Discrete Conformal Structures

Size: px
Start display at page:

Download "Discrete Conformal Structures"

Transcription

1 Discrete Conformal Structures Boris Springborn (TUB) Ulrich Pinkall (TUB) Peter Schröder (Caltech) 1

2 The Problem Find nice texture maps simplicial surface metric data satisfy triangle inequality 2

3 The Problem Find nice texture maps simplicial surface metric data new (flat) metric 3

4 The Problem Find nice texture maps simplicial surface metric data new (flat) metric 4

5 The Problem Find nice texture maps simplicial surface metric data new (flat) metric 5

6 Ansatz Seek conformally equivalent metric data: simpl. complex & lengths 0utput: new metric (i.e., lengths) new metric conformal factor original metric ignore boundary for the moment 6

7 Ansatz Seek conformally equivalent metric data: simpl. complex & lengths 0utput: new metric (i.e., lengths) variables at vertices 7

8 Ansatz Seek conformally equivalent metric data: simpl. complex & lengths 0utput: new metric (i.e., lengths) variables at vertices goal: desired angle sums target vertex angle sums 8

9 Non-Linear Problem Find to satisfy angle sum targets from lengths to angles watch out for triangle inequality! 9

10 Non-Linear Problem Find to satisfy angle sum targets from lengths to angles a miracle occurs This system of equations can be integrated! 10

11 The Energy Find minimum of a convex energy Milnor s Lobachevsky function

12 The Energy Find minimum of a convex energy Milnor s Lobachevsky function for each triangle logarithmic lengths logarithmic input lengths 12

13 The Energy Find minimum of a convex energy Milnor s Lobachevsky function for each triangle 13

14 The Energy Properties convex: Hessian is pos. semi-def. only one term for boundary edges 14

15 The Energy Properties convex: Hessian is pos. semi-def. solution exists is unique gradient flow is curvature flow target curvature 15

16 The Energy Properties convex: Hessian is pos. semi-def. solution exists is unique gradient flow is curvature flow what about triangle inequality?! 16

17 Domain of Definition Not just any u value is cool triangle inequality 2 legal range

18 Domain of Definition Not just any u value is cool triangle inequality extend definition Real part only -1 Functional remains C 1 in u 18

19 Domain of Definition Not just any u value is cool triangle inequality extend definition 2 1 minimum may occur at illegal values conditions for existence guarantee? 19

20 Boundary Conditions Fixing variables fix u i let Θ i vary u i = 0 : isometric bndry. nice for cut-boundaries! unknown cone angles arbitrary topology fix Θ i let u i vary rectangle, disk 20

21 Practicalities Convex optimization Newton-Steihaug trust region

22 Practicalities Convex optimization Newton-Steihaug trust region Petsc/TAO library SSOR precon for cotan system layout: dual spanning tree achieves 10-9 to acc. alternatively: Dirichlet problem 22

23 Conformal Equivalence From continuous to pair of meshes equivalently: 23

24 Conformal Equivalence From continuous to pair of meshes equivalently: Length cross ratios are preserved 24

25 Why u = 0 on Boundary? In the continuous setting conformally equivalent metric flat choose least varying : 25

26 Why u = 0 on Boundary? In the continuous setting conformally equivalent metric flat choose least varying : 26

27 Dual Functional Angles/lengths are dual variables functional in angles original logarithmic lengths 27

28 Dual Functional Angles/lengths are dual variables functional in angles length cross ratios invariant 28

29 The Big Picture Discrete conformal structure simplicial mesh preserve: phase: circle patterns can t read off angles directly magnitude: new functional CAN read off lengths directly! 29

30 TODO List Future work conditions for existence intrinsic Delaunay not required! automatic cone singularity placement u provides potential hook first Newton step sparse approximation problem 30

Three Points Make a Triangle Or a Circle

Three Points Make a Triangle Or a Circle Three Points Make a Triangle Or a Circle Peter Schröder joint work with Liliya Kharevych, Boris Springborn, Alexander Bobenko 1 In This Section Circles as basic primitive it s all about the underlying

