasier

Logistic Regression. (Dichotomous predicted variable) Tim Frasier Logistic Regression (Dichotomous predicted variable) Tim Frasier Copyright Tim Frasier This work is licensed under the Creative Commons Attribution 4.0 International license. Click here for more information.

More information

An introduction to SPSS

An introduction to SPSS An introduction to SPSS To open the SPSS software using U of Iowa Virtual Desktop... Go to https://virtualdesktop.uiowa.edu and choose SPSS 24. Contents NOTE: Save data files in a drive that is accessible

More information

EXST 7014, Lab 1: Review of R Programming Basics and Simple Linear Regression

EXST 7014, Lab 1: Review of R Programming Basics and Simple Linear Regression EXST 7014, Lab 1: Review of R Programming Basics and Simple Linear Regression OBJECTIVES 1. Prepare a scatter plot of the dependent variable on the independent variable 2. Do a simple linear regression

More information

Chapter 10: Extensions to the GLM

Chapter 10: Extensions to the GLM Chapter 10: Extensions to the GLM 10.1 Implement a GAM for the Swedish mortality data, for males, using smooth functions for age and year. Age and year are standardized as described in Section 4.11, for

More information

Regression Lab 1. The data set cholesterol.txt available on your thumb drive contains the following variables:

Regression Lab 1. The data set cholesterol.txt available on your thumb drive contains the following variables: Regression Lab The data set cholesterol.txt available on your thumb drive contains the following variables: Field Descriptions ID: Subject ID sex: Sex: 0 = male, = female age: Age in years chol: Serum

More information

Stat 5303 (Oehlert): Unbalanced Factorial Examples 1

Stat 5303 (Oehlert): Unbalanced Factorial Examples 1 Stat 5303 (Oehlert): Unbalanced Factorial Examples 1 > section

More information

Tutorials Case studies

Tutorials Case studies 1. Subject Three curves for the evaluation of supervised learning methods. Evaluation of classifiers is an important step of the supervised learning process. We want to measure the performance of the classifier.

More information

Centering and Interactions: The Training Data

Centering and Interactions: The Training Data Centering and Interactions: The Training Data A random sample of 150 technical support workers were first given a test of their technical skill and knowledge, and then randomly assigned to one of three

More information

Orange Juice data. Emanuele Taufer. 4/12/2018 Orange Juice data (1)

Orange Juice data. Emanuele Taufer. 4/12/2018 Orange Juice data (1) Orange Juice data Emanuele Taufer file:///c:/users/emanuele.taufer/google%20drive/2%20corsi/5%20qmma%20-%20mim/0%20labs/l10-oj-data.html#(1) 1/31 Orange Juice Data The data contain weekly sales of refrigerated

More information

Lab #7 - More on Regression in R Econ 224 September 18th, 2018

Lab #7 - More on Regression in R Econ 224 September 18th, 2018 Lab #7 - More on Regression in R Econ 224 September 18th, 2018 Robust Standard Errors Your reading assignment from Chapter 3 of ISL briefly discussed two ways that the standard regression inference formulas

More information

Solution to Bonus Questions

Solution to Bonus Questions Solution to Bonus Questions Q2: (a) The histogram of 1000 sample means and sample variances are plotted below. Both histogram are symmetrically centered around the true lambda value 20. But the sample

More information

Work through the sheet in any order you like. Skip the starred (*) bits in the first instance, unless you re fairly confident.

Work through the sheet in any order you like. Skip the starred (*) bits in the first instance, unless you re fairly confident. CDT R Review Sheet Work through the sheet in any order you like. Skip the starred (*) bits in the first instance, unless you re fairly confident. 1. Vectors (a) Generate 100 standard normal random variables,

More information

610 R12 Prof Colleen F. Moore Analysis of variance for Unbalanced Between Groups designs in R For Psychology 610 University of Wisconsin--Madison

610 R12 Prof Colleen F. Moore Analysis of variance for Unbalanced Between Groups designs in R For Psychology 610 University of Wisconsin--Madison 610 R12 Prof Colleen F. Moore Analysis of variance for Unbalanced Between Groups designs in R For Psychology 610 University of Wisconsin--Madison R is very touchy about unbalanced designs, partly because

More information

AA BB CC DD EE. Introduction to Graphics in R

AA BB CC DD EE. Introduction to Graphics in R Introduction to Graphics in R Cori Mar 7/10/18 ### Reading in the data dat

