Inferring Coarse Views of Connectivity in Very Large Graphs

Size: px
Start display at page:

Download "Inferring Coarse Views of Connectivity in Very Large Graphs"

Transcription

1 Inferring Coarse Views of Connectivity in Very Large Graphs Reza Motamedi, Reza Rejaie, Walter Willinger, Daniel Lowd, Roberto Gonzalez 10/8/14 1

2 Introduction! Large-scale networked systems (e.g. OSNs) are often represented as graphs! Characterizing the connectivity structure of such a graph provides deeper insights about the system! Coarse view of a graph allows a top-down analysis Identify a few tightly connected regions along with their inter-, and intra-region connectivity If needed/desired, zoom in on individual region and recurse! How can one capture a coarse view of large graphs? 10/8/14 2

3 Obtaining coarse view of a graph! Community detection techniques optimize an objective function Detects communities with 100s of nodes in real-world graphs Some techniques have limited scalability! Graph partitioning techniques divide the graph into strongly connected partitions May produce balanced partitions May require seeds for each partition or the number of partitions as input 10/8/14 3

4 This paper presents! The design of a scalable technique (WalkAbout) to infer coarse (regional) views of a graph! An illustration of WalkAbout in action for inferring the regional connectivity of Flickr, Twitter, Google+! A study of the relationship between regional- and community-level views of a large graph! An initial attempt at answering the question Are (Flickr) regions meaningful? 10/8/14 4

5 Random Walks (RW)! Consider an undirected, connected, non-bipartite graph G = [V, E]! The probability that a very long RW visits node x converges to deg(x) 2 E T G (ε)! The mixing time is the walk length at which the probability of being at node x is within ε of the stationary distribution We use mixing time rather informally, not specifying ε 10/8/14 5

6 Behavior of Many RWs! Starting V RWs in parallel (one from each node)! V(x,wl): the expected number of RWs that are at node x after wl steps! As wl reaches the mixing time, the number of walkers at node x converges to V(x, wl) V deg(x) 2* E deg(x) => V(x, wl) 2 E V! degree/visit ratio (dvr) converges to average node degree 10/8/14 6

7 Validation through Simulations! Use simulation over synthetic graphs to explore the dependency of dvr on different parameters More results in the paper wl=10 wl=20 wl=50 wl= Avg. degree=24.74 Avg. degree=33.94 Avg. degree=44.30 Avg. degree= PDF 0.1 PDF 0.1 dvr dvr dvr 40 deg<50 deg> wl /8/14 7

8 Detecting Regions Key Idea! Suppose a graph consists of a few weakly connected regions! Starting RWs from randomly selected nodes on graph G = [V, E] that has multiple regions Region i is G i = [V i, E i ]! If wl is close to the mixing time of regions, a majority of RWs remain in their starting region the graph can be viewed as disconnected regions deg(x) dvr i (x) = E[V(x, wl)] = 2 E i V i! dvr i (x) converges to average node degree of region i 10/8/14 8

9 Key Idea (cont d)! Regions with different average degree form separate peaks in the dvr histogram Region: a non-overlapping range of dvr values! Formation of peaks is a transient phenomenon As wl increases beyond the mixing time of regions, dvr for all nodes converges to a single value Ø The similarity of dvr implies tighter connectivity among nodes in a region Ø dvr signal is indirect and efficient => scalable 10/8/14 9

10 Validation on Synthetic Graphs! A graph with two regions (average degree of 70, 60) connected with b bridge edges.! Only changing a single region or the bridge PDF pdf PDF Avg. Degree dvr Region size vdr x Bridge Size dvr /8/14

11 WalkAbout! Using many short RWs to infer/explore regional connectivity of large graphs The number of regions, nodes per region, and determining inter-, intra-region connectivity! Basic challenges The variation and rate of convergence of dvr is inversely proportional with node degree (i.e. noise of low degree nodes) Regions having similar average deg. & different mixing times! Identifying regions in two steps: Detecting the core (high degree) nodes of each region Mapping low degree nodes to the detected cores per region 10/8/14 11

12 WalkAbout Main Steps! Emulating RWs and generating the dvr histogram Removing low degree nodes ( D min ) to reduce noise! Identifying core of each region Search for the walk length that leads to pronounced peaks Detect a peak & its associated dvr range => nodes per region! Mapping low degree nodes to cores Based on the relative reachability (using multiple RWs)! Producing the regional view 10/8/14 12

13 Inferring vs Exploring! WalkAbout provides a few parameters that affect the resulting regional view (, wl) D min Parameters can be set based on the domain knowledge! Sensitivity to these parameters offers insight about the graph structure! Developing WalkAbout as an interactive tool with GUI Publicly available at 10/8/14 13

14 WalkAbout in Action! Inferring regional view of connectivity of the LCC for Flickr, Twitter and Google+! To contrast: Apply Louvain Communitiy detection method! Default setting D min = 500 See the tech report for results on the sensitivity to D min Flickr Twitter GPlus Nodes 1.6M 41.6M 51.7M Edges 31.M 1,468M 869.4M Communities 28K 39K 24K 10/8/14 14

15 Regional View of Flickr PDF PDF wl = 30, D min = 500 R0 R R3 R wl dvr R dvr Cores Regions Regions Regions Size %Nodes %Edges Avg.Deg Mod. R R R R R /8/14 15