More information

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia 2008 1 Non-Convex Non Convex Boundary Convex boundary creates significant distortion Free boundary is better 2 Fixed

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

Discrete Geometry Processing

Discrete Geometry Processing Non Convex Boundary Convex boundary creates significant distortion Free boundary is better Some slides from the Mesh Parameterization Course (Siggraph Asia 008) 1 Fixed vs Free Boundary Fixed vs Free Boundary

More information

DISCRETE DIFFERENTIAL GEOMETRY

DISCRETE DIFFERENTIAL GEOMETRY AMS SHORT COURSE DISCRETE DIFFERENTIAL GEOMETRY Joint Mathematics Meeting San Diego, CA January 2018 DISCRETE CONFORMAL GEOMETRY AMS SHORT COURSE DISCRETE DIFFERENTIAL GEOMETRY Joint Mathematics Meeting

More information

CS 468 (Spring 2013) Discrete Differential Geometry

CS 468 (Spring 2013) Discrete Differential Geometry Lecturer: Adrian Butscher, Justin Solomon Scribe: Adrian Buganza-Tepole CS 468 (Spring 2013) Discrete Differential Geometry Lecture 19: Conformal Geometry Conformal maps In previous lectures we have explored

More information

Parameterization of Meshes

Parameterization of Meshes 2-Manifold Parameterization of Meshes What makes for a smooth manifold? locally looks like Euclidian space collection of charts mutually compatible on their overlaps form an atlas Parameterizations are

More information

2018 AMS short course Discrete Differential Geometry. Discrete Mappings. Yaron Lipman Weizmann Institute of Science

2018 AMS short course Discrete Differential Geometry. Discrete Mappings. Yaron Lipman Weizmann Institute of Science 2018 AMS short course Discrete Differential Geometry 1 Discrete Mappings Yaron Lipman Weizmann Institute of Science 2 Surfaces as triangulations Triangles stitched to build a surface. 3 Surfaces as triangulations

More information

Ph.D. Student Vintescu Ana-Maria

Ph.D. Student Vintescu Ana-Maria Ph.D. Student Vintescu Ana-Maria Context Background Problem Statement Strategy Metric Distortion Conformal parameterization techniques Cone singularities Our algorithm Experiments Perspectives Digital

More information

Implementation of Circle Pattern Parameterization

Implementation of Circle Pattern Parameterization Implementation of Circle Pattern Parameterization Thesis by Liliya Kharevych In Partial Fulfillment of the Requirements for the Degree of Master of Science California Institute of Technology Pasadena,

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

Discrete Surfaces. David Gu. Tsinghua University. Tsinghua University. 1 Mathematics Science Center

Discrete Surfaces. David Gu. Tsinghua University. Tsinghua University. 1 Mathematics Science Center Discrete Surfaces 1 1 Mathematics Science Center Tsinghua University Tsinghua University Discrete Surface Discrete Surfaces Acquired using 3D scanner. Discrete Surfaces Our group has developed high speed

More information

Overview. Applications of DEC: Fluid Mechanics and Meshing. Fluid Models (I) Part I. Computational Fluids with DEC. Fluid Models (II) Fluid Models (I)

Overview. Applications of DEC: Fluid Mechanics and Meshing. Fluid Models (I) Part I. Computational Fluids with DEC. Fluid Models (II) Fluid Models (I) Applications of DEC: Fluid Mechanics and Meshing Mathieu Desbrun Applied Geometry Lab Overview Putting DEC to good use Fluids, fluids, fluids geometric interpretation of classical models discrete geometric

More information

Weighted Triangulations for Geometry Processing

Weighted Triangulations for Geometry Processing Weighted Triangulations for Geometry Processing Fernando de Goes Caltech and Pooran Memari CNRS-LTCI Telecom ParisTech and Patrick Mullen Caltech and Mathieu Desbrun Caltech In this paper, we investigate

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

The Duality of Geodesic Voronoi/Delaunay Diagrams For An Intrinsic Discrete Laplace-Beltrami Operator on Simplicial Surfaces

