Bias-Variance Trade-off + Other Models and Problems

Size: px
Start display at page:

Download "Bias-Variance Trade-off + Other Models and Problems"

Transcription

1 CS 1699: Intro to Computer Vision Bias-Variance Trade-off + Other Models and Problems Prof. Adriana Kovashka University of Pittsburgh November 3, 2015

2 Outline Support Vector Machines (review + other uses) Bias-variance trade-off Scene recognition: Spatial pyramid matching Other classifiers Decision trees Hidden Markov models Other problems Clustering: agglomerative clustering Dimensionality reduction

3 x 0, y 0 D Lines in R 2 Let w a c x x y w ax cy b 0 w x b 0 D Kristen Grauman ax0 cy0 b w x b 2 2 a c w distance from point to line

4 Support vector machines Want line that maximizes the margin. x x i i positive negative ( y i ( y i 1) : 1) : x x i i w b 1 w b 1 Support vectors Margin For support, vectors, x i w b 1 x w b Distance between point i and line: w For support vectors: Τ w x b M w w w w w C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

5 Finding the maximum margin line 1. Maximize margin 2/ w 2. Correctly classify all training data points: x x i i positive ( y negative ( y i i 1) : 1) : x x i i w b 1 w b 1 Quadratic optimization problem: Minimize 1 2 w T w Subject to y i (w x i +b) 1 One constraint for each training point. Note sign trick. C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

6 Finding the maximum margin line Solution: w y x i i i i b = y i w x i Classification function: f ( x) sign sign (for any support vector) ( w x y Notice that it relies on an inner product between the test point x and the support vectors x i (Solving the optimization problem also involves computing the inner products x i x j between all pairs of training points) i i i b) x i x b If f(x) < 0, classify as negative, otherwise classify as positive. C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

7 Nonlinear SVMs Datasets that are linearly separable work out great: 0 x But what if the dataset is just too hard? 0 x We can map it to a higher-dimensional space: x 2 Andrew Moore 0 x

8 Examples of kernel functions Linear: K( x i, x j ) x T i x j Gaussian RBF: xi x K( x i,x j ) exp( 2 2 Histogram intersection: j 2 ) K ( x i, x j ) min( xi ( k), x j ( k)) k Andrew Moore

9 Allowing misclassifications Misclassification cost # data samples Slack variable The w that minimizes Maximize margin Minimize misclassification

10 What about multi-class SVMs? Unfortunately, there is no definitive multi-class SVM formulation In practice, we have to obtain a multi-class SVM by combining multiple two-class SVMs One vs. others Training: learn an SVM for each class vs. the others Testing: apply each SVM to the test example, and assign it to the class of the SVM that returns the highest decision value One vs. one Training: learn an SVM for each pair of classes Testing: each learned SVM votes for a class to assign to the test example Svetlana Lazebnik

11 Evaluating Classifiers Accuracy # correctly classified / # all test examples Precision/recall Precision = # predicted true pos / # predicted pos Recall = # predicted true pos / # true pos F-measure = 2PR / (P + R) Want evaluation metric to be in some range, e.g. [0 1] 0 = worst possible classifier, 1 = best possible classifier

12 Precision / Recall / F-measure True positives (images that contain people) True negatives (images that do not contain people) Predicted positives (images predicted to contain people) Predicted negatives (images predicted not to contain people) Precision = 2 / 5 = 0.4 Recall = 2 / 4 = 0.5 F-measure = 2*0.4*0.5 / = 0.44 Accuracy: 5 / 10 = 0.5

13 Support Vector Regression

14 Regression Regression is like classification except the labels are real valued Example applications: Stock value prediction Income prediction CPU power consumption Subhransu Maji

15 Regularized Error Function for Regression N n n n w t y } { N n n n w t x y E C ) ) ( ( In linear regression, we minimize the error function: Use the Є-insensitive error function: An example of Є-insensitive error function: Adapted from Huan Liu ) ( 0 y x f E E ) ( y x f for otherwise true value predicted value

16 y n t Slack Variables for Regression For a target point to lie inside the tube: n y n Introduce slack variables to allow points to lie outside the tube: Subject to: t t n n y( x y( x n n ) ) n n n n 0 0 Minimize: C N n1 ( ) n n 1 2 w 2 Adapted from Huan Liu

17 Next time: Support Vector Ranking

18 Outline Support Vector Machines (review + other uses) Bias-variance trade-off Scene recognition: Spatial pyramid matching Other classifiers Decision trees Hidden Markov models Other problems Clustering: agglomerative clustering Dimensionality reduction

19 Generalization Training set (labels known) Test set (labels unknown) How well does a learned model generalize from the data it was trained on to a new test set? Slide credit: L. Lazebnik

20 Generalization Components of generalization error Bias: how much the average model over all training sets differs from the true model Error due to inaccurate assumptions/simplifications made by the model Variance: how much models estimated from different training sets differ from each other Underfitting: model is too simple to represent all the relevant class characteristics High bias and low variance High training error and high test error Overfitting: model is too complex and fits irrelevant characteristics (noise) in the data Low bias and high variance Low training error and high test error Slide credit: L. Lazebnik

