3D Transformation. In 3D, we have x, y, and z. We will continue use column vectors:. Homogenous systems:. x y z. x y z. glvertex3f(x, y,z);

Size: px
Start display at page:

Download "3D Transformation. In 3D, we have x, y, and z. We will continue use column vectors:. Homogenous systems:. x y z. x y z. glvertex3f(x, y,z);"

Transcription

1 3D Transformation

2 In 3D, we have x, y, and z. We will continue use column vectors:. Homogenous systems:. 3D Transformation glvertex3f(x, y,z); x y z x y z

3 A Right Handle Coordinate System x y z; y z x; z x y;

4 Transformation: 3D Translation Given a position (x, y, z) and an offset vector (tx, ty, tz): x' x + tx y' y + ty z' z + tz x' y' z' tx ty tz x y z

5 Transformation: 3D Scaling Change the object size: x' sx x y' sy y z' sz z x' y' z' sx sy sz x y z

6 Transformation: 3D Rotation Rotation needs an angle and an axis. Rotation is defined according to the right hand rule (our convention).

7 Transformation: 3D Rotation Axis Matrix Rotate around X: glrotatef(θ,,, ); Rotate around Y: glrotatef(θ,,, ); Rotate around Z: glrotatef(θ,,, ); x' y' z' cosθ sinθ sinθ cosθ x y z x' y' z' cosθ sinθ sinθ cosθ x y z x' y' z' cosθ sinθ sinθ cosθ x y z

8 How to quickly remember them The axis coordinate is unchanged. For the other two coordinates: Diagonals are filled with cos. Off diagonals are filled with sin. There is a sign

9 How to quickly remember them Here is an easier way to think about it: x' y' z' The vector after rotation a b c d e f g h i x y z The vector before rotation

10 How to quickly remember them a d g a b c d e f g h i X axis What X becomes After rotation b e h a b c d e f g h i Y axis What Y becomes After rotation c f i a b c d e f g h i Z axis What Z becomes After rotation

11 For example X Y Z cosθ sinθ sinθ cosθ θ cosθ sinθ sinθ cosθ θ X Y Z

12 Generic Rotation Use the rotation function: glrotatef(theta, x, y, z); In degree No need to be normalized x 2 ( c) + c xy( c) zs xz( c) + ys yx( c) + zs y 2 ( c) + c yz( c) xs xz( c) ys yz( c) + xs z 2 ( c) + c (x, y, z) c cosθ s sinθ Don t need to remember it, just for your reference. θ

13 What if I don t like a transformation, how do I get back? How to reverse a transformation x' y' z' M x y z x y z? x' y' z'?m x y z :? M M M MM I

14 Inverse Translation x' x + tx y' y + ty z' z + tz x' y' z' tx ty tz x y z x x' tx y y' ty z z' tz x y z tx ty tz x' y' z' gltranslatef(tx, ty, tz); gltranslatef(-tx, -ty, -tz);

15 Inverse Scaling x' x sx y' y sy z' z sz x' y' z' sx sy sz x y z x x'/ sx y y'/ sy z z'/ sz x y z sx sy sz x' y' z' glscalef(sx, sy, sz); glscalef(/sx, /sy, /sz);

16 Inverse Rotation x' y' z' cosθ sinθ sinθ cosθ x y z glrotatef(theta,,, ); Rotate_X by θ x' y' z' cosθ sinθ sinθ cosθ x y z glrotatef(-theta,,, ); Rotate_X by θ

17 Inverse Transformation The transformation has multiple matrices: v v' Mv (M M 2 M 3 M 4 )v Scaling Translation Rotation Translation v M M 2 M 3 M 4 Its inverse: v v' M v (M 4 M 3 M 2 M )v Translation Rotation Translation Scaling v M 4 M 3 M 2 M

18 OpenGL handles multiple matrices M I glloadidentity(); glrotatef( ); gltranslatef( ); glscalef( ); gltranslatef( ); glbegin(gl_points); glvertex3fv(v); glend(); M IM R M IM M R T M IM M M R T S M IM M M M R T S T v'mv IM R M T M S M T v

19 OpenGL handles multiple matrices Reverse Order glloadidentity(); glrotatef( ); gltranslatef( ); glscalef( ); gltranslatef( ); glbegin(gl_points); glvertex3fv(v); glend(); Define v Translation Scaling Translation Rotation v'mv IM R M T M S M T v

20 OpenGL has a reason. glrotatef( ); //A gltranslatef( );//B glscalef( ); //C glvertex3fv(v); Define v vcv vbv vav We think: v is transformed in a world coordinate system. Given a world locala(world) local2b(local) local3c(local2) Define vin local3 OpenGL think: world is moved into local. Each transformation is defined respect to the local.

