Multimedia Information Retrieval

Size: px
Start display at page:

Download "Multimedia Information Retrieval"

Transcription

1 Multimedia Information Retrieval Prof Stefan Rüger Multimedia and Information Systems Knowledge Media Institute The Open University

2 Multimedia Information Retrieval 1. What are multimedia queries? 2. Fingerprinting 3. Metadata & piggy-back retrieval 4. Automated image annotation 5 Visual content-based retrieval I 6 Visual content-based retrieval II 7. Evaluation - Simple metrics - Evaluation campaigns - Multilabel evaluation for image annotation 8. Browsing, search and geography [Slides for simple metrics and evaluation campaigns partially prepared by Suzanne Little]

3 Evaluation How do we know if our MIR system is effective? Why do we care about quantifying the performance? If you can not measure it, you can not improve it. Lord Kelvin

4 What is performance? Be specific: - Processing speed (database sense) - Precision (web search casual user) - Recall (e.g., secret service user) - Other derived measures: accuracy, cdg,... - Memory usage (resource awareness) - Workflow integration (how does the retrieval task support the overall user task?) - Sense of empowerment (just to mention a whacky but justifiable one!) - Usability / user friendliness

5 Cranfield Paradigm Ground truth data test train tune query set train relevance judgement results list (M)IR system evaluation metrics

6 Small, unbalanced data? Cross-validation test train train train test test Randomise data and divide Train-test 4 times Average all metrics 4-fold cross-validation test train Extreme is leave-one-out (test size = 1)

7 Model selection requires validation set M2178 Best performance on test set? Could be by chance! Must report performance of best model on validation set!

8 Relevance? Find me pictures of triumph * *

9 Retrieved-set-based metrics Relevant Irrelevant Retrieved True Positive (tp) False Positive (fp) Not Retrieved False Negative (fn) True Negative (tn) Precision (P) = fraction retrieved that are relevant Recall (R) = fraction relevant that are retrieved

10 Accuracy? Why is accuracy rarely used for information retrieval?

11 Precision or Recall? Is precision or recall more useful/important - if I am doing a web search on Tokyo accommodation? - if I am a paralegal researching case precedence? How could I make a system with 100% recall?

12 F measure: compromise between precision&recall F1-measure (weighted harmonic mean of P & R)

13 Exercise An IR system returns 8 relevant documents and 10 irrelevant documents. There are a total of 20 relevant documents in the collection. Calculate the precision and recall.

14 Ranked Retrieval Which is better? There are 5 relevant documents. System A 1. Relevant 2. Relevant 3. Irrelevant 4. Irrelevant 5. Relevant 6. Relevant System B 1. Relevant 2. Irrelevant 3. Relevant 4. Relevant 5. Relevant 6. Irrelevant Precision = 4/6 = 0.66 Recall = 4/5 = 0.80 Precision = 4/6 = 0.66 Recall = 4/5 = 0.80

15 Ranked Retrieval Metrics n Properties of precision/recall graphs Mean average precision

16 Ranked Retrieval Which is better? There are 5 relevant documents. System A 1. Relevant 2. Relevant 3. Irrelevant 4. Irrelevant 5. Relevant 6. Relevant System B 1. Relevant 2. Irrelevant 3. Relevant 4. Relevant 5. Relevant 6. Irrelevant P@1 P@2 P@3 P@4 P@5

17 Average Precision System A 1. Relevant 2. Relevant 3. Irrelevant 4. Irrelevant 5. Relevant 6. Relevant P=1 P=1 P = 0.6 P = 0.67 System B 1. Relevant 2. Irrelevant 3. Relevant 4. Relevant 5. Relevant 6. Irrelevant P=1 P = 0.67 P = 0.75 P = ( )/4 = 0.82 ( )/4 = 0.69

18 Ranked Retrieval Which is better? There are 5 relevant documents. System A 1. Relevant 2. Relevant 3. Irrelevant 4. Irrelevant 5. Relevant 6. Relevant System B 1. Relevant 2. Irrelevant 3. Relevant 4. Relevant 5. Relevant 6. Irrelevant AP = 0.82 AP = 0.69

19 Mean average precision Computes the mean of AP over observed queries Corresponds to the area under the curve of a precision/recall graph (averaged over queries)

20 Precision Precision/recall curve Recall

21 - Jumps numerically in relatively large steps - Step-changes with small SE changes - Step-changes with small changes of n - Is not well suited for training even if it is the ultimate evaluation measure! MAP is often better suited for training (despite P@n being used for evaluation!)

22 The Dark Side of Evaluation... Overfitting to limited training data unbalanced, fragile system Unrealistic training data Difficulty in finding training data Comparison and competition Numbers not users

23 Evaluation Campaigns TRECVID ImageCLEF MediaEval MIREX

24 TRECVid Organised by NIST with support from other U.S. government agencies - Objective is to encourage research in video retrieval tasks by: - Providing a large test collection - Uniform, independent and external scoring procedures - Provide a forum for comparing results In spirit of Cranfield procedure tries to model real-world tasks (or components of tasks) Tasks and datasets got increasingly harder over the years

25 TRECVid: typical tasks - Semantic indexing (annotation, new: pairs) - Known-item search (text description of video clip in collection) - Interactive surveillance event detection (airport surveillance) - Instance search (find a person, object, place by example) - Multimedia event detection - Multimedia event recounting (text describing evidence) - Shot boundary detections (retired some time ago)

26 TRECVid: typical cycle - Feb: task specifications and call for participation Apply for participation and data sign permissions - Mar: final paper of previous year due - Apr: complete guidelines - May/June: training data being made available - July: test data plus challenges being made available - Aug/Sep: participants return their results to NIST - Sep/Oct: NIST evaluates results from participants NIST organises workshop, speaker list, agenda - Nov: TRECVid workshop in Gaithersburg, MD