21 Bias-Variance Trade-off Models with too few parameters are inaccurate because of a large bias (not enough flexibility). Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample). Slide credit: D. Hoiem

22 Fitting a model Is this a good fit? Figures from Bishop

23 With more training data Figures from Bishop

24 Error Bias-variance tradeoff Underfitting Overfitting Test error High Bias Low Variance Complexity Training error Low Bias High Variance Slide credit: D. Hoiem

25 Test Error Bias-variance tradeoff Few training examples Many training examples High Bias Low Variance Complexity Low Bias High Variance Slide credit: D. Hoiem

26 Error Choosing the trade-off Need validation set Validation set is separate from the test set Test error Training error High Bias Low Variance Complexity Low Bias High Variance Slide credit: D. Hoiem

27 Error Effect of Training Size Fixed prediction model Generalization Error Testing Training Number of Training Examples Adapted from D. Hoiem

28 How to reduce variance? Choose a simpler classifier Use fewer features Get more training data Regularize the parameters Slide credit: D. Hoiem

29 Regularization Figures from Bishop

30 Characteristics of vision learning problems Lots of continuous features Spatial pyramid may have ~15,000 features Imbalanced classes Often limited positive examples, practically infinite negative examples Difficult prediction tasks Recently, massive training sets became available If we have a massive training set, we want classifiers with low bias (high variance is ok) and reasonably efficient training Adapted from D. Hoiem

31 Remember No free lunch: machine learning algorithms are tools Three kinds of error Inherent: unavoidable Bias: due to over-simplifications Variance: due to inability to perfectly estimate parameters from limited data Try simple classifiers first Better to have smart features and simple classifiers than simple features and smart classifiers Use increasingly powerful classifiers with more training data (bias-variance tradeoff) Adapted from D. Hoiem

32 Outline Support Vector Machines (review + other uses) Bias-variance trade-off Scene recognition: Spatial pyramid matching Other classifiers Decision trees Hidden Markov models Other problems Clustering: agglomerative clustering Dimensionality reduction

33 Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories CVPR 2006 Svetlana Lazebnik Beckman Institute, University of Illinois at Urbana-Champaign Cordelia Schmid INRIA Rhône-Alpes, France Jean Ponce Ecole Normale Supérieure, France

34 Bags of words Slide credit: L. Lazebnik

35 Bag-of-features steps 1. Extract local features 2. Learn visual vocabulary using clustering 3. Quantize local features using visual vocabulary 4. Represent images by frequencies of visual words Slide credit: L. Lazebnik

36 Local feature extraction Slide credit: Josef Sivic

37 Learning the visual vocabulary Slide credit: Josef Sivic

38 Learning the visual vocabulary Clustering Slide credit: Josef Sivic

39 Learning the visual vocabulary Visual vocabulary Clustering Slide credit: Josef Sivic

40 Image categorization with bag of words Training 1. Extract bag-of-words representation 2. Train classifier on labeled examples using histogram values as features Testing 1. Extract keypoints/descriptors 2. Quantize into visual words using the clusters computed at training time 3. Compute visual word histogram 4. Compute label using classifier Slide credit: D. Hoiem

41 What about spatial layout? All of these images have the same color histogram Slide credit: D. Hoiem

42 Spatial pyramid Compute histogram in each spatial bin Slide credit: D. Hoiem

43 Spatial pyramid [Lazebnik et al. CVPR 2006] Slide credit: D. Hoiem

44 Adapted from L. Lazebnik Pyramid matching Indyk & Thaper (2003), Grauman & Darrell (2005) Matching using pyramid and histogram intersection for some particular visual word: x i x j Original images Feature histograms: Level 3 Level 2 Level 1 Level 0 K( x i, x j ) Total weight (value of pyramid match kernel):

45 Scene category dataset Fei-Fei & Perona (2005), Oliva & Torralba (2001) Multi-class classification results (100 training images per class) Fei-Fei & Perona: 65.2% Slide credit: L. Lazebnik

46 Scene category confusions Difficult indoor images kitchen living room bedroom Slide credit: L. Lazebnik

47 Caltech101 dataset Fei-Fei et al. (2004) Multi-class classification results (30 training images per class) Slide credit: L. Lazebnik

48 Outline Support Vector Machines (review + other uses) Bias-variance trade-off Scene recognition: Spatial pyramid matching Other classifiers Decision trees Hidden Markov models Other problems Clustering: agglomerative clustering Dimensionality reduction

49 Decision tree classifier Example problem: decide whether to wait for a table at a restaurant, based on the following attributes: 1. Alternate: is there an alternative restaurant nearby? 2. Bar: is there a comfortable bar area to wait in? 3. Fri/Sat: is today Friday or Saturday? 4. Hungry: are we hungry? 5. Patrons: number of people in the restaurant (None, Some, Full) 6. Price: price range ($, $$, $$$) 7. Raining: is it raining outside? 8. Reservation: have we made a reservation? 9. Type: kind of restaurant (French, Italian, Thai, Burger) 10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60) Slide credit: L. Lazebnik