16 Lessons Learned! Regions with closer dvr tend to have stronger interregion connectivity Incorrectly placed high degree nodes Regions with different sizes and mixing times! The number of peaks changes with walk length The number/selection of peaks affect the regional view! Identified regions could be very imbalanced in size Detecting possible sub-regions in a hierarchical manner 10/8/14 16

17 Regions & Communities! Comparing/relating the regional and community views Typical community is much smaller and more modular Largest communities have sizes comparable to regions Ø Orders of magnitude more communities! The highest degree nodes per region are placed in a few communities with size & modularity comparable to regions! Modularity Average Degree Size Louvain Large Louv 10/8/14 WA 17 0 TW G+ FL OR TW G+ FL OR TW G+ FL OR

18 Mapping Communities to Regions! Community c is mapped to region R that contains most of its nodes Mapping confidence: fraction of c s nodes located in R! Across regions of all OSNs For 75% of communities, the confidence is 100% For 90% of communities, the confidence is more than 80% Ø Regions can be viewed as a collection of communities Ø A coarser view of the graph 10/8/14 18

19 Per-Region Analysis of Communities! Are the characteristics of communities generally reveal the features of their region? No strong relation between the modularity of communities in a region and the modularity of the region! The inter-connectivity among communities is critical to determine features of each region Modulairty FL TW G Average Degree FL TW 2 G /8/ R0 R1 R2 R3 R R0 R1 R2 R3 R4 R5 0.2 FL R0 R1 R2 R3 R4 R5 R0 R1 R2 R3 R4 R0 R1 R2 R3 R4 R5 100 R0 R1 R2 R3 R4 R R0R1R2R3R4 R0 R1 R2 R3 R4 R5 100 R0 R1 R2 R3 R4 R5 Size TW G

20 Run-time! Comparing the run times of WalkAbout and the Louvain community detection technique On Intel X5650 (2.66GHz) computer with 72GB RAM! Splitting WalkAbout run time to dvr calculations to detect core, and Mapping of low degree nodes to those cores! WalkAbout exhibits a shorter run time for large graphs FL Louvain WA: Map to Core WA: dvr TW G /8/14 Second 20

21 A New Kind of Validation! Do users in a region exhibit a similar social attributes Need social context for users! 99K social groups in Flickr: group name, users/group Group name provides info about group interest or context Map each group to a region where most users are located Mapping confidence for R1-R4 is high even for large groups e.g. group names in R1 related to male nudity. Ø Social forces appear to derive the formation of regions Group Mapping Confidence /8/ R0 R1 R2 R3 R4

22 Conclusion & Outlook! WalkAbout, a new technique to infer/explore coarse views of large graphs! Applying WalkAbout to three major OSNs! Are regions meaningful? Relating the regional- and community-level views Showing social cohesion of regions in Flickr! Future plans Exploring the recursive application of WalkAbout Multi-scale characterization of graph connectivity and its application to examine graph evolution 10/8/14 22

23 Inferring Coarse Views of Connectivity in Very Large Graphs Reza Motamedi, Reza Rejaie, Walter Willinger, Daniel Lowd, Roberto Gonzalez 10/8/14 23

Inferring Coarse Views of Connectivity in Very Large Graphs

Inferring Coarse Views of Connectivity in Very Large Graphs Inferring Coarse Views of Connectivity in Very Large Graphs Reza Motamedi University of Oregon motamedi@cs.uoregon.edu Daniel Lowd University of Oregon lowd@cs.uoregon.edu Reza Rejaie University of Oregon

More information

Inferring Coarse Views of Connectivity in Very Large Graphs

Inferring Coarse Views of Connectivity in Very Large Graphs Inferring Coarse Views of Connectivity in Very Large Graphs Reza Motamedi University of Oregon motamedi@cs.uoregon.edu Walter Willinger Niksun, Inc. wwillinger@niksun.com Reza Rejaie University of Oregon

More information

Empirical Characterization of P2P Systems

Empirical Characterization of P2P Systems Empirical Characterization of P2P Systems Reza Rejaie Mirage Research Group Department of Computer & Information Science University of Oregon http://mirage.cs.uoregon.edu/ Collaborators: Daniel Stutzbach

More information

Mobility Models. Larissa Marinho Eglem de Oliveira. May 26th CMPE 257 Wireless Networks. (UCSC) May / 50

Mobility Models. Larissa Marinho Eglem de Oliveira. May 26th CMPE 257 Wireless Networks. (UCSC) May / 50 Mobility Models Larissa Marinho Eglem de Oliveira CMPE 257 Wireless Networks May 26th 2015 (UCSC) May 2015 1 / 50 1 Motivation 2 Mobility Models 3 Extracting a Mobility Model from Real User Traces 4 Self-similar

More information

Estimating and Sampling Graphs with Multidimensional Random Walks. Group 2: Mingyan Zhao, Chengle Zhang, Biao Yin, Yuchen Liu

Estimating and Sampling Graphs with Multidimensional Random Walks. Group 2: Mingyan Zhao, Chengle Zhang, Biao Yin, Yuchen Liu Estimating and Sampling Graphs with Multidimensional Random Walks Group 2: Mingyan Zhao, Chengle Zhang, Biao Yin, Yuchen Liu Complex Network Motivation Social Network Biological Network erence: www.forbe.com