27 TRECVid TRECVid example queries Find shots of a road taken from a moving vehicle through the front window Find shots of a person talking behind a microphone Find shots of a street scene at night

28 ImageCLEF CLEF = Cross Language Evaluation Forum Process is modelled from TREC ImageCLEF started in 2003 Tasks: Image retrieval (queries in different languages) Medical Image Annotation Annotation of photographs Geographic retrieval (GeoCLEF) Video retrieval (VideoCLEF/MediaEval)

29 Search Engine Quality? System issues Indexing speed Scalability Robustness Query expressiveness User issues Diversity, responsiveness Happiness, usability? The interface vs IR performance

30 Performance measures for multilabel evaluation GT = {Landscape, Outdoor, Day} Landscape Outdoor Day Citylife Outdoor Day Buildings Indoor Night 1) Evaluation per concept Precision, Recall, F-Measure, Accuracy 2) Evaluation per media item Same, but can also compare sets of labels Fully correct, partly correct, fully wrong What about similar annotations? [Nowak, Lukashevich, Dunker and Rüger: Performance measures for multilabel evaluation, MIR 2010, pp35-44 slides prepared by Nowak]

31 Types of evaluation measures Concept-based measures: Example-based measures: Precision (Pc) Precision (Pe) Recall (Rc) Recall (Re) F-Measure (Fc) F-measure (Fe) Area Under Curve (AUC) Accuracy Equal Error Rate (EER) Alpha evaluation Mean Average Precision (MAP) Hierarchical Score (HS) Ontology Score (OS) [Nowak, Lukashevich, Dunker and Rüger: Performance measures for multilabel evaluation, MIR 2010, pp35-44 slides prepared by Nowak]

32 Ontology Score (OS) Vocabulary Cost Map Landscape City: 0.67 Landscape Indoor: 0.87 Landscape StillLife: 0.71 Ontology. Evaluation Procedure Match Label Sets Agreements G = {Landscape, Outdoor, Day} P = {City, Indoor, Day, Plant} Sunny: 0.88 Aesthetic: 0.75 [Nowak, Lukashevich, Dunker and Rüger: Performance measures for multilabel evaluation, MIR 2010, pp35-44 slides prepared by Nowak]

33 Ontology Score (OS) 1) Depth-dependent distance-based misclassification costs Costs for each link: Cost Map Sum link costs on shortest path between labels Cut in halves for each deeper level of hierarchy Max costs of path between two labels = 1 2) Ontology-based penalty: Penalty for violations of ontology knowledge [Nowak, Lukashevich, Dunker and Rüger: Performance measures for multilabel evaluation, MIR 2010, pp35-44 slides prepared by Nowak]

34 Ontology Score (OS) 3) Annotator agreements a(l): Factor of annotation consensus per concept Matching Procedure: Final Score: Hierarchical Score (HS): OS without step 2) [Nowak, Lukashevich, Dunker and Rüger: Performance measures for multilabel evaluation, MIR 2010, pp35-44 slides prepared by Nowak]

35 Study setup 7 example-based evaluation measures 6 concept-based evaluation measures 73 runs of ImageCLEF 2009, 10 random runs ImageCLEF 2009 Photo Annotation Task: Annotation of 53 visual concepts in consumer photos MIR Flickr 25,000 Image Dataset: Training set: 5,000 photos + EXIF data + ground truth Test set: 13,000 photos + EXIF data Photo Tagging Ontology 19 research groups, 73 run configurations [Nowak, Lukashevich, Dunker and Rüger: Performance measures for multilabel evaluation, MIR 2010, pp35-44 slides prepared by Nowak]

36 Results Concept-based vs. example-based Precision, Recall, F-Measure [Nowak, Lukashevich, Dunker and Rüger: Performance measures for multilabel evaluation, MIR 2010, pp35-44 slides prepared by Nowak]

37 Results Concept-based vs. example-based Precision, Recall, F-Measure [Nowak, Lukashevich, Dunker and Rüger: Performance measures for multilabel evaluation, MIR 2010, pp35-44 slides prepared by Nowak]

38 Results AUC, EER, MAP based on ranked annotations confidence values binary annotations EER, AUC disadvantage binary decisions of systems MAP aligns with Pc, EER, but is more discriminative [Nowak, Lukashevich, Dunker and Rüger: Performance measures for multilabel evaluation, MIR 2010, pp35-44 slides prepared by Nowak]

39 Results Example-based evaluation: HS, OS, Alpha/Accuracy [Nowak, Lukashevich, Dunker and Rüger: Performance measures for multilabel evaluation, MIR 2010, pp35-44 slides prepared by Nowak]

40 Results Example-based evaluation: HS, OS, Alpha/Accuracy [Nowak, Lukashevich, Dunker and Rüger: Performance measures for multilabel evaluation, MIR 2010, pp35-44 slides prepared by Nowak]

41 Results Influence of number of annotations on measures OS: Random runs (10%, 20%, 30%) close to LD (0.17) get slightly better results Fc+Fe: high LD leads to slightly better results, critical in case of Fc [Nowak, Lukashevich, Dunker and Rüger: Performance measures for multilabel evaluation, MIR 2010, pp35-44 slides prepared by Nowak]

42 Conclusions for Image Annotation tasks Example-based evaluation: HS not suitable ( random runs) OS promising tends to advantage rule conforming systems Pe, Re and Fe higher scores than concept-based variants Alpha Distribution of values, best: alpha=1 (accuracy), alpha=0.5 Concept-based evaluation EER, AUC disadvantage systems with binary decisions Rc and Fc not suitable (random runs) MAP: good characteristics, stable (random runs, label density) Recommendation: Example-based evaluation: OS, Fe, Accuracy Concept-based evaluation: MAP [Nowak, Lukashevich, Dunker and Rüger: Performance measures for multilabel evaluation, MIR 2010, pp35-44 slides prepared by Nowak]