50 Decision tree classifier Slide credit: L. Lazebnik

51 Decision tree classifier Slide credit: L. Lazebnik

52 Sequence Labeling Problem Unlike most computer vision problems, many NLP problems can viewed as sequence labeling. Each token in a sequence is assigned a label. Labels of tokens are dependent on the labels of other tokens in the sequence, particularly their neighbors (not i.i.d). foo bar blam zonk zonk bar blam Adapted from Ray Mooney

53 Markov Model / Markov Chain A finite state machine with probabilistic state transitions. Makes Markov assumption that next state only depends on the current state and independent of previous history. Ray Mooney

54 Sample Markov Model for POS Det 0.95 Noun start PropNoun Verb stop Ray Mooney

55 Sample Markov Model for POS Det 0.95 Noun PropNoun start P(PropNoun Verb Det Noun) = 0.4*0.8*0.25*0.95*0.1= Adapted from Ray Mooney Mary ate the cake. 0.9 Verb 0.5 stop

56 Hidden Markov Model Probabilistic generative model for sequences. Assume an underlying set of hidden (unobserved) states in which the model can be (e.g. parts of speech). Assume probabilistic transitions between states over time (e.g. transition from POS to another POS as sequence is generated). Assume a probabilistic generation of tokens from states (e.g. words generated for each POS). Ray Mooney

57 Sample HMM for POS the a a the the a the that Det start Tom John Mary Alice Jerry PropNoun cat dog car pen bed apple Noun bit ate played saw hit gave Verb 0.5 stop Ray Mooney

58 Outline Support Vector Machines (review + other uses) Bias-variance trade-off Scene recognition: Spatial pyramid matching Other classifiers Decision trees Hidden Markov models Other problems Clustering: agglomerative clustering Dimensionality reduction

59 Slide credit: D. Hoiem

60 Clustering Strategies K-means Iteratively re-assign points to the nearest cluster center Mean-shift clustering Estimate modes Graph cuts Split the nodes in a graph based on assigned links with similarity weights Agglomerative clustering Start with each point as its own cluster and iteratively merge the closest clusters

61 Agglomerative clustering

62 Agglomerative clustering

63 Agglomerative clustering

64 Agglomerative clustering

65 Agglomerative clustering

66 distance Agglomerative clustering How to define cluster similarity? - Average distance between points, maximum distance, minimum distance How many clusters? - Clustering creates a dendrogram (a tree) - Threshold based on max number of clusters or based on distance between merges Adapted from J. Hays

67 Why do we cluster? Summarizing data Look at large amounts of data Represent a large continuous vector with the cluster number Counting Histograms of texture, color, SIFT vectors Segmentation Separate the image into different regions Prediction Images in the same cluster may have the same labels Slide credit: J. Hays, D. Hoiem

68 Slide credit: D. Hoiem

69 Figure from Genevieve Patterson, IJCV 2014 Dimensionality Reduction

Recognition Tools: Support Vector Machines

Recognition Tools: Support Vector Machines CS 2770: Computer Vision Recognition Tools: Support Vector Machines Prof. Adriana Kovashka University of Pittsburgh January 12, 2017 Announcement TA office hours: Tuesday 4pm-6pm Wednesday 10am-12pm Matlab

More information

Introduction to object recognition. Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and others

Introduction to object recognition. Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and others Introduction to object recognition Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and others Overview Basic recognition tasks A statistical learning approach Traditional or shallow recognition

More information

Discriminative classifiers for image recognition

Discriminative classifiers for image recognition Discriminative classifiers for image recognition May 26 th, 2015 Yong Jae Lee UC Davis Outline Last time: window-based generic object detection basic pipeline face detection with boosting as case study

More information

Ensemble Methods, Decision Trees

Ensemble Methods, Decision Trees CS 1675: Intro to Machine Learning Ensemble Methods, Decision Trees Prof. Adriana Kovashka University of Pittsburgh November 13, 2018 Plan for This Lecture Ensemble methods: introduction Boosting Algorithm

More information

Bias-Variance Trade-off (cont d) + Image Representations

Bias-Variance Trade-off (cont d) + Image Representations CS 275: Machine Learning Bias-Variance Trade-off (cont d) + Image Representations Prof. Adriana Kovashka University of Pittsburgh January 2, 26 Announcement Homework now due Feb. Generalization Training

More information

Part-based and local feature models for generic object recognition

Part-based and local feature models for generic object recognition Part-based and local feature models for generic object recognition May 28 th, 2015 Yong Jae Lee UC Davis Announcements PS2 grades up on SmartSite PS2 stats: Mean: 80.15 Standard Dev: 22.77 Vote on piazza

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 16: Bag-of-words models Object Bag of words Announcements Project 3: Eigenfaces due Wednesday, November 11 at 11:59pm solo project Final project presentations:

More information

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011 Previously Part-based and local feature models for generic object recognition Wed, April 20 UT-Austin Discriminative classifiers Boosting Nearest neighbors Support vector machines Useful for object recognition

More information

Local Features and Bag of Words Models

Local Features and Bag of Words Models 10/14/11 Local Features and Bag of Words Models Computer Vision CS 143, Brown James Hays Slides from Svetlana Lazebnik, Derek Hoiem, Antonio Torralba, David Lowe, Fei Fei Li and others Computer Engineering

More information

Part based models for recognition. Kristen Grauman

Part based models for recognition. Kristen Grauman Part based models for recognition Kristen Grauman UT Austin Limitations of window-based models Not all objects are box-shaped Assuming specific 2d view of object Local components themselves do not necessarily

More information

Visual words. Map high-dimensional descriptors to tokens/words by quantizing the feature space.

Visual words. Map high-dimensional descriptors to tokens/words by quantizing the feature space. Visual words Map high-dimensional descriptors to tokens/words by quantizing the feature space. Quantize via clustering; cluster centers are the visual words Word #2 Descriptor feature space Assign word

More information

Beyond Bags of Features

Beyond Bags of Features : for Recognizing Natural Scene Categories Matching and Modeling Seminar Instructed by Prof. Haim J. Wolfson School of Computer Science Tel Aviv University December 9 th, 2015

More information

Object Classification Problem

Object Classification Problem HIERARCHICAL OBJECT CATEGORIZATION" Gregory Griffin and Pietro Perona. Learning and Using Taxonomies For Fast Visual Categorization. CVPR 2008 Marcin Marszalek and Cordelia Schmid. Constructing Category

More information

Deformable Part Models

Deformable Part Models CS 1674: Intro to Computer Vision Deformable Part Models Prof. Adriana Kovashka University of Pittsburgh November 9, 2016 Today: Object category detection Window-based approaches: Last time: Viola-Jones

More information

Object Recognition. Computer Vision. Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce

Object Recognition. Computer Vision. Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce Object Recognition Computer Vision Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce How many visual object categories are there? Biederman 1987 ANIMALS PLANTS OBJECTS

More information

Machine Learning Crash Course

Machine Learning Crash Course Machine Learning Crash Course Photo: CMU Machine Learning Department protests G20 Computer Vision James Hays Slides: Isabelle Guyon, Erik Sudderth, Mark Johnson, Derek Hoiem The machine learning framework

More information

Bag-of-features. Cordelia Schmid

Bag-of-features. Cordelia Schmid Bag-of-features for category classification Cordelia Schmid Visual search Particular objects and scenes, large databases Category recognition Image classification: assigning a class label to the image

More information

CLASSIFICATION Experiments

CLASSIFICATION Experiments CLASSIFICATION Experiments January 27,2015 CS3710: Visual Recognition Bhavin Modi Bag of features Object Bag of words 1. Extract features 2. Learn visual vocabulary Bag of features: outline 3. Quantize

More information

Object recognition. Methods for classification and image representation

Object recognition. Methods for classification and image representation Object recognition Methods for classification and image representation Credits Slides by Pete Barnum Slides by FeiFei Li Paul Viola, Michael Jones, Robust Realtime Object Detection, IJCV 04 Navneet Dalal

More information

Bag of Words Models. CS4670 / 5670: Computer Vision Noah Snavely. Bag-of-words models 11/26/2013

Bag of Words Models. CS4670 / 5670: Computer Vision Noah Snavely. Bag-of-words models 11/26/2013 CS4670 / 5670: Computer Vision Noah Snavely Bag-of-words models Object Bag of words Bag of Words Models Adapted from slides by Rob Fergus and Svetlana Lazebnik 1 Object Bag of words Origin 1: Texture Recognition

More information

Supervised Learning: Nearest Neighbors

Supervised Learning: Nearest Neighbors CS 2750: Machine Learning Supervised Learning: Nearest Neighbors Prof. Adriana Kovashka University of Pittsburgh February 1, 2016 Today: Supervised Learning Part I Basic formulation of the simplest classifier:

More information

CS 343H: Honors AI. Lecture 23: Kernels and clustering 4/15/2014. Kristen Grauman UT Austin

CS 343H: Honors AI. Lecture 23: Kernels and clustering 4/15/2014. Kristen Grauman UT Austin CS 343H: Honors AI Lecture 23: Kernels and clustering 4/15/2014 Kristen Grauman UT Austin Slides courtesy of Dan Klein, except where otherwise noted Announcements Office hours Kim s office hours this week:

More information

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Beyond bags of features: Adding spatial information Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Adding spatial information Forming vocabularies from pairs of nearby features doublets

More information

CS 2750: Machine Learning. Clustering. Prof. Adriana Kovashka University of Pittsburgh January 17, 2017