The Duality of Geodesic Voronoi/Delaunay Diagrams For An Intrinsic Discrete Laplace-Beltrami Operator on Simplicial Surfaces CCCG 2014, Halifax, Nova Scotia, August 11 13, 2014 The Duality of Geodesic Voronoi/Delaunay Diagrams For An Intrinsic Discrete Laplace-Beltrami Operator on Simplicial Surfaces Yong-Jin Liu, Chun-Xu Xu

More information

Discrete Exterior Calculus How to Turn Your Mesh into a Computational Structure. Discrete Differential Geometry

Discrete Exterior Calculus How to Turn Your Mesh into a Computational Structure. Discrete Differential Geometry Discrete Exterior Calculus How to Turn Your Mesh into a Computational Structure Discrete Differential Geometry Big Picture Deriving a whole Discrete Calculus you need first a discrete domain will induce

More information

Conformal Surface Parameterization Using Euclidean Ricci Flow

Conformal Surface Parameterization Using Euclidean Ricci Flow Conformal Surface Parameterization Using Euclidean Ricci Flow Miao Jin, Juhno Kim, Feng Luo, Seungyong Lee, Xianfeng Gu Rutgers University Pohang University of Science and Technology State University of

More information

From isothermic triangulated surfaces to discrete holomorphicity

From isothermic triangulated surfaces to discrete holomorphicity From isothermic triangulated surfaces to discrete holomorphicity Wai Yeung Lam TU Berlin Oberwolfach, 2 March 2015 Joint work with Ulrich Pinkall Wai Yeung Lam (TU Berlin) isothermic triangulated surfaces

More information

Greedy Routing with Guaranteed Delivery Using Ricci Flow

Greedy Routing with Guaranteed Delivery Using Ricci Flow Greedy Routing with Guaranteed Delivery Using Ricci Flow Jie Gao Stony Brook University Joint work with Rik Sarkar, Xiaotian Yin, Wei Zeng, Feng Luo, Xianfeng David Gu Greedy Routing Assign coordinatesto

More information

Discrete Differential Geometry: An Applied Introduction

Discrete Differential Geometry: An Applied Introduction Discrete Differential Geometry: An Applied Introduction Eitan Grinspun with Mathieu Desbrun, Konrad Polthier, Peter Schröder, & Ari Stern 1 Differential Geometry Why do we care? geometry of surfaces Springborn

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

Geodesics in heat: A new approach to computing distance

Geodesics in heat: A new approach to computing distance Geodesics in heat: A new approach to computing distance based on heat flow Diana Papyan Faculty of Informatics - Technische Universität München Abstract In this report we are going to introduce new method

More information

Simplicial Hyperbolic Surfaces

Simplicial Hyperbolic Surfaces Simplicial Hyperbolic Surfaces Talk by Ken Bromberg August 21, 2007 1-Lipschitz Surfaces- In this lecture we will discuss geometrically meaningful ways of mapping a surface S into a hyperbolic manifold

More information

Discrete Exterior Calculus

Discrete Exterior Calculus Discrete Exterior Calculus Peter Schröder with Mathieu Desbrun and the rest of the DEC crew 1 Big Picture Deriving a whole Discrete Calculus first: discrete domain notion of chains and discrete representation

More information

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017 DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU 15-458/858B Fall 2017 LECTURE 10: DISCRETE CURVATURE DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU 15-458/858B

More information

Parameterization of Triangular Meshes with Virtual Boundaries

Parameterization of Triangular Meshes with Virtual Boundaries Parameterization of Triangular Meshes with Virtual Boundaries Yunjin Lee 1;Λ Hyoung Seok Kim 2;y Seungyong Lee 1;z 1 Department of Computer Science and Engineering Pohang University of Science and Technology

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Discrete differential geometry: Surfaces made from Circles

Discrete differential geometry: Surfaces made from Circles Discrete differential geometry: Alexander Bobenko (TU Berlin) with help of Tim Hoffmann, Boris Springborn, Ulrich Pinkall, Ulrike Scheerer, Daniel Matthes, Yuri Suris, Kevin Bauer Papers A.I. Bobenko,