A Consumer Photo Tagging Ontology

A Consumer Photo Tagging Ontology A Consumer Photo Tagging Ontology Concepts and Annotations Stefanie Nowak Semantic Audiovisual Systems Fraunhofer IDMT Corfu, 29.09.2009 stefanie.nowak@idmt.fraunhofer.de slide 1 Outline Introduction Related

More information

Information Retrieval. Lecture 7 - Evaluation in Information Retrieval. Introduction. Overview. Standard test collection. Wintersemester 2007

Information Retrieval. Lecture 7 - Evaluation in Information Retrieval. Introduction. Overview. Standard test collection. Wintersemester 2007 Information Retrieval Lecture 7 - Evaluation in Information Retrieval Seminar für Sprachwissenschaft International Studies in Computational Linguistics Wintersemester 2007 1 / 29 Introduction Framework

More information

Information Retrieval

Information Retrieval Information Retrieval Lecture 7 - Evaluation in Information Retrieval Seminar für Sprachwissenschaft International Studies in Computational Linguistics Wintersemester 2007 1/ 29 Introduction Framework

More information

A Text-Based Approach to the ImageCLEF 2010 Photo Annotation Task

A Text-Based Approach to the ImageCLEF 2010 Photo Annotation Task A Text-Based Approach to the ImageCLEF 2010 Photo Annotation Task Wei Li, Jinming Min, Gareth J. F. Jones Center for Next Generation Localisation School of Computing, Dublin City University Dublin 9, Ireland

More information

Multilabel Classification Evaluation using Ontology Information

Multilabel Classification Evaluation using Ontology Information Multilabel Classification Evaluation using Ontology Information Stefanie Nowak, Hanna Lukashevich Fraunhofer Institute for Digital Media Technology IDMT Ehrenbergstrasse 31, 98693 Ilmenau, Germany, {nwk,lkh}@idmt.fraunhofer.de

More information

Information Retrieval. Lecture 7

Information Retrieval. Lecture 7 Information Retrieval Lecture 7 Recap of the last lecture Vector space scoring Efficiency considerations Nearest neighbors and approximations This lecture Evaluating a search engine Benchmarks Precision

More information

The Stanford/Technicolor/Fraunhofer HHI Video Semantic Indexing System

The Stanford/Technicolor/Fraunhofer HHI Video Semantic Indexing System The Stanford/Technicolor/Fraunhofer HHI Video Semantic Indexing System Our first participation on the TRECVID workshop A. F. de Araujo 1, F. Silveira 2, H. Lakshman 3, J. Zepeda 2, A. Sheth 2, P. Perez

More information

T MULTIMEDIA RETRIEVAL SYSTEM EVALUATION

T MULTIMEDIA RETRIEVAL SYSTEM EVALUATION T-61.6030 MULTIMEDIA RETRIEVAL SYSTEM EVALUATION Pauli Ruonala pruonala@niksula.hut.fi 25.4.2008 Contents 1. Retrieve test material 2. Sources of retrieval errors 3. Traditional evaluation methods 4. Evaluation

More information

Retrieval Evaluation. Hongning Wang

Retrieval Evaluation. Hongning Wang Retrieval Evaluation Hongning Wang CS@UVa What we have learned so far Indexed corpus Crawler Ranking procedure Research attention Doc Analyzer Doc Rep (Index) Query Rep Feedback (Query) Evaluation User

More information

Evaluation and image retrieval

Evaluation and image retrieval Evaluation and image retrieval Henning Müller Thomas Deselaers Overview Information retrieval evaluation TREC Multimedia retrieval evaluation TRECVID, ImageEval, Benchathlon, ImageCLEF Past Future Information

More information

Web Information Retrieval. Exercises Evaluation in information retrieval

Web Information Retrieval. Exercises Evaluation in information retrieval Web Information Retrieval Exercises Evaluation in information retrieval Evaluating an IR system Note: information need is translated into a query Relevance is assessed relative to the information need

More information

Search Evaluation. Tao Yang CS293S Slides partially based on text book [CMS] [MRS]

Search Evaluation. Tao Yang CS293S Slides partially based on text book [CMS] [MRS] Search Evaluation Tao Yang CS293S Slides partially based on text book [CMS] [MRS] Table of Content Search Engine Evaluation Metrics for relevancy Precision/recall F-measure MAP NDCG Difficulties in Evaluating

More information

THIS LECTURE. How do we know if our results are any good? Results summaries: Evaluating a search engine. Making our good results usable to a user

THIS LECTURE. How do we know if our results are any good? Results summaries: Evaluating a search engine. Making our good results usable to a user EVALUATION Sec. 6.2 THIS LECTURE How do we know if our results are any good? Evaluating a search engine Benchmarks Precision and recall Results summaries: Making our good results usable to a user 2 3 EVALUATING

More information

Chapter 6 Evaluation Metrics and Evaluation

Chapter 6 Evaluation Metrics and Evaluation Chapter 6 Evaluation Metrics and Evaluation The area of evaluation of information retrieval and natural language processing systems is complex. It will only be touched on in this chapter. First the scientific

More information

CS6322: Information Retrieval Sanda Harabagiu. Lecture 13: Evaluation

CS6322: Information Retrieval Sanda Harabagiu. Lecture 13: Evaluation Sanda Harabagiu Lecture 13: Evaluation Sec. 6.2 This lecture How do we know if our results are any good? Evaluating a search engine Benchmarks Precision and recall Results summaries: Making our good results

More information

CCRMA MIR Workshop 2014 Evaluating Information Retrieval Systems. Leigh M. Smith Humtap Inc.