CS 2750: Machine Learning. Clustering. Prof. Adriana Kovashka University of Pittsburgh January 17, 2017 CS 2750: Machine Learning Clustering Prof. Adriana Kovashka University of Pittsburgh January 17, 2017 What is clustering? Grouping items that belong together (i.e. have similar features) Unsupervised:

More information

By Suren Manvelyan,

By Suren Manvelyan, By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116 By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116 By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116 By Suren Manvelyan,

More information

Supervised learning. y = f(x) function

Supervised learning. y = f(x) function Supervised learning y = f(x) output prediction function Image feature Training: given a training set of labeled examples {(x 1,y 1 ),, (x N,y N )}, estimate the prediction function f by minimizing the

More information

Patch Descriptors. CSE 455 Linda Shapiro

Patch Descriptors. CSE 455 Linda Shapiro Patch Descriptors CSE 455 Linda Shapiro How can we find corresponding points? How can we find correspondences? How do we describe an image patch? How do we describe an image patch? Patches with similar

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely Lecture 33: Recognition Basics Slides from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/ Announcements Quiz moved to Tuesday Project 4

More information

Beyond Bags of features Spatial information & Shape models

Beyond Bags of features Spatial information & Shape models Beyond Bags of features Spatial information & Shape models Jana Kosecka Many slides adapted from S. Lazebnik, FeiFei Li, Rob Fergus, and Antonio Torralba Detection, recognition (so far )! Bags of features

More information

Image classification Computer Vision Spring 2018, Lecture 18

Image classification Computer Vision Spring 2018, Lecture 18 Image classification http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 18 Course announcements Homework 5 has been posted and is due on April 6 th. - Dropbox link because course

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. The Perceptron Update Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. The Perceptron Update Rule. CS 188: Artificial Intelligence Fall 2007 Lecture 26: Kernels 11/29/2007 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit your

More information

CSE 573: Artificial Intelligence Autumn 2010

CSE 573: Artificial Intelligence Autumn 2010 CSE 573: Artificial Intelligence Autumn 2010 Lecture 16: Machine Learning Topics 12/7/2010 Luke Zettlemoyer Most slides over the course adapted from Dan Klein. 1 Announcements Syllabus revised Machine

More information

Support vector machines

Support vector machines Support vector machines When the data is linearly separable, which of the many possible solutions should we prefer? SVM criterion: maximize the margin, or distance between the hyperplane and the closest

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 013-014 Jakob Verbeek, December 13+0, 013 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.13.14

More information

UVA CS 6316/4501 Fall 2016 Machine Learning. Lecture 15: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia

UVA CS 6316/4501 Fall 2016 Machine Learning. Lecture 15: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia UVA CS 6316/4501 Fall 2016 Machine Learning Lecture 15: K-nearest-neighbor Classifier / Bias-Variance Tradeoff Dr. Yanjun Qi University of Virginia Department of Computer Science 11/9/16 1 Rough Plan HW5

More information

Patch Descriptors. EE/CSE 576 Linda Shapiro

Patch Descriptors. EE/CSE 576 Linda Shapiro Patch Descriptors EE/CSE 576 Linda Shapiro 1 How can we find corresponding points? How can we find correspondences? How do we describe an image patch? How do we describe an image patch? Patches with similar

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Kernels and Clustering Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

TagProp: Discriminative Metric Learning in Nearest Neighbor Models for Image Annotation

TagProp: Discriminative Metric Learning in Nearest Neighbor Models for Image Annotation TagProp: Discriminative Metric Learning in Nearest Neighbor Models for Image Annotation Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, Cordelia Schmid LEAR team, INRIA Rhône-Alpes, Grenoble, France

More information

Preliminary Local Feature Selection by Support Vector Machine for Bag of Features

Preliminary Local Feature Selection by Support Vector Machine for Bag of Features Preliminary Local Feature Selection by Support Vector Machine for Bag of Features Tetsu Matsukawa Koji Suzuki Takio Kurita :University of Tsukuba :National Institute of Advanced Industrial Science and

More information

Classification: Feature Vectors

Classification: Feature Vectors Classification: Feature Vectors Hello, Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just # free YOUR_NAME MISSPELLED FROM_FRIEND... : : : : 2 0 2 0 PIXEL 7,12

More information

Object Recognition and Detection

Object Recognition and Detection CS 2770: Computer Vision Object Recognition and Detection Prof. Adriana Kovashka University of Pittsburgh March 16, 21, 23, 2017 Plan for the next few lectures Recognizing the category in the image as

More information

Content-based image and video analysis. Machine learning

Content-based image and video analysis. Machine learning Content-based image and video analysis Machine learning for multimedia retrieval 04.05.2009 What is machine learning? Some problems are very hard to solve by writing a computer program by hand Almost all

More information

Local Features and Kernels for Classifcation of Texture and Object Categories: A Comprehensive Study

Local Features and Kernels for Classifcation of Texture and Object Categories: A Comprehensive Study Local Features and Kernels for Classifcation of Texture and Object Categories: A Comprehensive Study J. Zhang 1 M. Marszałek 1 S. Lazebnik 2 C. Schmid 1 1 INRIA Rhône-Alpes, LEAR - GRAVIR Montbonnot, France