21 For example gltranslatef(3,2,); glvertex3f(2,2,); We think (2, 2) moves by an offset (3, 2). OpenGL thinks the coordinate System moves by an offset (3, 2). The vertex defines at (2, 2) locally.

22 For example glrotatef(45,,,); glvertex3f(4,,); We think (4, ) rotates 45 degree. OpenGL thinks the coordinate System rotates 45 degree. The vertex defines at (4, ) locally.

23 For example glrotatef(45,,,); gltranslatef(4,,); glvertex3f(,,); We think (, ) first Translates, then rotates. OpenGL thinks the coordinate System first rotates, then translates.

24 For example glrotatef(45,,,); gltranslatef(4,,); glbegin( ); glvertex3f(,,); glend(); L2 Important Note: The second translation is defined respect to L, not W! L W OpenGL thinks the coordinate System first rotates, then translates.

25 A quiz L2 glrotatef(45,,,); gltranslatef(4,,); glvertex3f(,,); L W L2 gltranslatef(2.8,2.8,); glrotatef(45,,,); glvertex3f(,,); L (2.8, 2.8) W

26 What if we change the order? L2 glrotatef(45,,,); gltranslatef(2.8,2.8,); glvertex3f(,,); Important Note: The second transformation is defined respect to L, not W! L W

27 Order is important. L2 L2 L L (2.8, 2.8) W W gltranslatef(2.8,2.8,); glrotatef(45,,,); glvertex3f(,,); glrotatef(45,,,); gltranslatef(2.8,2.8,); glvertex3f(,,);

28 A quiz gltranslatef(3,4,); L W (3., 4.)

29 A quiz L2 gltranslatef(3,4,); glrotatef(45,,,); L W (3., 4.)

30 A quiz L3 gltranslatef(3,4,); glrotatef(45,,,); L glscalef(,2,); W (3., 4.)

31 A quiz L4 L3 gltranslatef(3,4,); glrotatef(45,,,); L glscalef(,2,); gltranslatef(3,,); W (3., 4.)

32 A quiz L4 L3 gltranslatef(3,4,); glrotatef(45,,,); L glscalef(,2,); gltranslatef(3,,); W glvertex3f(3,,); (3., 4.)

33 How do I know the coordinate system? W L3 OpenGL only use a ModelView matrix M. M is transformed in various ways. M s effect is to update each vertex as: x' y' z' M x y z a b c d e f g h i j k l x y z

34 How do I know the coordinate system? W L3 Case : d h l a b c d e f g h i j k l If we draw a dot at (,, ) in L3, we actually get (d, h, l) in W.

35 How do I know the coordinate system? W L3 Case 2: a + d e + h i + l a b c d e f g h i j k l If we draw a dot at (,, ) in L3, we actually get (a+d, e+h, i+l) in W.

36 How do I know the coordinate system? W L3 Case 2: a + d e + h i + l d h l a e i In other words, a unit xvector in L3 is (a, e, i) in W. a + d e + h i + l a b c d e f g h i j k l

37 How do I know the coordinate system? W L3 Case 2: b + d f + h j + l d h l b f j In other words, a unit yvector in L3 is (b, f, j) in W. b + d f + h j + l a b c d e f g h i j k l

38 How do I know the coordinate system? ModelView matrix is the coordinate system L3: L3 L3 s X in W L3 s Z in W x' y' z' a b c d e f g h i j k l x y z W L3 s Y in W L3 s Origin in W

39 Summary If we think: Each transformation updates the vertex in an absolute world. Then, the code is arranged in a reverse order. Alternatively, OpenGL thinks: A transformation updates the coordinate system. For each change, the transformation is defined in the current (local) coordinate system. Transformation matrix and coordinate system are the same. The code is in the forward order!