CCRMA MIR Workshop 2014 Evaluating Information Retrieval Systems. Leigh M. Smith Humtap Inc. CCRMA MIR Workshop 2014 Evaluating Information Retrieval Systems Leigh M. Smith Humtap Inc. leigh@humtap.com Basic system overview Segmentation (Frames, Onsets, Beats, Bars, Chord Changes, etc) Feature

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval Lecture 5: Evaluation Ruixuan Li http://idc.hust.edu.cn/~rxli/ Sec. 6.2 This lecture How do we know if our results are any good? Evaluating a search engine Benchmarks

More information

Evaluating Classifiers

Evaluating Classifiers Evaluating Classifiers Reading for this topic: T. Fawcett, An introduction to ROC analysis, Sections 1-4, 7 (linked from class website) Evaluating Classifiers What we want: Classifier that best predicts

More information

Evaluating search engines CE-324: Modern Information Retrieval Sharif University of Technology

Evaluating search engines CE-324: Modern Information Retrieval Sharif University of Technology Evaluating search engines CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2014 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Overview. Lecture 6: Evaluation. Summary: Ranked retrieval. Overview. Information Retrieval Computer Science Tripos Part II.

Overview. Lecture 6: Evaluation. Summary: Ranked retrieval. Overview. Information Retrieval Computer Science Tripos Part II. Overview Lecture 6: Evaluation Information Retrieval Computer Science Tripos Part II Recap/Catchup 2 Introduction Ronan Cummins 3 Unranked evaluation Natural Language and Information Processing (NLIP)

More information

QMUL-ACTIVA: Person Runs detection for the TRECVID Surveillance Event Detection task

QMUL-ACTIVA: Person Runs detection for the TRECVID Surveillance Event Detection task QMUL-ACTIVA: Person Runs detection for the TRECVID Surveillance Event Detection task Fahad Daniyal and Andrea Cavallaro Queen Mary University of London Mile End Road, London E1 4NS (United Kingdom) {fahad.daniyal,andrea.cavallaro}@eecs.qmul.ac.uk

More information

Information Retrieval

Information Retrieval Information Retrieval ETH Zürich, Fall 2012 Thomas Hofmann LECTURE 6 EVALUATION 24.10.2012 Information Retrieval, ETHZ 2012 1 Today s Overview 1. User-Centric Evaluation 2. Evaluation via Relevance Assessment

More information

Evaluating Classifiers

Evaluating Classifiers Evaluating Classifiers Reading for this topic: T. Fawcett, An introduction to ROC analysis, Sections 1-4, 7 (linked from class website) Evaluating Classifiers What we want: Classifier that best predicts

More information

Challenges on Combining Open Web and Dataset Evaluation Results: The Case of the Contextual Suggestion Track

Challenges on Combining Open Web and Dataset Evaluation Results: The Case of the Contextual Suggestion Track Challenges on Combining Open Web and Dataset Evaluation Results: The Case of the Contextual Suggestion Track Alejandro Bellogín 1,2, Thaer Samar 1, Arjen P. de Vries 1, and Alan Said 1 1 Centrum Wiskunde

More information

Part 7: Evaluation of IR Systems Francesco Ricci

Part 7: Evaluation of IR Systems Francesco Ricci Part 7: Evaluation of IR Systems Francesco Ricci Most of these slides comes from the course: Information Retrieval and Web Search, Christopher Manning and Prabhakar Raghavan 1 This lecture Sec. 6.2 p How

More information

Evaluation. David Kauchak cs160 Fall 2009 adapted from:

Evaluation. David Kauchak cs160 Fall 2009 adapted from: Evaluation David Kauchak cs160 Fall 2009 adapted from: http://www.stanford.edu/class/cs276/handouts/lecture8-evaluation.ppt Administrative How are things going? Slides Points Zipf s law IR Evaluation For

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

Use of Synthetic Data in Testing Administrative Records Systems

Use of Synthetic Data in Testing Administrative Records Systems Use of Synthetic Data in Testing Administrative Records Systems K. Bradley Paxton and Thomas Hager ADI, LLC 200 Canal View Boulevard, Rochester, NY 14623 brad.paxton@adillc.net, tom.hager@adillc.net Executive

More information

Evaluating search engines CE-324: Modern Information Retrieval Sharif University of Technology

Evaluating search engines CE-324: Modern Information Retrieval Sharif University of Technology Evaluating search engines CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2015 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Advanced Search Techniques for Large Scale Data Analytics Pavel Zezula and Jan Sedmidubsky Masaryk University

Advanced Search Techniques for Large Scale Data Analytics Pavel Zezula and Jan Sedmidubsky Masaryk University Advanced Search Techniques for Large Scale Data Analytics Pavel Zezula and Jan Sedmidubsky Masaryk University http://disa.fi.muni.cz The Cranfield Paradigm Retrieval Performance Evaluation Evaluation Using

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 08: Classification Evaluation and Practical Issues Instructor: Yizhou Sun yzsun@cs.ucla.edu October 24, 2017 Learnt Prediction and Classification Methods Vector Data

More information

Information Retrieval. (M&S Ch 15)

Information Retrieval. (M&S Ch 15) Information Retrieval (M&S Ch 15) 1 Retrieval Models A retrieval model specifies the details of: Document representation Query representation Retrieval function Determines a notion of relevance. Notion

More information

ETISEO, performance evaluation for video surveillance systems

ETISEO, performance evaluation for video surveillance systems ETISEO, performance evaluation for video surveillance systems A. T. Nghiem, F. Bremond, M. Thonnat, V. Valentin Project Orion, INRIA - Sophia Antipolis France Abstract This paper presents the results of