More information

Kernels and Clustering

Kernels and Clustering Kernels and Clustering Robert Platt Northeastern University All slides in this file are adapted from CS188 UC Berkeley Case-Based Learning Non-Separable Data Case-Based Reasoning Classification from similarity

More information

Classifying Images with Visual/Textual Cues. By Steven Kappes and Yan Cao

Classifying Images with Visual/Textual Cues. By Steven Kappes and Yan Cao Classifying Images with Visual/Textual Cues By Steven Kappes and Yan Cao Motivation Image search Building large sets of classified images Robotics Background Object recognition is unsolved Deformable shaped

More information

K-Nearest Neighbors. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824

K-Nearest Neighbors. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824 K-Nearest Neighbors Jia-Bin Huang ECE-5424G / CS-5824 Virginia Tech Spring 2019 Administrative Check out review materials Probability Linear algebra Python and NumPy Start your HW 0 On your Local machine:

More information

Visual Object Recognition

Visual Object Recognition Perceptual and Sensory Augmented Computing Visual Object Recognition Tutorial Visual Object Recognition Bastian Leibe Computer Vision Laboratory ETH Zurich Chicago, 14.07.2008 & Kristen Grauman Department

More information

CS 231A Computer Vision (Fall 2011) Problem Set 4

CS 231A Computer Vision (Fall 2011) Problem Set 4 CS 231A Computer Vision (Fall 2011) Problem Set 4 Due: Nov. 30 th, 2011 (9:30am) 1 Part-based models for Object Recognition (50 points) One approach to object recognition is to use a deformable part-based

More information

ImageCLEF 2011

ImageCLEF 2011 SZTAKI @ ImageCLEF 2011 Bálint Daróczy joint work with András Benczúr, Róbert Pethes Data Mining and Web Search Group Computer and Automation Research Institute Hungarian Academy of Sciences Training/test

More information

Simple Example of Recognition Statistical Viewpoint!

Simple Example of Recognition Statistical Viewpoint! Advanced Topics in Computer Vision and Robotics! Classification Methods!!!! Some slides thans to S. Lazebni, T. Berg, Fei-Fei Li, K. Grauman and others! Simple Example of Recognition Statistical Viewpoint!

More information

Announcements. CS 188: Artificial Intelligence Spring Classification: Feature Vectors. Classification: Weights. Learning: Binary Perceptron

Announcements. CS 188: Artificial Intelligence Spring Classification: Feature Vectors. Classification: Weights. Learning: Binary Perceptron CS 188: Artificial Intelligence Spring 2010 Lecture 24: Perceptrons and More! 4/20/2010 Announcements W7 due Thursday [that s your last written for the semester!] Project 5 out Thursday Contest running

More information

Detection III: Analyzing and Debugging Detection Methods

Detection III: Analyzing and Debugging Detection Methods CS 1699: Intro to Computer Vision Detection III: Analyzing and Debugging Detection Methods Prof. Adriana Kovashka University of Pittsburgh November 17, 2015 Today Review: Deformable part models How can

More information

Evaluating Classifiers

Evaluating Classifiers Evaluating Classifiers Reading for this topic: T. Fawcett, An introduction to ROC analysis, Sections 1-4, 7 (linked from class website) Evaluating Classifiers What we want: Classifier that best predicts

More information

UVA CS 4501: Machine Learning. Lecture 10: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia

UVA CS 4501: Machine Learning. Lecture 10: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia UVA CS 4501: Machine Learning Lecture 10: K-nearest-neighbor Classifier / Bias-Variance Tradeoff Dr. Yanjun Qi University of Virginia Department of Computer Science 1 Where are we? è Five major secfons

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Distances and Kernels. Motivation

Distances and Kernels. Motivation Distances and Kernels Amirshahed Mehrtash Motivation How similar? 1 Problem Definition Designing a fast system to measure the similarity il it of two images. Used to categorize images based on appearance.

More information

CS6716 Pattern Recognition

CS6716 Pattern Recognition CS6716 Pattern Recognition Aaron Bobick School of Interactive Computing Administrivia PS3 is out now, due April 8. Today chapter 12 of the Hastie book. Slides (and entertainment) from Moataz Al-Haj Three

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 19 th, 2007 2005-2007 Carlos Guestrin 1 Why not just use Linear Regression? 2005-2007 Carlos Guestrin

More information

Segmentation and Grouping

Segmentation and Grouping CS 1699: Intro to Computer Vision Segmentation and Grouping Prof. Adriana Kovashka University of Pittsburgh September 24, 2015 Goals: Grouping in vision Gather features that belong together Obtain an intermediate

More information

CV as making bank. Intel buys Mobileye! $15 billion. Mobileye:

CV as making bank. Intel buys Mobileye! $15 billion. Mobileye: CV as making bank Intel buys Mobileye! $15 billion Mobileye: Spin-off from Hebrew University, Israel 450 engineers 15 million cars installed 313 car models June 2016 - Tesla left Mobileye Fatal crash car