More information

Annexes : Sorties SAS pour l'exercice 3. Code SAS. libname process 'G:\Enseignements\M2ISN-Series temp\sas\';

Annexes : Sorties SAS pour l'exercice 3. Code SAS. libname process 'G:\Enseignements\M2ISN-Series temp\sas\'; Annexes : Sorties SAS pour l'exercice 3 Code SAS libname process 'G:\Enseignements\M2ISN-Series temp\sas\'; /* Etape 1 - Création des données*/ proc iml; phi={1-1.583 0.667-0.083}; theta={1}; y=armasim(phi,

More information

Classification. Data Set Iris. Logistic Regression. Species. Petal.Width

Classification. Data Set Iris. Logistic Regression. Species. Petal.Width Classification Data Set Iris # load data data(iris) # this is what it looks like... head(iris) Sepal.Length Sepal.Width 1 5.1 3.5 1.4 0.2 2 4.9 3.0 1.4 0.2 3 4.7 3.2 1.3 0.2 4 4.6 3.1 0.2 5 5.0 3.6 1.4

More information

Minitab 17 commands Prepared by Jeffrey S. Simonoff

Minitab 17 commands Prepared by Jeffrey S. Simonoff Minitab 17 commands Prepared by Jeffrey S. Simonoff Data entry and manipulation To enter data by hand, click on the Worksheet window, and enter the values in as you would in any spreadsheet. To then save

More information

book 2014/5/6 15:21 page v #3 List of figures List of tables Preface to the second edition Preface to the first edition

book 2014/5/6 15:21 page v #3 List of figures List of tables Preface to the second edition Preface to the first edition book 2014/5/6 15:21 page v #3 Contents List of figures List of tables Preface to the second edition Preface to the first edition xvii xix xxi xxiii 1 Data input and output 1 1.1 Input........................................

More information

Stat 8053, Fall 2013: Additive Models

Stat 8053, Fall 2013: Additive Models Stat 853, Fall 213: Additive Models We will only use the package mgcv for fitting additive and later generalized additive models. The best reference is S. N. Wood (26), Generalized Additive Models, An

More information

EXPLORATORY DATA ANALYSIS. Introducing the data

EXPLORATORY DATA ANALYSIS. Introducing the data EXPLORATORY DATA ANALYSIS Introducing the data Email data set > email # A tibble: 3,921 21 spam to_multiple from cc sent_email time image 1 not-spam 0 1 0 0

More information

9.1 Random coefficients models Constructed data Consumer preference mapping of carrots... 10

9.1 Random coefficients models Constructed data Consumer preference mapping of carrots... 10 St@tmaster 02429/MIXED LINEAR MODELS PREPARED BY THE STATISTICS GROUPS AT IMM, DTU AND KU-LIFE Module 9: R 9.1 Random coefficients models...................... 1 9.1.1 Constructed data........................

More information

THIS IS NOT REPRESNTATIVE OF CURRENT CLASS MATERIAL. STOR 455 Midterm 1 September 28, 2010

THIS IS NOT REPRESNTATIVE OF CURRENT CLASS MATERIAL. STOR 455 Midterm 1 September 28, 2010 THIS IS NOT REPRESNTATIVE OF CURRENT CLASS MATERIAL STOR 455 Midterm September 8, INSTRUCTIONS: BOTH THE EXAM AND THE BUBBLE SHEET WILL BE COLLECTED. YOU MUST PRINT YOUR NAME AND SIGN THE HONOR PLEDGE

More information

Package citools. October 20, 2018

Package citools. October 20, 2018 Type Package Package citools October 20, 2018 Title Confidence or Prediction Intervals, Quantiles, and Probabilities for Statistical Models Version 0.5.0 Maintainer John Haman Functions

More information

CSC 328/428 Summer Session I 2002 Data Analysis for the Experimenter FINAL EXAM

CSC 328/428 Summer Session I 2002 Data Analysis for the Experimenter FINAL EXAM options pagesize=53 linesize=76 pageno=1 nodate; proc format; value $stcktyp "1"="Growth" "2"="Combined" "3"="Income"; data invstmnt; input stcktyp $ perform; label stkctyp="type of Stock" perform="overall