More information

High School Geometry. Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics

High School Geometry. Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics High School Geometry Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics Standard 5 : Graphical Representations = ALEKS course topic that addresses

More information

Lectures in Discrete Differential Geometry 3 Discrete Surfaces

Lectures in Discrete Differential Geometry 3 Discrete Surfaces Lectures in Discrete Differential Geometry 3 Discrete Surfaces Etienne Vouga March 19, 2014 1 Triangle Meshes We will now study discrete surfaces and build up a parallel theory of curvature that mimics

More information

Two Connections between Combinatorial and Differential Geometry

Two Connections between Combinatorial and Differential Geometry Two Connections between Combinatorial and Differential Geometry John M. Sullivan Institut für Mathematik, Technische Universität Berlin Berlin Mathematical School DFG Research Group Polyhedral Surfaces

More information

Introduction to Voronoi Diagrams and Delaunay Triangulations

Introduction to Voronoi Diagrams and Delaunay Triangulations Introduction to Voronoi Diagrams and Delaunay Triangulations Solomon Boulos Introduction to Voronoi Diagrams and Delaunay Triangulations p.1 Voronoi Diagrams Voronoi region: V (p i ) = {x R n p i x p j

More information

Hyperbolic Geometry on the Figure-Eight Knot Complement

Hyperbolic Geometry on the Figure-Eight Knot Complement Hyperbolic Geometry on the Figure-Eight Knot Complement Alex Gutierrez Arizona State University December 10, 2012 Hyperbolic Space Hyperbolic Space Hyperbolic space H n is the unique complete simply-connected

More information

1 Discrete Connections

1 Discrete Connections CS 177: Discrete Differential Geometry Homework 4: Vector Field Design (due: Tuesday Nov 30th, 11:59pm) In the last homework you saw how to decompose an existing vector field using DEC. In this homework

More information

All the Polygons You Can Eat. Doug Rogers Developer Relations

All the Polygons You Can Eat. Doug Rogers Developer Relations All the Polygons You Can Eat Doug Rogers Developer Relations doug@nvidia.com Future of Games Very high resolution models 20,000 triangles per model Lots of them Complex Lighting Equations Floating point

More information

Polyhedra inscribed in a hyperboloid & AdS geometry. anti-de Sitter geometry.

Polyhedra inscribed in a hyperboloid & AdS geometry. anti-de Sitter geometry. Polyhedra inscribed in a hyperboloid and anti-de Sitter geometry. Jeffrey Danciger 1 Sara Maloni 2 Jean-Marc Schlenker 3 1 University of Texas at Austin 2 Brown University 3 University of Luxembourg AMS

More information

GEOMETRIC LIBRARY. Maharavo Randrianarivony

GEOMETRIC LIBRARY. Maharavo Randrianarivony GEOMETRIC LIBRARY Maharavo Randrianarivony During the last four years, I have maintained a numerical geometric library. The constituting routines, which are summarized in the following list, are implemented

More information

Conformal Flattening ITK Filter

Conformal Flattening ITK Filter =1 Conformal Flattening ITK Filter Release 0.00 Yi Gao 1, John Melonakos 1, and Allen Tannenbaum 1 July 10, 2006 1 Georgia Institute of Technology, Atlanta, GA Abstract This paper describes the Insight

More information

PRESCRIBING CURVATURE FOR PIECEWISE FLAT TRIANGULATED 3-MANIFOLDS

PRESCRIBING CURVATURE FOR PIECEWISE FLAT TRIANGULATED 3-MANIFOLDS PRESCRIBING CURVATURE FOR PIECEWISE FLAT TRIANGULATED 3-MANIFOLDS HOWARD CHENG AND PETER MCGRATH Abstract. Here we study discrete notions of curvature for piecewise flat triangulated 3-manifolds. Of particular

More information

SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS

SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS JOEL HASS AND PETER SCOTT Abstract. We introduce a combinatorial energy for maps of triangulated surfaces with simplicial metrics and analyze the existence

More information

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany A Primer on Laplacians Max Wardetzky Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany Warm-up: Euclidean case Warm-up The Euclidean case Chladni s vibrating plates

More information

INTRODUCTION TO FINITE ELEMENT METHODS

INTRODUCTION TO FINITE ELEMENT METHODS INTRODUCTION TO FINITE ELEMENT METHODS LONG CHEN Finite element methods are based on the variational formulation of partial differential equations which only need to compute the gradient of a function.