More information

Understanding the effect of streaming overlay construction on AS level traffic

Understanding the effect of streaming overlay construction on AS level traffic Understanding the effect of streaming overlay construction on AS level traffic Reza Motamedi and Reza Rejaie Information and Computer Science Department University of Oregon e-mail: {reza.motamedi,reza}@cs.uoregon.edu

More information

Sampling Large Graphs: Algorithms and Applications

Sampling Large Graphs: Algorithms and Applications Sampling Large Graphs: Algorithms and Applications Don Towsley College of Information & Computer Science Umass - Amherst Collaborators: P.H. Wang, J.C.S. Lui, J.Z. Zhou, X. Guan Measuring, analyzing large

More information

CSE 258 Lecture 12. Web Mining and Recommender Systems. Social networks

CSE 258 Lecture 12. Web Mining and Recommender Systems. Social networks CSE 258 Lecture 12 Web Mining and Recommender Systems Social networks Social networks We ve already seen networks (a little bit) in week 3 i.e., we ve studied inference problems defined on graphs, and

More information

On Fast Parallel Detection of Strongly Connected Components (SCC) in Small-World Graphs

On Fast Parallel Detection of Strongly Connected Components (SCC) in Small-World Graphs On Fast Parallel Detection of Strongly Connected Components (SCC) in Small-World Graphs Sungpack Hong 2, Nicole C. Rodia 1, and Kunle Olukotun 1 1 Pervasive Parallelism Laboratory, Stanford University

More information

Supplementary text S6 Comparison studies on simulated data

Supplementary text S6 Comparison studies on simulated data Supplementary text S Comparison studies on simulated data Peter Langfelder, Rui Luo, Michael C. Oldham, and Steve Horvath Corresponding author: shorvath@mednet.ucla.edu Overview In this document we illustrate

More information

Sampling Large Graphs: Algorithms and Applications

Sampling Large Graphs: Algorithms and Applications Sampling Large Graphs: Algorithms and Applications Don Towsley Umass - Amherst Joint work with P.H. Wang, J.Z. Zhou, J.C.S. Lui, X. Guan Measuring, Analyzing Large Networks - large networks can be represented

More information

Center for Networked Computing

Center for Networked Computing Concept of mobile social networks (MSNs): People walk around with smartphones and communicate with each other via Bluetooth or Wi-Fi when they are within transmission range of each other. Characters: No

More information

TELCOM2125: Network Science and Analysis

TELCOM2125: Network Science and Analysis School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 2 Part 4: Dividing Networks into Clusters The problem l Graph partitioning

More information

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors Segmentation I Goal Separate image into coherent regions Berkeley segmentation database: http://www.eecs.berkeley.edu/research/projects/cs/vision/grouping/segbench/ Slide by L. Lazebnik Applications Intelligent

More information

Web Structure Mining Community Detection and Evaluation

Web Structure Mining Community Detection and Evaluation Web Structure Mining Community Detection and Evaluation 1 Community Community. It is formed by individuals such that those within a group interact with each other more frequently than with those outside

More information

Community Detection. Community

Community Detection. Community Community Detection Community In social sciences: Community is formed by individuals such that those within a group interact with each other more frequently than with those outside the group a.k.a. group,

More information

Clustering CS 550: Machine Learning

Clustering CS 550: Machine Learning Clustering CS 550: Machine Learning This slide set mainly uses the slides given in the following links: http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap8_basic_cluster_analysis.pdf

More information

Parallel Patterns for Window-based Stateful Operators on Data Streams: an Algorithmic Skeleton Approach

Parallel Patterns for Window-based Stateful Operators on Data Streams: an Algorithmic Skeleton Approach Parallel Patterns for Window-based Stateful Operators on Data Streams: an Algorithmic Skeleton Approach Tiziano De Matteis, Gabriele Mencagli University of Pisa Italy INTRODUCTION The recent years have

More information

Fast Parallel Detection of Strongly Connected Components (SCC) in Small-World Graphs

Fast Parallel Detection of Strongly Connected Components (SCC) in Small-World Graphs Fast Parallel Detection of Strongly Connected Components (SCC) in Small-World Graphs Sungpack Hong 2, Nicole C. Rodia 1, and Kunle Olukotun 1 1 Pervasive Parallelism Laboratory, Stanford University 2 Oracle

More information

Comparative Evaluation of Community Detection Algorithms: A Topological Approach

Comparative Evaluation of Community Detection Algorithms: A Topological Approach omparative Evaluation of ommunity Detection Algorithms: A Topological Approach Günce Keziban Orman,2, Vincent Labatut, Hocine herifi 2 Galatasaray University, 2 University of Burgundy korman@gsu.edu.tr,

More information

A Parallel Community Detection Algorithm for Big Social Networks

A Parallel Community Detection Algorithm for Big Social Networks A Parallel Community Detection Algorithm for Big Social Networks Yathrib AlQahtani College of Computer and Information Sciences King Saud University Collage of Computing and Informatics Saudi Electronic

More information

CSE 158 Lecture 11. Web Mining and Recommender Systems. Social networks

CSE 158 Lecture 11. Web Mining and Recommender Systems. Social networks CSE 158 Lecture 11 Web Mining and Recommender Systems Social networks Assignment 1 Due 5pm next Monday! (Kaggle shows UTC time, but the due date is 5pm, Monday, PST) Assignment 1 Assignment 1 Social networks

More information

How to explore big networks? Question: Perform a random walk on G. What is the average node degree among visited nodes, if avg degree in G is 200?