More information

Naïve Bayes Classification. Material borrowed from Jonathan Huang and I. H. Witten s and E. Frank s Data Mining and Jeremy Wyatt and others

Naïve Bayes Classification. Material borrowed from Jonathan Huang and I. H. Witten s and E. Frank s Data Mining and Jeremy Wyatt and others Naïve Bayes Classification Material borrowed from Jonathan Huang and I. H. Witten s and E. Frank s Data Mining and Jeremy Wyatt and others Things We d Like to Do Spam Classification Given an email, predict

More information

DATA MINING INTRODUCTION TO CLASSIFICATION USING LINEAR CLASSIFIERS

DATA MINING INTRODUCTION TO CLASSIFICATION USING LINEAR CLASSIFIERS DATA MINING INTRODUCTION TO CLASSIFICATION USING LINEAR CLASSIFIERS 1 Classification: Definition Given a collection of records (training set ) Each record contains a set of attributes and a class attribute

More information

BUAA AUDR at ImageCLEF 2012 Photo Annotation Task

BUAA AUDR at ImageCLEF 2012 Photo Annotation Task BUAA AUDR at ImageCLEF 2012 Photo Annotation Task Lei Huang, Yang Liu State Key Laboratory of Software Development Enviroment, Beihang University, 100191 Beijing, China huanglei@nlsde.buaa.edu.cn liuyang@nlsde.buaa.edu.cn

More information

Detector. Flash. Detector

Detector. Flash. Detector CLIPS at TRECvid: Shot Boundary Detection and Feature Detection Georges M. Quénot, Daniel Moraru, and Laurent Besacier CLIPS-IMAG, BP53, 38041 Grenoble Cedex 9, France Georges.Quenot@imag.fr Abstract This

More information

How Reliable are Annotations via Crowdsourcing?

How Reliable are Annotations via Crowdsourcing? How Reliable are Annotations via Crowdsourcing? A Study about Inter-annotator Agreement for Multi-label Image Annotation ABSTRACT Stefanie Nowak Fraunhofer IDMT Ehrenbergstr. 31 98693 Ilmenau, Germany

More information

Artificial Intelligence. Programming Styles

Artificial Intelligence. Programming Styles Artificial Intelligence Intro to Machine Learning Programming Styles Standard CS: Explicitly program computer to do something Early AI: Derive a problem description (state) and use general algorithms to

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval CS3245 Information Retrieval Lecture 9: IR Evaluation 9 Ch. 7 Last Time The VSM Reloaded optimized for your pleasure! Improvements to the computation and selection

More information

Overview of iclef 2008: search log analysis for Multilingual Image Retrieval

Overview of iclef 2008: search log analysis for Multilingual Image Retrieval Overview of iclef 2008: search log analysis for Multilingual Image Retrieval Julio Gonzalo Paul Clough Jussi Karlgren UNED U. Sheffield SICS Spain United Kingdom Sweden julio@lsi.uned.es p.d.clough@sheffield.ac.uk

More information

CSCI 5417 Information Retrieval Systems. Jim Martin!

CSCI 5417 Information Retrieval Systems. Jim Martin! CSCI 5417 Information Retrieval Systems Jim Martin! Lecture 7 9/13/2011 Today Review Efficient scoring schemes Approximate scoring Evaluating IR systems 1 Normal Cosine Scoring Speedups... Compute the

More information

CS381V Experiment Presentation. Chun-Chen Kuo

CS381V Experiment Presentation. Chun-Chen Kuo CS381V Experiment Presentation Chun-Chen Kuo The Paper Indoor Segmentation and Support Inference from RGBD Images. N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. ECCV 2012. 50 100 150 200 250 300 350

More information

User Strategies in Video Retrieval: a Case Study

User Strategies in Video Retrieval: a Case Study User Strategies in Video Retrieval: a Case Study L. Hollink 1, G.P. Nguyen 2, D.C. Koelma 2, A.Th. Schreiber 1, M. Worring 2 1 Business Informatics, Free University Amsterdam. {hollink,schreiber}@cs.vu.nl

More information

Multimedia Information Retrieval

Multimedia Information Retrieval Multimedia Information Retrieval Prof Stefan Rüger Multimedia and Information Systems Knowledge Media Institute The Open University http://kmi.open.ac.uk/mmis Why content-based? Actually, what is content-based

More information

Multimedia Information Retrieval The case of video

Multimedia Information Retrieval The case of video Multimedia Information Retrieval The case of video Outline Overview Problems Solutions Trends and Directions Multimedia Information Retrieval Motivation With the explosive growth of digital media data,

More information

The Fraunhofer IDMT at ImageCLEF 2011 Photo Annotation Task

The Fraunhofer IDMT at ImageCLEF 2011 Photo Annotation Task The Fraunhofer IDMT at ImageCLEF 2011 Photo Annotation Task Karolin Nagel, Stefanie Nowak, Uwe Kühhirt and Kay Wolter Fraunhofer Institute for Digital Media Technology (IDMT) Ehrenbergstr. 31, 98693 Ilmenau,

More information

Chapter III.2: Basic ranking & evaluation measures

Chapter III.2: Basic ranking & evaluation measures Chapter III.2: Basic ranking & evaluation measures 1. TF-IDF and vector space model 1.1. Term frequency counting with TF-IDF 1.2. Documents and queries as vectors 2. Evaluating IR results 2.1. Evaluation

More information

Metadata Topic Harmonization and Semantic Search for Linked-Data-Driven Geoportals -- A Case Study Using ArcGIS Online