More information

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F:

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: CS 177 Homework 1 Julian Panetta October, 009 1 Euler Characteristic 1.1 Polyhedral Formula We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: V E + F = 1 First,

More information

Discrete Surface Ricci Flow

Discrete Surface Ricci Flow TO APPEAR IN IEEE TVCG 1 Discrete Surface Ricci Flow Miao Jin 1, Junho Kim 1,3,FengLuo 2, and Xianfeng Gu 1 1 Stony Brook University 2 Rutgers University 3 Dong-Eui University Abstract This work introduces

More information

Convex Sets (cont.) Convex Functions

Convex Sets (cont.) Convex Functions Convex Sets (cont.) Convex Functions Optimization - 10725 Carlos Guestrin Carnegie Mellon University February 27 th, 2008 1 Definitions of convex sets Convex v. Non-convex sets Line segment definition:

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

Gauss images of hyperbolic cusps with convex polyhedral boundary

Gauss images of hyperbolic cusps with convex polyhedral boundary Gauss images of hyperbolic cusps with convex polyhedral boundary François Fillastre, Ivan Izmestiev To cite this version: François Fillastre, Ivan Izmestiev. Gauss images of hyperbolic cusps with convex

More information

Delaunay Triangulations. Presented by Glenn Eguchi Computational Geometry October 11, 2001

Delaunay Triangulations. Presented by Glenn Eguchi Computational Geometry October 11, 2001 Delaunay Triangulations Presented by Glenn Eguchi 6.838 Computational Geometry October 11, 2001 Motivation: Terrains Set of data points A R 2 Height ƒ(p) defined at each point p in A How can we most naturally

More information

Discrete Differential Geometry. Differential Geometry

Discrete Differential Geometry. Differential Geometry Discrete Differential Geometry Yiying Tong CSE 891 Sect 004 Differential Geometry Why do we care? theory: special surfaces minimal, CMC, integrable, etc. computation: simulation/processing Grape (u. of

More information

Unconstrained Spherical Parameterization

Unconstrained Spherical Parameterization Unconstrained Spherical Parameterization Ilja Friedel Peter Schröder Mathieu Desbrun Abstract We introduce a novel approach for the construction of spherical parameterizations based on energy minimization.

More information

Surfaces: notes on Geometry & Topology

Surfaces: notes on Geometry & Topology Surfaces: notes on Geometry & Topology 1 Surfaces A 2-dimensional region of 3D space A portion of space having length and breadth but no thickness 2 Defining Surfaces Analytically... Parametric surfaces

More information

Invariant Measures of Convex Sets. Eitan Grinspun, Columbia University Peter Schröder, Caltech

Invariant Measures of Convex Sets. Eitan Grinspun, Columbia University Peter Schröder, Caltech Invariant Measures of Convex Sets Eitan Grinspun, Columbia University Peter Schröder, Caltech What will we measure? Subject to be measured, S an object living in n-dim space convex, compact subset of R

More information

Differential Geometry: Circle Packings. [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson]

Differential Geometry: Circle Packings. [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson] Differential Geometry: Circle Packings [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson] Conformal Maps Recall: Given a domain Ω R 2, the map F:Ω R 2 is conformal if it

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research Tiling Three-Dimensional Space with Simplices Shankar Krishnan AT&T Labs - Research What is a Tiling? Partition of an infinite space into pieces having a finite number of distinct shapes usually Euclidean

More information

Surfaces, meshes, and topology

Surfaces, meshes, and topology Surfaces from Point Samples Surfaces, meshes, and topology A surface is a 2-manifold embedded in 3- dimensional Euclidean space Such surfaces are often approximated by triangle meshes 2 1 Triangle mesh

More information

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems Long Chen University of California, Irvine chenlong@math.uci.edu Joint work with: Huayi Wei (Xiangtan University),