How to explore big networks? Question: Perform a random walk on G. What is the average node degree among visited nodes, if avg degree in G is 200? How to explore big networks? Question: Perform a random walk on G. What is the average node degree among visited nodes, if avg degree in G is 200? Questions from last time Avg. FB degree is 200 (suppose).

More information

Absorbing Random walks Coverage

Absorbing Random walks Coverage DATA MINING LECTURE 3 Absorbing Random walks Coverage Random Walks on Graphs Random walk: Start from a node chosen uniformly at random with probability. n Pick one of the outgoing edges uniformly at random

More information

Social-Network Graphs

Social-Network Graphs Social-Network Graphs Mining Social Networks Facebook, Google+, Twitter Email Networks, Collaboration Networks Identify communities Similar to clustering Communities usually overlap Identify similarities

More information

Absorbing Random walks Coverage

Absorbing Random walks Coverage DATA MINING LECTURE 3 Absorbing Random walks Coverage Random Walks on Graphs Random walk: Start from a node chosen uniformly at random with probability. n Pick one of the outgoing edges uniformly at random

More information

On the Permanence of Vertices in Network Communities. Tanmoy Chakraborty Google India PhD Fellow IIT Kharagpur, India

On the Permanence of Vertices in Network Communities. Tanmoy Chakraborty Google India PhD Fellow IIT Kharagpur, India On the Permanence of Vertices in Network Communities Tanmoy Chakraborty Google India PhD Fellow IIT Kharagpur, India 20 th ACM SIGKDD, New York City, Aug 24-27, 2014 Tanmoy Chakraborty Niloy Ganguly IIT

More information

Youtube Graph Network Model and Analysis Yonghyun Ro, Han Lee, Dennis Won

Youtube Graph Network Model and Analysis Yonghyun Ro, Han Lee, Dennis Won Youtube Graph Network Model and Analysis Yonghyun Ro, Han Lee, Dennis Won Introduction A countless number of contents gets posted on the YouTube everyday. YouTube keeps its competitiveness by maximizing

More information

BBS654 Data Mining. Pinar Duygulu. Slides are adapted from Nazli Ikizler

BBS654 Data Mining. Pinar Duygulu. Slides are adapted from Nazli Ikizler BBS654 Data Mining Pinar Duygulu Slides are adapted from Nazli Ikizler 1 Classification Classification systems: Supervised learning Make a rational prediction given evidence There are several methods for

More information

On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage

On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage On Smart Query Routing: For Distributed Graph Querying with Decoupled Storage Arijit Khan Nanyang Technological University (NTU), Singapore Gustavo Segovia ETH Zurich, Switzerland Donald Kossmann Microsoft

More information

Data Clustering Hierarchical Clustering, Density based clustering Grid based clustering

Data Clustering Hierarchical Clustering, Density based clustering Grid based clustering Data Clustering Hierarchical Clustering, Density based clustering Grid based clustering Team 2 Prof. Anita Wasilewska CSE 634 Data Mining All Sources Used for the Presentation Olson CF. Parallel algorithms

More information

Computing Classic Closeness Centrality, at Scale

Computing Classic Closeness Centrality, at Scale Computing Classic Closeness Centrality, at Scale Edith Cohen Joint with: Thomas Pajor, Daniel Delling, Renato Werneck Very Large Graphs Model relations and interactions (edges) between entities (nodes)

More information

Counting Triangles & The Curse of the Last Reducer. Siddharth Suri Sergei Vassilvitskii Yahoo! Research

Counting Triangles & The Curse of the Last Reducer. Siddharth Suri Sergei Vassilvitskii Yahoo! Research Counting Triangles & The Curse of the Last Reducer Siddharth Suri Yahoo! Research Why Count Triangles? 2 Why Count Triangles? Clustering Coefficient: Given an undirected graph G =(V,E) cc(v) = fraction

More information

De#anonymizing,Social,Networks, and,inferring,private,attributes, Using,Knowledge,Graphs,

De#anonymizing,Social,Networks, and,inferring,private,attributes, Using,Knowledge,Graphs, De#anonymizing,Social,Networks, and,inferring,private,attributes, Using,Knowledge,Graphs, Jianwei Qian Illinois Tech Chunhong Zhang BUPT Xiang#Yang Li USTC,/Illinois Tech Linlin Chen Illinois Tech Outline

More information

Approximately Uniform Random Sampling in Sensor Networks

Approximately Uniform Random Sampling in Sensor Networks Approximately Uniform Random Sampling in Sensor Networks Boulat A. Bash, John W. Byers and Jeffrey Considine Motivation Data aggregation Approximations to COUNT, SUM, AVG, MEDIAN Existing work does not

More information

CSE 494 Project C. Garrett Wolf

CSE 494 Project C. Garrett Wolf CSE 494 Project C Garrett Wolf Introduction The main purpose of this project task was for us to implement the simple k-means and buckshot clustering algorithms. Once implemented, we were asked to vary