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 424 Computer Graphics 2D Transformations Yong Cao Virginia Tech References: Introduction to Computer Graphics course notes by Doug Bowman Interactive Computer Graphics, Fourth Edition, Ed Angle Transformations

More information

Computer Graphics. Chapter 7 2D Geometric Transformations

Computer Graphics. Chapter 7 2D Geometric Transformations Computer Graphics Chapter 7 2D Geometric Transformations Chapter 7 Two-Dimensional Geometric Transformations Part III. OpenGL Functions for Two-Dimensional Geometric Transformations OpenGL Geometric Transformation

More information

Lecture 6 Sections 4.3, 4.6, 4.7. Wed, Sep 9, 2009

Lecture 6 Sections 4.3, 4.6, 4.7. Wed, Sep 9, 2009 Lecture 6 Sections 4.3, 4.6, 4.7 Hampden-Sydney College Wed, Sep 9, 2009 Outline 1 2 3 4 re are three mutually orthogonal axes: the x-axis, the y-axis, and the z-axis. In the standard viewing position,

More information

Transformations. CSCI 420 Computer Graphics Lecture 4

Transformations. CSCI 420 Computer Graphics Lecture 4 CSCI 420 Computer Graphics Lecture 4 Transformations Jernej Barbic University of Southern California Vector Spaces Euclidean Spaces Frames Homogeneous Coordinates Transformation Matrices [Angel, Ch. 4]

More information

Computer Graphics. Chapter 5 Geometric Transformations. Somsak Walairacht, Computer Engineering, KMITL

Computer Graphics. Chapter 5 Geometric Transformations. Somsak Walairacht, Computer Engineering, KMITL Chapter 5 Geometric Transformations Somsak Walairacht, Computer Engineering, KMITL 1 Outline Basic Two-Dimensional Geometric Transformations Matrix Representations and Homogeneous Coordinates Inverse Transformations

More information

Lecture 5b. Transformation

Lecture 5b. Transformation Lecture 5b Transformation Refresher Transformation matrices [4 x 4]: the fourth coordinate is homogenous coordinate. Rotation Transformation: Axis of rotation must through origin (0,0,0). If not, translation

More information

COMP Computer Graphics and Image Processing. 5: Viewing 1: The camera. In part 1 of our study of Viewing, we ll look at ˆʹ U ˆ ʹ F ˆʹ S

COMP Computer Graphics and Image Processing. 5: Viewing 1: The camera. In part 1 of our study of Viewing, we ll look at ˆʹ U ˆ ʹ F ˆʹ S COMP27112 Û ˆF Ŝ Computer Graphics and Image Processing ˆʹ U ˆ ʹ F C E 5: iewing 1: The camera ˆʹ S Toby.Howard@manchester.ac.uk 1 Introduction In part 1 of our study of iewing, we ll look at iewing in

More information

Transformations. CSCI 420 Computer Graphics Lecture 5

Transformations. CSCI 420 Computer Graphics Lecture 5 CSCI 420 Computer Graphics Lecture 5 Transformations Jernej Barbic University of Southern California Vector Spaces Euclidean Spaces Frames Homogeneous Coordinates Transformation Matrices [Angel, Ch. 3]

More information

Transformations. OpenGL Transformations. 4x4 Model-view Matrix (this lecture) OpenGL Transformation Matrices. 4x4 Projection Matrix (next lecture)

Transformations. OpenGL Transformations. 4x4 Model-view Matrix (this lecture) OpenGL Transformation Matrices. 4x4 Projection Matrix (next lecture) CSCI 420 Computer Graphics Lecture 5 OpenGL Transformations Transformations Vector Spaces Euclidean Spaces Frames Homogeneous Coordinates Transformation Matrices Jernej Barbic [Angel, Ch. 3] University

More information

Computer Graphics Lighting

Computer Graphics Lighting Lighting 1 Mike Bailey mjb@cs.oregonstate.edu This work is licensed under a Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International License Lighting.pptx Why Do We Care About Lighting?

More information

Computer Graphics Lighting. Why Do We Care About Lighting?

Computer Graphics Lighting. Why Do We Care About Lighting? Lighting 1 Mike Bailey mjb@cs.oregonstate.edu This work is licensed under a Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International License Lighting.pptx Why Do We Care About Lighting?