More information

arxiv: v2 [math.cv] 31 Mar 2017

arxiv: v2 [math.cv] 31 Mar 2017 Quasiconformal dilatation of projective transformations and discrete conformal maps Stefan Born, Ulrike Bücking, Boris Springborn arxiv:1505.01341v2 [math.cv] 31 Mar 2017 Abstract We consider the quasiconformal

More information

Motion Planning. O Rourke, Chapter 8

Motion Planning. O Rourke, Chapter 8 O Rourke, Chapter 8 Outline Translating a polygon Moving a ladder Shortest Path (Point-to-Point) Goal: Given disjoint polygons in the plane, and given positions s and t, find the shortest path from s to

More information

Orbifold Tutte Embeddings

Orbifold Tutte Embeddings Orbifold Tutte Embeddings Noam Aigerman Yaron Lipman Weizmann Institute of Science Abstract Injective parameterizations of surface meshes are vital for many applications in Computer Graphics, Geometry

More information

Curvature Berkeley Math Circle January 08, 2013

Curvature Berkeley Math Circle January 08, 2013 Curvature Berkeley Math Circle January 08, 2013 Linda Green linda@marinmathcircle.org Parts of this handout are taken from Geometry and the Imagination by John Conway, Peter Doyle, Jane Gilman, and Bill

More information

Barycentric Coordinates and Parameterization

Barycentric Coordinates and Parameterization Barycentric Coordinates and Parameterization Center of Mass Geometric center of object Center of Mass Geometric center of object Object can be balanced on CoM How to calculate? Finding the Center of Mass

More information

Lecture 6 Introduction to Numerical Geometry. Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2018

Lecture 6 Introduction to Numerical Geometry. Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2018 Lecture 6 Introduction to Numerical Geometry Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2018 Outline Introduction Basic concepts in geometry Discrete geometry Metric for discrete

More information

Simplicial Complexes: Second Lecture

Simplicial Complexes: Second Lecture Simplicial Complexes: Second Lecture 4 Nov, 2010 1 Overview Today we have two main goals: Prove that every continuous map between triangulable spaces can be approximated by a simplicial map. To do this,

More information

Segmentation & Constraints

Segmentation & Constraints Siggraph Course Mesh Parameterization Theory and Practice Segmentation & Constraints Segmentation Necessary for closed and high genus meshes Reduce parametric distortion Chartification Texture Atlas Segmentation

More information

Planes Intersecting Cones: Static Hypertext Version

Planes Intersecting Cones: Static Hypertext Version Page 1 of 12 Planes Intersecting Cones: Static Hypertext Version On this page, we develop some of the details of the plane-slicing-cone picture discussed in the introduction. The relationship between the

More information

A Conformal Energy for Simplicial Surfaces

A Conformal Energy for Simplicial Surfaces Combinatorial and Computational Geometry MSRI Publications Volume 52, 2005 A Conformal Energy for Simplicial Surfaces ALEXANDER I. BOBENKO Abstract. A new functional for simplicial surfaces is suggested.

More information

Multiresolution Computation of Conformal Structures of Surfaces

Multiresolution Computation of Conformal Structures of Surfaces Multiresolution Computation of Conformal Structures of Surfaces Xianfeng Gu Yalin Wang Shing-Tung Yau Division of Engineering and Applied Science, Harvard University, Cambridge, MA 0138 Mathematics Department,

More information

GAUSS-BONNET FOR DISCRETE SURFACES

GAUSS-BONNET FOR DISCRETE SURFACES GAUSS-BONNET FOR DISCRETE SURFACES SOHINI UPADHYAY Abstract. Gauss-Bonnet is a deep result in differential geometry that illustrates a fundamental relationship between the curvature of a surface and its

More information

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College Topological Data Analysis - I Afra Zomorodian Department of Computer Science Dartmouth College September 3, 2007 1 Acquisition Vision: Images (2D) GIS: Terrains (3D) Graphics: Surfaces (3D) Medicine: MRI