More information

Mutually Exclusive Data Dissemination in the Mobile Publish/Subscribe System

Mutually Exclusive Data Dissemination in the Mobile Publish/Subscribe System Mutually Exclusive Data Dissemination in the Mobile Publish/Subscribe System Ning Wang and Jie Wu Dept. of Computer and Info. Sciences Temple University Road Map Introduction Problem and challenge Centralized

More information

Overview. Monte Carlo Methods. Statistics & Bayesian Inference Lecture 3. Situation At End Of Last Week

Overview. Monte Carlo Methods. Statistics & Bayesian Inference Lecture 3. Situation At End Of Last Week Statistics & Bayesian Inference Lecture 3 Joe Zuntz Overview Overview & Motivation Metropolis Hastings Monte Carlo Methods Importance sampling Direct sampling Gibbs sampling Monte-Carlo Markov Chains Emcee

More information

NAV 2009 Scalability. Locking Management Solution for Dynamics NAV SQL Server Option. Stress Test Results White Paper

NAV 2009 Scalability. Locking Management Solution for Dynamics NAV SQL Server Option. Stress Test Results White Paper NAV 2009 Scalability Locking Management Solution for Dynamics NAV SQL Server Option Stress Test Results White Paper July 2009 Table of Contents EXECUTIVE SUMMARY... 3 INTRODUCTION... 3 HARDWARE... 5 RESULTS...

More information

Lecture 7: Segmentation. Thursday, Sept 20

Lecture 7: Segmentation. Thursday, Sept 20 Lecture 7: Segmentation Thursday, Sept 20 Outline Why segmentation? Gestalt properties, fun illusions and/or revealing examples Clustering Hierarchical K-means Mean Shift Graph-theoretic Normalized cuts

More information

1 General description of the projects

1 General description of the projects 1 General description of the projects The term projects are aimed at providing a test ground for the skills and knowledge you picked up during the course and optionally give you a chance to join ongoing

More information

Types of general clustering methods. Clustering Algorithms for general similarity measures. Similarity between clusters

Types of general clustering methods. Clustering Algorithms for general similarity measures. Similarity between clusters Types of general clustering methods Clustering Algorithms for general similarity measures agglomerative versus divisive algorithms agglomerative = bottom-up build up clusters from single objects divisive

More information

Supplementary file for SybilDefender: A Defense Mechanism for Sybil Attacks in Large Social Networks

Supplementary file for SybilDefender: A Defense Mechanism for Sybil Attacks in Large Social Networks 1 Supplementary file for SybilDefender: A Defense Mechanism for Sybil Attacks in Large Social Networks Wei Wei, Fengyuan Xu, Chiu C. Tan, Qun Li The College of William and Mary, Temple University {wwei,

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu 11/13/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 2 Observations Models

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu SPAM FARMING 2/11/2013 Jure Leskovec, Stanford C246: Mining Massive Datasets 2 2/11/2013 Jure Leskovec, Stanford

More information

Implementation of 5PM(5ecure Pattern Matching) on Android Platform

Implementation of 5PM(5ecure Pattern Matching) on Android Platform Implementation of 5PM(5ecure Pattern Matching) on Android Platform Overview - Main Objective: Search for a pattern on the server securely The answer at the end -> either YES it is found or NO it is not

More information

Normalized cuts and image segmentation

Normalized cuts and image segmentation Normalized cuts and image segmentation Department of EE University of Washington Yeping Su Xiaodan Song Normalized Cuts and Image Segmentation, IEEE Trans. PAMI, August 2000 5/20/2003 1 Outline 1. Image

More information

Course Introduction / Review of Fundamentals of Graph Theory

Course Introduction / Review of Fundamentals of Graph Theory Course Introduction / Review of Fundamentals of Graph Theory Hiroki Sayama sayama@binghamton.edu Rise of Network Science (From Barabasi 2010) 2 Network models Many discrete parts involved Classic mean-field

More information

Clustering. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

Clustering. CE-717: Machine Learning Sharif University of Technology Spring Soleymani Clustering CE-717: Machine Learning Sharif University of Technology Spring 2016 Soleymani Outline Clustering Definition Clustering main approaches Partitional (flat) Hierarchical Clustering validation

More information

Outsourcing Privacy-Preserving Social Networks to a Cloud

Outsourcing Privacy-Preserving Social Networks to a Cloud IEEE INFOCOM 2013, April 14-19, Turin, Italy Outsourcing Privacy-Preserving Social Networks to a Cloud Guojun Wang a, Qin Liu a, Feng Li c, Shuhui Yang d, and Jie Wu b a Central South University, China

More information

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Accelerating PageRank using Partition-Centric Processing Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Outline Introduction Partition-centric Processing Methodology Analytical Evaluation

More information

What is Parallel Computing?