Metadata Topic Harmonization and Semantic Search for Linked-Data-Driven Geoportals -- A Case Study Using ArcGIS Online Metadata Topic Harmonization and Semantic Search for Linked-Data-Driven Geoportals -- A Case Study Using ArcGIS Online Yingjie Hu 1, Krzysztof Janowicz 1, Sathya Prasad 2, and Song Gao 1 1 STKO Lab, Department

More information

Informa(on Retrieval

Informa(on Retrieval Introduc*on to Informa(on Retrieval Lecture 8: Evalua*on 1 Sec. 6.2 This lecture How do we know if our results are any good? Evalua*ng a search engine Benchmarks Precision and recall 2 EVALUATING SEARCH

More information

An Empirical Study on Lazy Multilabel Classification Algorithms

An Empirical Study on Lazy Multilabel Classification Algorithms An Empirical Study on Lazy Multilabel Classification Algorithms Eleftherios Spyromitros, Grigorios Tsoumakas and Ioannis Vlahavas Machine Learning & Knowledge Discovery Group Department of Informatics

More information

Definition, Detection, and Evaluation of Meeting Events in Airport Surveillance Videos

Definition, Detection, and Evaluation of Meeting Events in Airport Surveillance Videos Definition, Detection, and Evaluation of Meeting Events in Airport Surveillance Videos Sung Chun Lee, Chang Huang, and Ram Nevatia University of Southern California, Los Angeles, CA 90089, USA sungchun@usc.edu,

More information

Pattern recognition (4)

Pattern recognition (4) Pattern recognition (4) 1 Things we have discussed until now Statistical pattern recognition Building simple classifiers Supervised classification Minimum distance classifier Bayesian classifier (1D and

More information

Data Mining and Knowledge Discovery: Practice Notes

Data Mining and Knowledge Discovery: Practice Notes Data Mining and Knowledge Discovery: Practice Notes Petra Kralj Novak Petra.Kralj.Novak@ijs.si 2016/11/16 1 Keywords Data Attribute, example, attribute-value data, target variable, class, discretization

More information

Evaluation Metrics. (Classifiers) CS229 Section Anand Avati

Evaluation Metrics. (Classifiers) CS229 Section Anand Avati Evaluation Metrics (Classifiers) CS Section Anand Avati Topics Why? Binary classifiers Metrics Rank view Thresholding Confusion Matrix Point metrics: Accuracy, Precision, Recall / Sensitivity, Specificity,

More information

Evaluating Machine-Learning Methods. Goals for the lecture

Evaluating Machine-Learning Methods. Goals for the lecture Evaluating Machine-Learning Methods Mark Craven and David Page Computer Sciences 760 Spring 2018 www.biostat.wisc.edu/~craven/cs760/ Some of the slides in these lectures have been adapted/borrowed from

More information

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering Erik Velldal University of Oslo Sept. 18, 2012 Topics for today 2 Classification Recap Evaluating classifiers Accuracy, precision,

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Classification Evaluation and Practical Issues Instructor: Yizhou Sun yzsun@cs.ucla.edu April 24, 2017 Homework 2 out Announcements Due May 3 rd (11:59pm) Course project proposal

More information

User Strategies in Video Retrieval: a Case Study

User Strategies in Video Retrieval: a Case Study User Strategies in Video Retrieval: a Case Study L. Hollink 1, G.P. Nguyen 2, D.C. Koelma 2, A.Th. Schreiber 1, M. Worring 2 1 Section Business Informatics Free University Amsterdam De Boelelaan 1081a

More information

Predictive Analysis: Evaluation and Experimentation. Heejun Kim

Predictive Analysis: Evaluation and Experimentation. Heejun Kim Predictive Analysis: Evaluation and Experimentation Heejun Kim June 19, 2018 Evaluation and Experimentation Evaluation Metrics Cross-Validation Significance Tests Evaluation Predictive analysis: training

More information

Evaluation Measures. Sebastian Pölsterl. April 28, Computer Aided Medical Procedures Technische Universität München

Evaluation Measures. Sebastian Pölsterl. April 28, Computer Aided Medical Procedures Technische Universität München Evaluation Measures Sebastian Pölsterl Computer Aided Medical Procedures Technische Universität München April 28, 2015 Outline 1 Classification 1. Confusion Matrix 2. Receiver operating characteristics

More information

The Visual Concept Detection Task in ImageCLEF 2008

The Visual Concept Detection Task in ImageCLEF 2008 The Visual Concept Detection Task in ImageCLEF 2008 Thomas Deselaers 1 and Allan Hanbury 2,3 1 RWTH Aachen University, Computer Science Department, Aachen, Germany deselaers@cs.rwth-aachen.de 2 PRIP, Inst.

More information

INTRODUCTION TO DATA MINING. Daniel Rodríguez, University of Alcalá

INTRODUCTION TO DATA MINING. Daniel Rodríguez, University of Alcalá INTRODUCTION TO DATA MINING Daniel Rodríguez, University of Alcalá Outline Knowledge Discovery in Datasets Model Representation Types of models Supervised Unsupervised Evaluation (Acknowledgement: Jesús

More information

Chapter 8. Evaluating Search Engine

Chapter 8. Evaluating Search Engine Chapter 8 Evaluating Search Engine Evaluation Evaluation is key to building effective and efficient search engines Measurement usually carried out in controlled laboratory experiments Online testing can

More information

Supplementary Material

Supplementary Material Supplementary Material Figure 1S: Scree plot of the 400 dimensional data. The Figure shows the 20 largest eigenvalues of the (normalized) correlation matrix sorted in decreasing order; the insert shows

More information

Evaluation. Evaluate what? For really large amounts of data... A: Use a validation set.

Evaluation. Evaluate what? For really large amounts of data... A: Use a validation set. Evaluate what? Evaluation Charles Sutton Data Mining and Exploration Spring 2012 Do you want to evaluate a classifier or a learning algorithm? Do you want to predict accuracy or predict which one is better?