More information

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2015

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2015 Instance-based Learning CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2015 Outline Non-parametric approach Unsupervised: Non-parametric density estimation Parzen Windows K-Nearest

More information

CS 1674: Intro to Computer Vision. Attributes. Prof. Adriana Kovashka University of Pittsburgh November 2, 2016

CS 1674: Intro to Computer Vision. Attributes. Prof. Adriana Kovashka University of Pittsburgh November 2, 2016 CS 1674: Intro to Computer Vision Attributes Prof. Adriana Kovashka University of Pittsburgh November 2, 2016 Plan for today What are attributes and why are they useful? (paper 1) Attributes for zero-shot

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

Evaluating Classifiers

Evaluating Classifiers Evaluating Classifiers Reading for this topic: T. Fawcett, An introduction to ROC analysis, Sections 1-4, 7 (linked from class website) Evaluating Classifiers What we want: Classifier that best predicts

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Unsupervised Learning: Kmeans, GMM, EM Readings: Barber 20.1-20.3 Stefan Lee Virginia Tech Tasks Supervised Learning x Classification y Discrete x Regression

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Xiaojin Zhu jerryzhu@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [ Based on slides from Andrew Moore http://www.cs.cmu.edu/~awm/tutorials] slide 1

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule. CS 188: Artificial Intelligence Fall 2008 Lecture 24: Perceptrons II 11/24/2008 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit

More information

CS 2770: Computer Vision. Edges and Segments. Prof. Adriana Kovashka University of Pittsburgh February 21, 2017

CS 2770: Computer Vision. Edges and Segments. Prof. Adriana Kovashka University of Pittsburgh February 21, 2017 CS 2770: Computer Vision Edges and Segments Prof. Adriana Kovashka University of Pittsburgh February 21, 2017 Edges vs Segments Figure adapted from J. Hays Edges vs Segments Edges More low-level Don t

More information

Object Recognition. Lecture 11, April 21 st, Lexing Xie. EE4830 Digital Image Processing

Object Recognition. Lecture 11, April 21 st, Lexing Xie. EE4830 Digital Image Processing Object Recognition Lecture 11, April 21 st, 2008 Lexing Xie EE4830 Digital Image Processing http://www.ee.columbia.edu/~xlx/ee4830/ 1 Announcements 2 HW#5 due today HW#6 last HW of the semester Due May

More information

CS570: Introduction to Data Mining

CS570: Introduction to Data Mining CS570: Introduction to Data Mining Classification Advanced Reading: Chapter 8 & 9 Han, Chapters 4 & 5 Tan Anca Doloc-Mihu, Ph.D. Slides courtesy of Li Xiong, Ph.D., 2011 Han, Kamber & Pei. Data Mining.

More information

Problem 1: Complexity of Update Rules for Logistic Regression

Problem 1: Complexity of Update Rules for Logistic Regression Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 16 th, 2014 1

More information

Support Vector Machines + Classification for IR

Support Vector Machines + Classification for IR Support Vector Machines + Classification for IR Pierre Lison University of Oslo, Dep. of Informatics INF3800: Søketeknologi April 30, 2014 Outline of the lecture Recap of last week Support Vector Machines

More information

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning Associate Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551

More information

Data Mining Practical Machine Learning Tools and Techniques. Slides for Chapter 6 of Data Mining by I. H. Witten and E. Frank

Data Mining Practical Machine Learning Tools and Techniques. Slides for Chapter 6 of Data Mining by I. H. Witten and E. Frank Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 6 of Data Mining by I. H. Witten and E. Frank Implementation: Real machine learning schemes Decision trees Classification

More information

Perceptron as a graph

Perceptron as a graph Neural Networks Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University October 10 th, 2007 2005-2007 Carlos Guestrin 1 Perceptron as a graph 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0-6 -4-2

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Machine Learning Potsdam, 26 April 2012 Saeedeh Momtazi Information Systems Group Introduction 2 Machine Learning Field of study that gives computers the ability to learn without

More information

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric.

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric. CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley 1 1 Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

Mining Discriminative Adjectives and Prepositions for Natural Scene Recognition

Mining Discriminative Adjectives and Prepositions for Natural Scene Recognition Mining Discriminative Adjectives and Prepositions for Natural Scene Recognition Bangpeng Yao 1, Juan Carlos Niebles 2,3, Li Fei-Fei 1 1 Department of Computer Science, Princeton University, NJ 08540, USA

More information

More Learning. Ensembles Bayes Rule Neural Nets K-means Clustering EM Clustering WEKA

More Learning. Ensembles Bayes Rule Neural Nets K-means Clustering EM Clustering WEKA More Learning Ensembles Bayes Rule Neural Nets K-means Clustering EM Clustering WEKA 1 Ensembles An ensemble is a set of classifiers whose combined results give the final decision. test feature vector