What is Parallel Computing? What is Parallel Computing? Parallel Computing is several processing elements working simultaneously to solve a problem faster. 1/33 What is Parallel Computing? Parallel Computing is several processing

More information

Extracting Information from Complex Networks

Extracting Information from Complex Networks Extracting Information from Complex Networks 1 Complex Networks Networks that arise from modeling complex systems: relationships Social networks Biological networks Distinguish from random networks uniform

More information

Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing

Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing /34 Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing Zuhair Khayyat 1 Karim Awara 1 Amani Alonazi 1 Hani Jamjoom 2 Dan Williams 2 Panos Kalnis 1 1 King Abdullah University of

More information

Social Network Analysis

Social Network Analysis Social Network Analysis Mathematics of Networks Manar Mohaisen Department of EEC Engineering Adjacency matrix Network types Edge list Adjacency list Graph representation 2 Adjacency matrix Adjacency matrix

More information

Analysis of Biological Networks. 1. Clustering 2. Random Walks 3. Finding paths

Analysis of Biological Networks. 1. Clustering 2. Random Walks 3. Finding paths Analysis of Biological Networks 1. Clustering 2. Random Walks 3. Finding paths Problem 1: Graph Clustering Finding dense subgraphs Applications Identification of novel pathways, complexes, other modules?

More information

Strength of Co-authorship Ties in Clusters: a Comparative Analysis

Strength of Co-authorship Ties in Clusters: a Comparative Analysis Strength of Co-authorship Ties in Clusters: a Comparative Analysis Michele A. Brandão and Mirella M. Moro Universidade Federal de Minas Gerais, Belo Horizonte, Brazil micheleabrandao@dcc.ufmg.br, mirella@dcc.ufmg.br

More information

An Introduction to Markov Chain Monte Carlo

An Introduction to Markov Chain Monte Carlo An Introduction to Markov Chain Monte Carlo Markov Chain Monte Carlo (MCMC) refers to a suite of processes for simulating a posterior distribution based on a random (ie. monte carlo) process. In other

More information

CS 664 Segmentation. Daniel Huttenlocher

CS 664 Segmentation. Daniel Huttenlocher CS 664 Segmentation Daniel Huttenlocher Grouping Perceptual Organization Structural relationships between tokens Parallelism, symmetry, alignment Similarity of token properties Often strong psychophysical

More information

Local Community Detection in Dynamic Graphs Using Personalized Centrality

Local Community Detection in Dynamic Graphs Using Personalized Centrality algorithms Article Local Community Detection in Dynamic Graphs Using Personalized Centrality Eisha Nathan, Anita Zakrzewska, Jason Riedy and David A. Bader * School of Computational Science and Engineering,

More information

Lesson 3. Prof. Enza Messina

Lesson 3. Prof. Enza Messina Lesson 3 Prof. Enza Messina Clustering techniques are generally classified into these classes: PARTITIONING ALGORITHMS Directly divides data points into some prespecified number of clusters without a hierarchical

More information

Clustering in Data Mining

Clustering in Data Mining Clustering in Data Mining Classification Vs Clustering When the distribution is based on a single parameter and that parameter is known for each object, it is called classification. E.g. Children, young,

More information

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering SYDE 372 - Winter 2011 Introduction to Pattern Recognition Clustering Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 5 All the approaches we have learned

More information

TELCOM2125: Network Science and Analysis

TELCOM2125: Network Science and Analysis School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 Figures are taken from: M.E.J. Newman, Networks: An Introduction 2

More information

Supplementary material to Epidemic spreading on complex networks with community structures

Supplementary material to Epidemic spreading on complex networks with community structures Supplementary material to Epidemic spreading on complex networks with community structures Clara Stegehuis, Remco van der Hofstad, Johan S. H. van Leeuwaarden Supplementary otes Supplementary ote etwork

More information

Finding and Visualizing Graph Clusters Using PageRank Optimization. Fan Chung and Alexander Tsiatas, UCSD WAW 2010

Finding and Visualizing Graph Clusters Using PageRank Optimization. Fan Chung and Alexander Tsiatas, UCSD WAW 2010 Finding and Visualizing Graph Clusters Using PageRank Optimization Fan Chung and Alexander Tsiatas, UCSD WAW 2010 What is graph clustering? The division of a graph into several partitions. Clusters should

More information

Automated load balancing in the ATLAS high-performance storage software

Automated load balancing in the ATLAS high-performance storage software Automated load balancing in the ATLAS high-performance storage software Fabrice Le Go 1 Wainer Vandelli 1 On behalf of the ATLAS Collaboration 1 CERN May 25th, 2017 The ATLAS Experiment 3 / 20 ATLAS Trigger

More information

Strong Bridges and Strong Articulation Points of Directed Graphs

Strong Bridges and Strong Articulation Points of Directed Graphs Strong Bridges and Strong Articulation Points of Directed Graphs Giuseppe F. Italiano Univ. of Rome Tor Vergata Based on joint work with Donatella Firmani, Luigi Laura, Alessio Orlandi and Federico Santaroni

More information

Methods for Intelligent Systems

Methods for Intelligent Systems Methods for Intelligent Systems Lecture Notes on Clustering (II) Davide Eynard eynard@elet.polimi.it Department of Electronics and Information Politecnico di Milano Davide Eynard - Lecture Notes on Clustering

More information

Community Structure Detection. Amar Chandole Ameya Kabre Atishay Aggarwal

Community Structure Detection. Amar Chandole Ameya Kabre Atishay Aggarwal Community Structure Detection Amar Chandole Ameya Kabre Atishay Aggarwal What is a network? Group or system of interconnected people or things Ways to represent a network: Matrices Sets Sequences Time