More information

Outline. Topic 16 - Other Remedies. Ridge Regression. Ridge Regression. Ridge Regression. Robust Regression. Regression Trees. Piecewise Linear Model

Outline. Topic 16 - Other Remedies. Ridge Regression. Ridge Regression. Ridge Regression. Robust Regression. Regression Trees. Piecewise Linear Model Topic 16 - Other Remedies Ridge Regression Robust Regression Regression Trees Outline - Fall 2013 Piecewise Linear Model Bootstrapping Topic 16 2 Ridge Regression Modification of least squares that addresses

More information

MACHINE LEARNING TOOLBOX. Logistic regression on Sonar

MACHINE LEARNING TOOLBOX. Logistic regression on Sonar MACHINE LEARNING TOOLBOX Logistic regression on Sonar Classification models Categorical (i.e. qualitative) target variable Example: will a loan default? Still a form of supervised learning Use a train/test

More information

An Introductory Guide to R

An Introductory Guide to R An Introductory Guide to R By Claudia Mahler 1 Contents Installing and Operating R 2 Basics 4 Importing Data 5 Types of Data 6 Basic Operations 8 Selecting and Specifying Data 9 Matrices 11 Simple Statistics

More information

Bernt Arne Ødegaard. 15 November 2018

Bernt Arne Ødegaard. 15 November 2018 R Bernt Arne Ødegaard 15 November 2018 To R is Human 1 R R is a computing environment specially made for doing statistics/econometrics. It is becoming the standard for advanced dealing with empirical data,

More information

22s:152 Applied Linear Regression

22s:152 Applied Linear Regression 22s:152 Applied Linear Regression Chapter 22: Model Selection In model selection, the idea is to find the smallest set of variables which provides an adequate description of the data. We will consider

More information

Experiments in Imputation

Experiments in Imputation Experiments in Imputation Mean substitution ############################################################################### # Imputation of missing values can inflate Type I error probability. # Imputation

More information

Assignment 5.5. Nothing here to hand in

Assignment 5.5. Nothing here to hand in Assignment 5.5 Nothing here to hand in Load the tidyverse before we start: library(tidyverse) ## Loading tidyverse: ggplot2 ## Loading tidyverse: tibble ## Loading tidyverse: tidyr ## Loading tidyverse:

More information

22s:152 Applied Linear Regression

22s:152 Applied Linear Regression 22s:152 Applied Linear Regression Chapter 22: Model Selection In model selection, the idea is to find the smallest set of variables which provides an adequate description of the data. We will consider

More information

SAS data statements and data: /*Factor A: angle Factor B: geometry Factor C: speed*/

SAS data statements and data: /*Factor A: angle Factor B: geometry Factor C: speed*/ STAT:5201 Applied Statistic II (Factorial with 3 factors as 2 3 design) Three-way ANOVA (Factorial with three factors) with replication Factor A: angle (low=0/high=1) Factor B: geometry (shape A=0/shape

More information

1 Lab 1. Graphics and Checking Residuals

1 Lab 1. Graphics and Checking Residuals R is an object oriented language. We will use R for statistical analysis in FIN 504/ORF 504. To download R, go to CRAN (the Comprehensive R Archive Network) at http://cran.r-project.org Versions for Windows

More information

ETC 2420/5242 Lab Di Cook Week 5

ETC 2420/5242 Lab Di Cook Week 5 ETC 2420/5242 Lab 5 2017 Di Cook Week 5 Purpose This lab is to practice fitting linear models. Reading Read the material on fitting regression models in Statistics online textbook, Diez, Barr, Cetinkaya-

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Rebecca C. Steorts, Duke University STA 325, Chapter 3 ISL 1 / 49 Agenda How to extend beyond a SLR Multiple Linear Regression (MLR) Relationship Between the Response and Predictors

More information

CH9.Generalized Additive Model

CH9.Generalized Additive Model CH9.Generalized Additive Model Regression Model For a response variable and predictor variables can be modeled using a mean function as follows: would be a parametric / nonparametric regression or a smoothing

More information

Using the SemiPar Package

Using the SemiPar Package Using the SemiPar Package NICHOLAS J. SALKOWSKI Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA salk0008@umn.edu May 15, 2008 1 Introduction The

More information

Organizing data in R. Fitting Mixed-Effects Models Using the lme4 Package in R. R packages. Accessing documentation. The Dyestuff data set