More information

Faceted Navigation for Browsing Large Video Collection

Faceted Navigation for Browsing Large Video Collection Faceted Navigation for Browsing Large Video Collection Zhenxing Zhang, Wei Li, Cathal Gurrin, Alan F. Smeaton Insight Centre for Data Analytics School of Computing, Dublin City University Glasnevin, Co.

More information

A Practical Guide to Support Vector Classification

A Practical Guide to Support Vector Classification Support Vector Machines 1 A Practical Guide to Support Vector Classification Chih-Jen Lin Department of Computer Science National Taiwan University Talk at University of Freiburg, July 15, 2003 Support

More information

IMAGE MATCHING - ALOK TALEKAR - SAIRAM SUNDARESAN 11/23/2010 1

IMAGE MATCHING - ALOK TALEKAR - SAIRAM SUNDARESAN 11/23/2010 1 IMAGE MATCHING - ALOK TALEKAR - SAIRAM SUNDARESAN 11/23/2010 1 : Presentation structure : 1. Brief overview of talk 2. What does Object Recognition involve? 3. The Recognition Problem 4. Mathematical background:

More information

Multiclass Classification

Multiclass Classification Multiclass Classification Instructor: Jessica Wu Harvey Mudd College The instructor gratefully acknowledges Eric Eaton (UPenn), David Kauchak (Pomona), Tommi Jaakola (MIT) and the many others who made

More information

INTRODUCTION TO MACHINE LEARNING. Measuring model performance or error

INTRODUCTION TO MACHINE LEARNING. Measuring model performance or error INTRODUCTION TO MACHINE LEARNING Measuring model performance or error Is our model any good? Context of task Accuracy Computation time Interpretability 3 types of tasks Classification Regression Clustering

More information

On the Stratification of Multi-Label Data

On the Stratification of Multi-Label Data On the Stratification of Multi-Label Data Konstantinos Sechidis, Grigorios Tsoumakas, and Ioannis Vlahavas Dept of Informatics Aristotle University of Thessaloniki Thessaloniki 54124, Greece {sechidis,greg,vlahavas}@csd.auth.gr

More information

WP1: Video Data Analysis

WP1: Video Data Analysis Leading : UNICT Participant: UEDIN Fish4Knowledge Final Review Meeting - November 29, 2013 - Luxembourg Workpackage 1 Objectives Fish Detection: Background/foreground modeling algorithms able to deal with

More information

Latent Variable Models for Structured Prediction and Content-Based Retrieval

Latent Variable Models for Structured Prediction and Content-Based Retrieval Latent Variable Models for Structured Prediction and Content-Based Retrieval Ariadna Quattoni Universitat Politècnica de Catalunya Joint work with Borja Balle, Xavier Carreras, Adrià Recasens, Antonio

More information

Naïve Bayes Classification. Material borrowed from Jonathan Huang and I. H. Witten s and E. Frank s Data Mining and Jeremy Wyatt and others

Naïve Bayes Classification. Material borrowed from Jonathan Huang and I. H. Witten s and E. Frank s Data Mining and Jeremy Wyatt and others Naïve Bayes Classification Material borrowed from Jonathan Huang and I. H. Witten s and E. Frank s Data Mining and Jeremy Wyatt and others Things We d Like to Do Spam Classification Given an email, predict

More information

Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval O. Chum, et al.

Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval O. Chum, et al. Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval O. Chum, et al. Presented by Brandon Smith Computer Vision Fall 2007 Objective Given a query image of an object,

More information

Columbia University High-Level Feature Detection: Parts-based Concept Detectors

Columbia University High-Level Feature Detection: Parts-based Concept Detectors TRECVID 2005 Workshop Columbia University High-Level Feature Detection: Parts-based Concept Detectors Dong-Qing Zhang, Shih-Fu Chang, Winston Hsu, Lexin Xie, Eric Zavesky Digital Video and Multimedia Lab

More information

Basic Tokenizing, Indexing, and Implementation of Vector-Space Retrieval

Basic Tokenizing, Indexing, and Implementation of Vector-Space Retrieval Basic Tokenizing, Indexing, and Implementation of Vector-Space Retrieval 1 Naïve Implementation Convert all documents in collection D to tf-idf weighted vectors, d j, for keyword vocabulary V. Convert

More information

Experiment Design and Evaluation for Information Retrieval Rishiraj Saha Roy Computer Scientist, Adobe Research Labs India

Experiment Design and Evaluation for Information Retrieval Rishiraj Saha Roy Computer Scientist, Adobe Research Labs India Experiment Design and Evaluation for Information Retrieval Rishiraj Saha Roy Computer Scientist, Adobe Research Labs India rroy@adobe.com 2014 Adobe Systems Incorporated. All Rights Reserved. 1 Introduction

More information

CSE 7/5337: Information Retrieval and Web Search Document clustering I (IIR 16)

CSE 7/5337: Information Retrieval and Web Search Document clustering I (IIR 16) CSE 7/5337: Information Retrieval and Web Search Document clustering I (IIR 16) Michael Hahsler Southern Methodist University These slides are largely based on the slides by Hinrich Schütze Institute for

More information

Multimodal Ranking for Non-Compliance Detection in Retail Surveillance

Multimodal Ranking for Non-Compliance Detection in Retail Surveillance Multimodal Ranking for Non-Compliance Detection in Retail Surveillance Hoang Trinh Sharath Pankanti Quanfu Fan IBM T. J. Watson Research Center 19 Skylikne Dr, Hawthorne, NY 10532 Abstract In retail stores,