More information

Clustering Algorithms for general similarity measures

Clustering Algorithms for general similarity measures Types of general clustering methods Clustering Algorithms for general similarity measures general similarity measure: specified by object X object similarity matrix 1 constructive algorithms agglomerative

More information

Fast Efficient Clustering Algorithm for Balanced Data

Fast Efficient Clustering Algorithm for Balanced Data Vol. 5, No. 6, 214 Fast Efficient Clustering Algorithm for Balanced Data Adel A. Sewisy Faculty of Computer and Information, Assiut University M. H. Marghny Faculty of Computer and Information, Assiut

More information

Efficient Aggregation for Graph Summarization

Efficient Aggregation for Graph Summarization Efficient Aggregation for Graph Summarization Yuanyuan Tian (University of Michigan) Richard A. Hankins (Nokia Research Center) Jignesh M. Patel (University of Michigan) Motivation Graphs are everywhere

More information

AS Connectedness Based on Multiple Vantage Points and the Resulting Topologies

AS Connectedness Based on Multiple Vantage Points and the Resulting Topologies AS Connectedness Based on Multiple Vantage Points and the Resulting Topologies Steven Fisher University of Nevada, Reno CS 765 Steven Fisher (UNR) CS 765 CS 765 1 / 28 Table of Contents 1 Introduction

More information

MCL. (and other clustering algorithms) 858L

MCL. (and other clustering algorithms) 858L MCL (and other clustering algorithms) 858L Comparing Clustering Algorithms Brohee and van Helden (2006) compared 4 graph clustering algorithms for the task of finding protein complexes: MCODE RNSC Restricted

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervised Learning and Clustering Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)

More information

Combining Top-down and Bottom-up Segmentation

Combining Top-down and Bottom-up Segmentation Combining Top-down and Bottom-up Segmentation Authors: Eran Borenstein, Eitan Sharon, Shimon Ullman Presenter: Collin McCarthy Introduction Goal Separate object from background Problems Inaccuracies Top-down

More information

BUBBLE RAP: Social-Based Forwarding in Delay-Tolerant Networks

BUBBLE RAP: Social-Based Forwarding in Delay-Tolerant Networks 1 BUBBLE RAP: Social-Based Forwarding in Delay-Tolerant Networks Pan Hui, Jon Crowcroft, Eiko Yoneki Presented By: Shaymaa Khater 2 Outline Introduction. Goals. Data Sets. Community Detection Algorithms

More information

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4)

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4) S-72.2420/T-79.5203 Basic Concepts 1 S-72.2420/T-79.5203 Basic Concepts 3 Characterizing Graphs (1) Characterizing Graphs (3) Characterizing a class G by a condition P means proving the equivalence G G

More information

Oh Pott, Oh Pott! or how to detect community structure in complex networks

Oh Pott, Oh Pott! or how to detect community structure in complex networks Oh Pott, Oh Pott! or how to detect community structure in complex networks Jörg Reichardt Interdisciplinary Centre for Bioinformatics, Leipzig, Germany (Host of the 2012 Olympics) Questions to start from

More information

Introduction to Complex Networks Analysis

Introduction to Complex Networks Analysis Introduction to Complex Networks Analysis Miloš Savić Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Serbia Complex systems and networks System - a set of interrelated

More information

Non Overlapping Communities

Non Overlapping Communities Non Overlapping Communities Davide Mottin, Konstantina Lazaridou HassoPlattner Institute Graph Mining course Winter Semester 2016 Acknowledgements Most of this lecture is taken from: http://web.stanford.edu/class/cs224w/slides

More information

Mining Social Network Graphs

Mining Social Network Graphs Mining Social Network Graphs Analysis of Large Graphs: Community Detection Rafael Ferreira da Silva rafsilva@isi.edu http://rafaelsilva.com Note to other teachers and users of these slides: We would be

More information

Mining and Analyzing Online Social Networks

Mining and Analyzing Online Social Networks The 5th EuroSys Doctoral Workshop (EuroDW 2011) Salzburg, Austria, Sunday 10 April 2011 Mining and Analyzing Online Social Networks Emilio Ferrara eferrara@unime.it Advisor: Prof. Giacomo Fiumara PhD School

More information

Administrative. Machine learning code. Supervised learning (e.g. classification) Machine learning: Unsupervised learning" BANANAS APPLES

Administrative. Machine learning code. Supervised learning (e.g. classification) Machine learning: Unsupervised learning BANANAS APPLES Administrative Machine learning: Unsupervised learning" Assignment 5 out soon David Kauchak cs311 Spring 2013 adapted from: http://www.stanford.edu/class/cs276/handouts/lecture17-clustering.ppt Machine

More information

Daniel Schlitt OFFIS Institute for Information Technology

Daniel Schlitt OFFIS Institute for Information Technology Gain More from PUE: Assessing Data Center Infrastructure Power Adaptability Daniel Schlitt OFFIS Institute for Information Technology daniel.schlitt@offis.de 2 Introduction 1 Energy efficiency is a key

More information

Targil 12 : Image Segmentation. Image segmentation. Why do we need it? Image segmentation