Organizing data in R. Fitting Mixed-Effects Models Using the lme4 Package in R. R packages. Accessing documentation. The Dyestuff data set Fitting Mixed-Effects Models Using the lme4 Package in R Deepayan Sarkar Fred Hutchinson Cancer Research Center 18 September 2008 Organizing data in R Standard rectangular data sets (columns are variables,

More information

Section 2.1: Intro to Simple Linear Regression & Least Squares

Section 2.1: Intro to Simple Linear Regression & Least Squares Section 2.1: Intro to Simple Linear Regression & Least Squares Jared S. Murray The University of Texas at Austin McCombs School of Business Suggested reading: OpenIntro Statistics, Chapter 7.1, 7.2 1 Regression:

More information

From logistic to binomial & Poisson models

From logistic to binomial & Poisson models From logistic to binomial & Poisson models Ben Bolker October 17, 2018 Licensed under the Creative Commons attribution-noncommercial license (http: //creativecommons.org/licenses/by-nc/3.0/). Please share

More information

K-fold cross validation in the Tidyverse Stephanie J. Spielman 11/7/2017

K-fold cross validation in the Tidyverse Stephanie J. Spielman 11/7/2017 K-fold cross validation in the Tidyverse Stephanie J. Spielman 11/7/2017 Requirements This demo requires several packages: tidyverse (dplyr, tidyr, tibble, ggplot2) modelr broom proc Background K-fold

More information

Quantitative Methods in Management

Quantitative Methods in Management Quantitative Methods in Management MBA Glasgow University March 20-23, 2009 Luiz Moutinho, University of Glasgow Graeme Hutcheson, University of Manchester Exploratory Regression The lecture notes, exercises

More information

Comparing Fitted Models with the fit.models Package

Comparing Fitted Models with the fit.models Package Comparing Fitted Models with the fit.models Package Kjell Konis Acting Assistant Professor Computational Finance and Risk Management Dept. Applied Mathematics, University of Washington History of fit.models

More information

Introducing Microsoft SQL Server 2016 R Services. Julian Lee Advanced Analytics Lead Global Black Belt Asia Timezone

Introducing Microsoft SQL Server 2016 R Services. Julian Lee Advanced Analytics Lead Global Black Belt Asia Timezone Introducing Microsoft SQL Server 2016 R Services Julian Lee Advanced Analytics Lead Global Black Belt Asia Timezone SQL Server 2016: Everything built-in built-in built-in built-in built-in built-in $2,230

More information

Probabilistic Classifiers DWML, /27

Probabilistic Classifiers DWML, /27 Probabilistic Classifiers DWML, 2007 1/27 Probabilistic Classifiers Conditional class probabilities Id. Savings Assets Income Credit risk 1 Medium High 75 Good 2 Low Low 50 Bad 3 High Medium 25 Bad 4 Medium

More information

Some issues with R It is command-driven, and learning to use it to its full extent takes some time and effort. The documentation is comprehensive,

Some issues with R It is command-driven, and learning to use it to its full extent takes some time and effort. The documentation is comprehensive, R To R is Human R is a computing environment specially made for doing statistics/econometrics. It is becoming the standard for advanced dealing with empirical data, also in finance. Good parts It is freely

More information

Applied Regression Modeling: A Business Approach

Applied Regression Modeling: A Business Approach i Applied Regression Modeling: A Business Approach Computer software help: SAS SAS (originally Statistical Analysis Software ) is a commercial statistical software package based on a powerful programming

More information

Loglinear and Logit Models for Contingency Tables

Loglinear and Logit Models for Contingency Tables Chapter 8 Loglinear and Logit Models for Contingency Tables Loglinear models comprise another special case of generalized linear models designed for contingency tables of frequencies. They are most easily

More information

R Programming Basics - Useful Builtin Functions for Statistics

R Programming Basics - Useful Builtin Functions for Statistics R Programming Basics - Useful Builtin Functions for Statistics Vectorized Arithmetic - most arthimetic operations in R work on vectors. Here are a few commonly used summary statistics. testvect = c(1,3,5,2,9,10,7,8,6)

More information

Statistical Modelling for Social Scientists. Manchester University. January 20, 21 and 24, Exploratory regression and model selection