More information

TEXT CHAPTER 5. W. Bruce Croft BACKGROUND

TEXT CHAPTER 5. W. Bruce Croft BACKGROUND 41 CHAPTER 5 TEXT W. Bruce Croft BACKGROUND Much of the information in digital library or digital information organization applications is in the form of text. Even when the application focuses on multimedia

More information

Person Re-identification for Improved Multi-person Multi-camera Tracking by Continuous Entity Association

Person Re-identification for Improved Multi-person Multi-camera Tracking by Continuous Entity Association Person Re-identification for Improved Multi-person Multi-camera Tracking by Continuous Entity Association Neeti Narayan, Nishant Sankaran, Devansh Arpit, Karthik Dantu, Srirangaraj Setlur, Venu Govindaraju

More information

Information Retrieval CS Lecture 06. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Information Retrieval CS Lecture 06. Razvan C. Bunescu School of Electrical Engineering and Computer Science Information Retrieval CS 6900 Lecture 06 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Boolean Retrieval vs. Ranked Retrieval Many users (professionals) prefer

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

TREC Legal Track Learning Task Final Guidelines (revision 0.0)

TREC Legal Track Learning Task Final Guidelines (revision 0.0) TREC Legal Track Learning Task Final Guidelines (revision 0.0) Gordon V. Cormack Maura R. Grossman Abstract In the learning task, participants are given a seed set of documents from a larger collection

More information

Better Contextual Suggestions in ClueWeb12 Using Domain Knowledge Inferred from The Open Web

Better Contextual Suggestions in ClueWeb12 Using Domain Knowledge Inferred from The Open Web Better Contextual Suggestions in ClueWeb12 Using Domain Knowledge Inferred from The Open Web Thaer Samar 1, Alejandro Bellogín 2, and Arjen P. de Vries 1 1 Centrum Wiskunde & Informatica, {samar,arjen}@cwi.nl

More information

Department of Electronic Engineering FINAL YEAR PROJECT REPORT

Department of Electronic Engineering FINAL YEAR PROJECT REPORT Department of Electronic Engineering FINAL YEAR PROJECT REPORT BEngCE-2007/08-HCS-HCS-03-BECE Natural Language Understanding for Query in Web Search 1 Student Name: Sit Wing Sum Student ID: Supervisor:

More information

Chapter 3: Supervised Learning

Chapter 3: Supervised Learning Chapter 3: Supervised Learning Road Map Basic concepts Evaluation of classifiers Classification using association rules Naïve Bayesian classification Naïve Bayes for text classification Summary 2 An example

More information

Search Engines Chapter 8 Evaluating Search Engines Felix Naumann

Search Engines Chapter 8 Evaluating Search Engines Felix Naumann Search Engines Chapter 8 Evaluating Search Engines 9.7.2009 Felix Naumann Evaluation 2 Evaluation is key to building effective and efficient search engines. Drives advancement of search engines When intuition

More information

Data Mining and Knowledge Discovery Practice notes 2

Data Mining and Knowledge Discovery Practice notes 2 Keywords Data Mining and Knowledge Discovery: Practice Notes Petra Kralj Novak Petra.Kralj.Novak@ijs.si Data Attribute, example, attribute-value data, target variable, class, discretization Algorithms

More information

Performance Evaluation

Performance Evaluation Chapter 4 Performance Evaluation For testing and comparing the effectiveness of retrieval and classification methods, ways of evaluating the performance are required. This chapter discusses several of

More information

CS3242 assignment 2 report Content-based music retrieval. Luong Minh Thang & Nguyen Quang Minh Tuan

CS3242 assignment 2 report Content-based music retrieval. Luong Minh Thang & Nguyen Quang Minh Tuan CS3242 assignment 2 report Content-based music retrieval Luong Minh Thang & Nguyen Quang Minh Tuan 1. INTRODUCTION With the development of the Internet, searching for information has proved to be a vital

More information

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval http://informationretrieval.org IIR 6: Flat Clustering Wiltrud Kessler & Hinrich Schütze Institute for Natural Language Processing, University of Stuttgart 0-- / 83

More information

The Wroclaw University of Technology Participation at ImageCLEF 2010 Photo Annotation Track

The Wroclaw University of Technology Participation at ImageCLEF 2010 Photo Annotation Track The Wroclaw University of Technology Participation at ImageCLEF 2010 Photo Annotation Track Michal Stanek, Oskar Maier, and Halina Kwasnicka Wrocław University of Technology, Institute of Informatics michal.stanek@pwr.wroc.pl,

More information

Evaluating search engines CE-324: Modern Information Retrieval Sharif University of Technology

Evaluating search engines CE-324: Modern Information Retrieval Sharif University of Technology Evaluating search engines CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2016 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Evaluation of Retrieval Systems

Evaluation of Retrieval Systems Evaluation of Retrieval Systems 1 Performance Criteria 1. Expressiveness of query language Can query language capture information needs? 2. Quality of search results Relevance to users information needs

More information

Machine Learning and Bioinformatics 機器學習與生物資訊學

Machine Learning and Bioinformatics 機器學習與生物資訊學 Molecular Biomedical Informatics 分子生醫資訊實驗室 機器學習與生物資訊學 Machine Learning & Bioinformatics 1 Evaluation The key to success 2 Three datasets of which the answers must be known 3 Note on parameter tuning It

More information

Multimedia Information Systems

Multimedia Information Systems Multimedia Information Systems Samson Cheung EE 639, Fall 2004 Lecture 6: Text Information Retrieval 1 Digital Video Library Meta-Data Meta-Data Similarity Similarity Search Search Analog Video Archive

More information

Document Clustering for Mediated Information Access The WebCluster Project

Document Clustering for Mediated Information Access The WebCluster Project Document Clustering for Mediated Information Access The WebCluster Project School of Communication, Information and Library Sciences Rutgers University The original WebCluster project was conducted at

More information