More information

Mesh Morphing. Ligang Liu Graphics&Geometric Computing Lab USTC

Mesh Morphing. Ligang Liu Graphics&Geometric Computing Lab USTC Mesh Morphing Ligang Liu Graphics&Geometric Computing Lab USTC http://staff.ustc.edu.cn/~lgliu Morphing Given two objects produce sequence of intermediate objects that gradually evolve from one object

More information

COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW

COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW Abstract. In this paper, we propose a novel algorithm for computing surface uniformization for surfaces with arbitrary topology. According

More information

Lesson 3: Solving for Unknown Angles using Equations

Lesson 3: Solving for Unknown Angles using Equations Classwork Opening Exercise Two lines meet at the common vertex of two rays; the measurement of. Set up and solve an equation to find the value of and. Example 1 Set up and solve an equation to find the

More information

Triangulations of hyperbolic 3-manifolds admitting strict angle structures

Triangulations of hyperbolic 3-manifolds admitting strict angle structures Triangulations of hyperbolic 3-manifolds admitting strict angle structures Craig D. Hodgson, J. Hyam Rubinstein and Henry Segerman segerman@unimelb.edu.au University of Melbourne January 4 th 2012 Ideal

More information

Geometrization and the Poincaré conjecture

Geometrization and the Poincaré conjecture Geometrization and the Poincaré conjecture Jan Metzger BRIGFOS, 2008 History of the Poincaré conjecture In 1904 Poincaré formulated his conjecture. It is a statement about three dimensional geometric objects,

More information

CS 468 (Spring 2013) Discrete Differential Geometry

CS 468 (Spring 2013) Discrete Differential Geometry CS 468 (Spring 2013) Discrete Differential Geometry 1 Math Review Lecture 14 15 May 2013 Discrete Exterior Calculus Lecturer: Justin Solomon Scribe: Cassidy Saenz Before we dive into Discrete Exterior

More information

CAT(0)-spaces. Münster, June 22, 2004

CAT(0)-spaces. Münster, June 22, 2004 CAT(0)-spaces Münster, June 22, 2004 CAT(0)-space is a term invented by Gromov. Also, called Hadamard space. Roughly, a space which is nonpositively curved and simply connected. C = Comparison or Cartan

More information

Optimizing triangular meshes to have the incrircle packing property

Optimizing triangular meshes to have the incrircle packing property Packing Circles and Spheres on Surfaces Ali Mahdavi-Amiri Introduction Optimizing triangular meshes to have p g g the incrircle packing property Our Motivation PYXIS project Geometry Nature Geometry Isoperimetry

More information

6.2 Classification of Closed Surfaces

6.2 Classification of Closed Surfaces Table 6.1: A polygon diagram 6.1.2 Second Proof: Compactifying Teichmuller Space 6.2 Classification of Closed Surfaces We saw that each surface has a triangulation. Compact surfaces have finite triangulations.

More information

Boundary descriptors. Representation REPRESENTATION & DESCRIPTION. Descriptors. Moore boundary tracking

Boundary descriptors. Representation REPRESENTATION & DESCRIPTION. Descriptors. Moore boundary tracking Representation REPRESENTATION & DESCRIPTION After image segmentation the resulting collection of regions is usually represented and described in a form suitable for higher level processing. Most important

More information

Year 8 Set 2 : Unit 1 : Number 1

Year 8 Set 2 : Unit 1 : Number 1 Year 8 Set 2 : Unit 1 : Number 1 Learning Objectives: Level 5 I can order positive and negative numbers I know the meaning of the following words: multiple, factor, LCM, HCF, prime, square, square root,

More information

Computational Geometry Lecture Delaunay Triangulation

Computational Geometry Lecture Delaunay Triangulation Computational Geometry Lecture Delaunay Triangulation INSTITUTE FOR THEORETICAL INFORMATICS FACULTY OF INFORMATICS 7.12.2015 1 Modelling a Terrain Sample points p = (x p, y p, z p ) Projection π(p) = (p

More information

S2 May Extension Test Checklist of Topics Length and Perimeter Learning Outcomes Revised Need Help