Statistical Modelling for Social Scientists. Manchester University. January 20, 21 and 24, Exploratory regression and model selection Statistical Modelling for Social Scientists Manchester University January 20, 21 and 24, 2011 Graeme Hutcheson, University of Manchester Exploratory regression and model selection The lecture notes, exercises

More information

Gelman-Hill Chapter 3

Gelman-Hill Chapter 3 Gelman-Hill Chapter 3 Linear Regression Basics In linear regression with a single independent variable, as we have seen, the fundamental equation is where ŷ bx 1 b0 b b b y 1 yx, 0 y 1 x x Bivariate Normal

More information

CH5: CORR & SIMPLE LINEAR REFRESSION =======================================

CH5: CORR & SIMPLE LINEAR REFRESSION ======================================= STAT 430 SAS Examples SAS5 ===================== ssh xyz@glue.umd.edu, tap sas913 (old sas82), sas https://www.statlab.umd.edu/sasdoc/sashtml/onldoc.htm CH5: CORR & SIMPLE LINEAR REFRESSION =======================================

More information

Evaluating Classifiers

Evaluating Classifiers Evaluating Classifiers Reading for this topic: T. Fawcett, An introduction to ROC analysis, Sections 1-4, 7 (linked from class website) Evaluating Classifiers What we want: Classifier that best predicts

More information

ISyE 6416 Basic Statistical Methods - Spring 2016 Bonus Project: Big Data Analytics Final Report. Team Member Names: Xi Yang, Yi Wen, Xue Zhang

ISyE 6416 Basic Statistical Methods - Spring 2016 Bonus Project: Big Data Analytics Final Report. Team Member Names: Xi Yang, Yi Wen, Xue Zhang ISyE 6416 Basic Statistical Methods - Spring 2016 Bonus Project: Big Data Analytics Final Report Team Member Names: Xi Yang, Yi Wen, Xue Zhang Project Title: Improve Room Utilization Introduction Problem

More information

Factorial ANOVA with SAS

Factorial ANOVA with SAS Factorial ANOVA with SAS /* potato305.sas */ options linesize=79 noovp formdlim='_' ; title 'Rotten potatoes'; title2 ''; proc format; value tfmt 1 = 'Cool' 2 = 'Warm'; data spud; infile 'potato2.data'

More information

Statistical Models for Management. Instituto Superior de Ciências do Trabalho e da Empresa (ISCTE) Lisbon. February 24 26, 2010

Statistical Models for Management. Instituto Superior de Ciências do Trabalho e da Empresa (ISCTE) Lisbon. February 24 26, 2010 Statistical Models for Management Instituto Superior de Ciências do Trabalho e da Empresa (ISCTE) Lisbon February 24 26, 2010 Graeme Hutcheson, University of Manchester Exploratory regression and model

More information

STAT - Edit Scroll up the appropriate list to highlight the list name at the very top Press CLEAR, followed by the down arrow or ENTER

STAT - Edit Scroll up the appropriate list to highlight the list name at the very top Press CLEAR, followed by the down arrow or ENTER Entering/Editing Data Use arrows to scroll to the appropriate list and position Enter or edit data, pressing ENTER after each (including the last) Deleting Data (One Value at a Time) Use arrows to scroll

More information

Multistat2 1

Multistat2 1 Multistat2 1 2 Multistat2 3 Multistat2 4 Multistat2 5 Multistat2 6 This set of data includes technologically relevant properties for lactic acid bacteria isolated from Pasta Filata cheeses 7 8 A simple

More information

Some methods for the quantification of prediction uncertainties for digital soil mapping: Universal kriging prediction variance.

Some methods for the quantification of prediction uncertainties for digital soil mapping: Universal kriging prediction variance. Some methods for the quantification of prediction uncertainties for digital soil mapping: Universal kriging prediction variance. Soil Security Laboratory 2018 1 Universal kriging prediction variance In

More information

DATA ANALYSIS USING HIERARCHICAL GENERALIZED LINEAR MODELS WITH R

DATA ANALYSIS USING HIERARCHICAL GENERALIZED LINEAR MODELS WITH R DATA ANALYSIS USING HIERARCHICAL GENERALIZED LINEAR MODELS WITH R Lee, Rönnegård & Noh LRN@du.se Lee, Rönnegård & Noh HGLM book 1 / 25 Overview 1 Background to the book 2 A motivating example from my own

More information