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

Support Vector Machines

Support Vector Machines Support Vector Machines About the Name... A Support Vector A training sample used to define classification boundaries in SVMs located near class boundaries Support Vector Machines Binary classifiers whose

More information

Clustering. So far in the course. Clustering. Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. dist(x, y) = x y 2 2

Clustering. So far in the course. Clustering. Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. dist(x, y) = x y 2 2 So far in the course Clustering Subhransu Maji : Machine Learning 2 April 2015 7 April 2015 Supervised learning: learning with a teacher You had training data which was (feature, label) pairs and the goal

More information

Learning Representations for Visual Object Class Recognition

Learning Representations for Visual Object Class Recognition Learning Representations for Visual Object Class Recognition Marcin Marszałek Cordelia Schmid Hedi Harzallah Joost van de Weijer LEAR, INRIA Grenoble, Rhône-Alpes, France October 15th, 2007 Bag-of-Features

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University October 15 th, 2007 2005-2007 Carlos Guestrin 1 1-Nearest Neighbor Four things make a memory based learner:

More information

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010 INFORMATICS SEMINAR SEPT. 27 & OCT. 4, 2010 Introduction to Semi-Supervised Learning Review 2 Overview Citation X. Zhu and A.B. Goldberg, Introduction to Semi- Supervised Learning, Morgan & Claypool Publishers,

More information

Instance-level recognition part 2

Instance-level recognition part 2 Visual Recognition and Machine Learning Summer School Paris 2011 Instance-level recognition part 2 Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique,

More information

Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. 2 April April 2015

Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. 2 April April 2015 Clustering Subhransu Maji CMPSCI 689: Machine Learning 2 April 2015 7 April 2015 So far in the course Supervised learning: learning with a teacher You had training data which was (feature, label) pairs

More information

CS178: Machine Learning and Data Mining. Complexity & Nearest Neighbor Methods

CS178: Machine Learning and Data Mining. Complexity & Nearest Neighbor Methods + CS78: Machine Learning and Data Mining Complexity & Nearest Neighbor Methods Prof. Erik Sudderth Some materials courtesy Alex Ihler & Sameer Singh Machine Learning Complexity and Overfitting Nearest

More information

CS 8520: Artificial Intelligence. Machine Learning 2. Paula Matuszek Fall, CSC 8520 Fall Paula Matuszek

CS 8520: Artificial Intelligence. Machine Learning 2. Paula Matuszek Fall, CSC 8520 Fall Paula Matuszek CS 8520: Artificial Intelligence Machine Learning 2 Paula Matuszek Fall, 2015!1 Regression Classifiers We said earlier that the task of a supervised learning system can be viewed as learning a function

More information

Lecture 12 Visual recognition

Lecture 12 Visual recognition Lecture 12 Visual recognition Bag of words models for object recognition and classification Discriminative methods Generative methods Silvio Savarese Lecture 11 17Feb14 Challenges Variability due to: View

More information

Segmentation (continued)

Segmentation (continued) Segmentation (continued) Lecture 05 Computer Vision Material Citations Dr George Stockman Professor Emeritus, Michigan State University Dr Mubarak Shah Professor, University of Central Florida The Robotics

More information

Object recognition (part 1)

Object recognition (part 1) Recognition Object recognition (part 1) CSE P 576 Larry Zitnick (larryz@microsoft.com) The Margaret Thatcher Illusion, by Peter Thompson Readings Szeliski Chapter 14 Recognition What do we mean by object

More information

String distance for automatic image classification

String distance for automatic image classification String distance for automatic image classification Nguyen Hong Thinh*, Le Vu Ha*, Barat Cecile** and Ducottet Christophe** *University of Engineering and Technology, Vietnam National University of HaNoi,

More information

Search Engines. Information Retrieval in Practice

Search Engines. Information Retrieval in Practice Search Engines Information Retrieval in Practice All slides Addison Wesley, 2008 Classification and Clustering Classification and clustering are classical pattern recognition / machine learning problems

More information

Classification and Detection in Images. D.A. Forsyth

Classification and Detection in Images. D.A. Forsyth Classification and Detection in Images D.A. Forsyth Classifying Images Motivating problems detecting explicit images classifying materials classifying scenes Strategy build appropriate image features train

More information

Introduction to SLAM Part II. Paul Robertson

Introduction to SLAM Part II. Paul Robertson Introduction to SLAM Part II Paul Robertson Localization Review Tracking, Global Localization, Kidnapping Problem. Kalman Filter Quadratic Linear (unless EKF) SLAM Loop closing Scaling: Partition space

More information

SUPPORT VECTOR MACHINES

SUPPORT VECTOR MACHINES SUPPORT VECTOR MACHINES Today Reading AIMA 18.9 Goals (Naïve Bayes classifiers) Support vector machines 1 Support Vector Machines (SVMs) SVMs are probably the most popular off-the-shelf classifier! Software

More information

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 CS 1674: Intro to Computer Vision Neural Networks Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 Announcements Please watch the videos I sent you, if you haven t yet (that s your reading)

More information