Targil 12 : Image Segmentation. Image segmentation. Why do we need it? Image segmentation Targil : Image Segmentation Image segmentation Many slides from Steve Seitz Segment region of the image which: elongs to a single object. Looks uniform (gray levels, color ) Have the same attributes (texture

More information

Heterogeneous Community-based Routing in Opportunistic Mobile Social Networks

Heterogeneous Community-based Routing in Opportunistic Mobile Social Networks Heterogeneous Community-based Routing in Opportunistic Mobile Social Networks Yunsheng Wang Kettering University Jie Wu Temple University Mingjun Xiao University of Science and Tech. of China Daqiang Zhang

More information

Challenges in large-scale graph processing on HPC platforms and the Graph500 benchmark. by Nkemdirim Dockery

Challenges in large-scale graph processing on HPC platforms and the Graph500 benchmark. by Nkemdirim Dockery Challenges in large-scale graph processing on HPC platforms and the Graph500 benchmark by Nkemdirim Dockery High Performance Computing Workloads Core-memory sized Floating point intensive Well-structured

More information

Minimizing Thermal Variation in Heterogeneous HPC System with FPGA Nodes

Minimizing Thermal Variation in Heterogeneous HPC System with FPGA Nodes Minimizing Thermal Variation in Heterogeneous HPC System with FPGA Nodes Yingyi Luo, Xiaoyang Wang, Seda Ogrenci-Memik, Gokhan Memik, Kazutomo Yoshii, Pete Beckman @ICCD 2018 Motivation FPGAs in data centers

More information

Clustering Algorithm (DBSCAN) VISHAL BHARTI Computer Science Dept. GC, CUNY

Clustering Algorithm (DBSCAN) VISHAL BHARTI Computer Science Dept. GC, CUNY Clustering Algorithm (DBSCAN) VISHAL BHARTI Computer Science Dept. GC, CUNY Clustering Algorithm Clustering is an unsupervised machine learning algorithm that divides a data into meaningful sub-groups,

More information

A Non-Relational Storage Analysis

A Non-Relational Storage Analysis A Non-Relational Storage Analysis Cassandra & Couchbase Alexandre Fonseca, Anh Thu Vu, Peter Grman Cloud Computing - 2nd semester 2012/2013 Universitat Politècnica de Catalunya Microblogging - big data?

More information

Local higher-order graph clustering

Local higher-order graph clustering Local higher-order graph clustering Hao Yin Stanford University yinh@stanford.edu Austin R. Benson Cornell University arb@cornell.edu Jure Leskovec Stanford University jure@cs.stanford.edu David F. Gleich

More information

Analyzing the Structure and Evolution of Massive Telecom Graphs

Analyzing the Structure and Evolution of Massive Telecom Graphs Analyzing the Structure and Evolution of Massive Telecom Graphs Amit A. Nanavati, Rahul Singh, Dipanjan Chakraborty, Koustuv Dasgupta (Member, IEEE), Sougata Mukherjea, Gautam Das, Siva Gurumurthy, Anupam

More information

Bipartite Perfect Matching in O(n log n) Randomized Time. Nikhil Bhargava and Elliot Marx

Bipartite Perfect Matching in O(n log n) Randomized Time. Nikhil Bhargava and Elliot Marx Bipartite Perfect Matching in O(n log n) Randomized Time Nikhil Bhargava and Elliot Marx Background Matching in bipartite graphs is a problem that has many distinct applications. Many problems can be reduced

More information

ScalaIOTrace: Scalable I/O Tracing and Analysis

ScalaIOTrace: Scalable I/O Tracing and Analysis ScalaIOTrace: Scalable I/O Tracing and Analysis Karthik Vijayakumar 1, Frank Mueller 1, Xiaosong Ma 1,2, Philip C. Roth 2 1 Department of Computer Science, NCSU 2 Computer Science and Mathematics Division,

More information

Online Social Networks and Media. Community detection

Online Social Networks and Media. Community detection Online Social Networks and Media Community detection 1 Notes on Homework 1 1. You should write your own code for generating the graphs. You may use SNAP graph primitives (e.g., add node/edge) 2. For the

More information

DUPLICATE DETECTION AND AUDIO THUMBNAILS WITH AUDIO FINGERPRINTING

DUPLICATE DETECTION AND AUDIO THUMBNAILS WITH AUDIO FINGERPRINTING DUPLICATE DETECTION AND AUDIO THUMBNAILS WITH AUDIO FINGERPRINTING Christopher Burges, Daniel Plastina, John Platt, Erin Renshaw, and Henrique Malvar March 24 Technical Report MSR-TR-24-19 Audio fingerprinting

More information

CS 361 Data Structures & Algs Lecture 15. Prof. Tom Hayes University of New Mexico

CS 361 Data Structures & Algs Lecture 15. Prof. Tom Hayes University of New Mexico CS 361 Data Structures & Algs Lecture 15 Prof. Tom Hayes University of New Mexico 10-12-2010 1 Last Time Identifying BFS vs. DFS trees Can they be the same? Problems 3.6, 3.9, 3.2 details left as homework.

More information

Modeling and Detecting Community Hierarchies

Modeling and Detecting Community Hierarchies Modeling and Detecting Community Hierarchies Maria-Florina Balcan, Yingyu Liang Georgia Institute of Technology Age of Networks Massive amount of network data How to understand and utilize? Internet [1]

More information