S2 May Extension Test Checklist of Topics Length and Perimeter Learning Outcomes Revised Need Help S2 May Extension Test Checklist of Topics Length and Perimeter Undersand the correct units to use in context Estimate lengths and Measure correctly Calculate the Perimeter of a shape Find missing lengths

More information

Intersection of an Oriented Box and a Cone

Intersection of an Oriented Box and a Cone Intersection of an Oriented Box and a Cone David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International

More information

APPROXIMATING THE MAXMIN AND MINMAX AREA TRIANGULATIONS USING ANGULAR CONSTRAINTS. J. Mark Keil, Tzvetalin S. Vassilev

APPROXIMATING THE MAXMIN AND MINMAX AREA TRIANGULATIONS USING ANGULAR CONSTRAINTS. J. Mark Keil, Tzvetalin S. Vassilev Serdica J. Computing 4 00, 3 334 APPROXIMATING THE MAXMIN AND MINMAX AREA TRIANGULATIONS USING ANGULAR CONSTRAINTS J. Mark Keil, Tzvetalin S. Vassilev Abstract. We consider sets of points in the two-dimensional

More information

Solve 3-D problems using Pythagoras theorem and trigonometric ratios (A*) Solve more complex 2-D problems using Pythagoras theorem & trigonometry (A)

Solve 3-D problems using Pythagoras theorem and trigonometric ratios (A*) Solve more complex 2-D problems using Pythagoras theorem & trigonometry (A) Moving from A to A* Solve 3-D problems using Pythagoras theorem and trigonometric ratios (A*) A* Use the sine & cosine rules to solve more complex problems involving non right-angled triangles (A*) Find

More information

Assignment 4: Mesh Parametrization

Assignment 4: Mesh Parametrization CSCI-GA.3033-018 - Geometric Modeling Assignment 4: Mesh Parametrization In this exercise you will Familiarize yourself with vector field design on surfaces. Create scalar fields whose gradients align

More information

Topological Issues in Hexahedral Meshing

Topological Issues in Hexahedral Meshing Topological Issues in Hexahedral Meshing David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science Outline I. What is meshing? Problem statement Types of mesh Quality issues

More information

Question. Why is the third shape not convex?

Question. Why is the third shape not convex? 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D.

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

CAD & Computational Geometry Course plan

CAD & Computational Geometry Course plan Course plan Introduction Segment-Segment intersections Polygon Triangulation Intro to Voronoï Diagrams & Geometric Search Sweeping algorithm for Voronoï Diagrams 1 Voronoi Diagrams Voronoi Diagrams or

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into 2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into the viewport of the current application window. A pixel

More information

Computational Geometry

Computational Geometry Lecture 12: Lecture 12: Motivation: Terrains by interpolation To build a model of the terrain surface, we can start with a number of sample points where we know the height. Lecture 12: Motivation: Terrains

More information

Convex Hulls (3D) O Rourke, Chapter 4

Convex Hulls (3D) O Rourke, Chapter 4 Convex Hulls (3D) O Rourke, Chapter 4 Outline Polyhedra Polytopes Euler Characteristic (Oriented) Mesh Representation Polyhedra Definition: A polyhedron is a solid region in 3D space whose boundary is

More information

Tight Cocone DIEGO SALUME SEPTEMBER 18, 2013

Tight Cocone DIEGO SALUME SEPTEMBER 18, 2013 Tight Cocone DIEGO SALUME SEPTEMBER 18, 2013 Summary Problem: The Cocone algorithm produces surfaces with holes and artifacts in undersampled areas in the data. Solution: Extend the Cocone algorithm to

More information

Angle Structures and Hyperbolic Structures

Angle Structures and Hyperbolic Structures Angle Structures and Hyperbolic Structures Craig Hodgson University of Melbourne Throughout this talk: M = compact, orientable 3-manifold with M = incompressible tori, M. Theorem (Thurston): M irreducible,

More information

Lecture 8 Object Descriptors

Lecture 8 Object Descriptors Lecture 8 Object Descriptors Azadeh Fakhrzadeh Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading instructions Chapter 11.1 11.4 in G-W Azadeh Fakhrzadeh

More information