More information

CSC 470 Computer Graphics

CSC 470 Computer Graphics CSC 470 Computer Graphics Transformations of Objects CSC 470 Computer Graphics, Dr.N. Georgieva, CSI/CUNY 1 Transformations of objects - 2D CSC 470 Computer Graphics, Dr.N. Georgieva, CSI/CUNY 2 Using

More information

Fall CSCI 420: Computer Graphics. 2.2 Transformations. Hao Li.

Fall CSCI 420: Computer Graphics. 2.2 Transformations. Hao Li. Fall 2017 CSCI 420: Computer Graphics 2.2 Transformations Hao Li http://cs420.hao-li.com 1 OpenGL Transformations Matrices Model-view matrix (4x4 matrix) Projection matrix (4x4 matrix) vertices in 3D Model-view

More information

CSCI E-74. Simulation and Gaming

CSCI E-74. Simulation and Gaming CSCI E-74 Virtual and Augmented Reality for Simulation and Gaming Fall term 2017 Gianluca De Novi, PhD Lesson 3 General Introduction to OpenGL APIs and TRS Perspective Simulation Perspective simulation

More information

Computer Science 336 Fall 2017 Homework 2

Computer Science 336 Fall 2017 Homework 2 Computer Science 336 Fall 2017 Homework 2 Use the following notation as pseudocode for standard 3D affine transformation matrices. You can refer to these by the names below. There is no need to write out

More information

GL_MODELVIEW transformation

GL_MODELVIEW transformation lecture 3 view transformations model transformations GL_MODELVIEW transformation view transformations: How do we map from world coordinates to camera/view/eye coordinates? model transformations: How do

More information

Chapter 3: Modeling Transformation

Chapter 3: Modeling Transformation Chapter 3: Modeling Transformation Graphics Programming, 8th Sep. Graphics and Media Lab. Seoul National University 2011 Fall OpenGL Steps Every step in the graphics pipeline is related to the transformation.

More information

Computer Graphics 7: Viewing in 3-D

Computer Graphics 7: Viewing in 3-D Computer Graphics 7: Viewing in 3-D In today s lecture we are going to have a look at: Transformations in 3-D How do transformations in 3-D work? Contents 3-D homogeneous coordinates and matrix based transformations

More information

Computer Graphics Geometric Transformations

Computer Graphics Geometric Transformations Computer Graphics 2016 6. Geometric Transformations Hongxin Zhang State Key Lab of CAD&CG, Zhejiang University 2016-10-31 Contents Transformations Homogeneous Co-ordinates Matrix Representations of Transformations

More information

Order of Transformations

Order of Transformations Order of Transformations Because the same transformation is applied to many vertices, the cost of forming a matrix M=ABCD is not significant compared to the cost of computing Mp for many vertices p Note

More information

1 Transformations. Chapter 1. Transformations. Department of Computer Science and Engineering 1-1

1 Transformations. Chapter 1. Transformations. Department of Computer Science and Engineering 1-1 Transformations 1-1 Transformations are used within the entire viewing pipeline: Projection from world to view coordinate system View modifications: Panning Zooming Rotation 1-2 Transformations can also

More information

Translation. 3D Transformations. Rotation about z axis. Scaling. CS 4620 Lecture 8. 3 Cornell CS4620 Fall 2009!Lecture 8

Translation. 3D Transformations. Rotation about z axis. Scaling. CS 4620 Lecture 8. 3 Cornell CS4620 Fall 2009!Lecture 8 Translation 3D Transformations CS 4620 Lecture 8 1 2 Scaling Rotation about z axis 3 4 Rotation about x axis Rotation about y axis 5 6 Transformations in OpenGL Stack-based manipulation of model-view transformation,

More information

GEOMETRIC TRANSFORMATIONS AND VIEWING

GEOMETRIC TRANSFORMATIONS AND VIEWING GEOMETRIC TRANSFORMATIONS AND VIEWING 2D and 3D 1/44 2D TRANSFORMATIONS HOMOGENIZED Transformation Scaling Rotation Translation Matrix s x s y cosθ sinθ sinθ cosθ 1 dx 1 dy These 3 transformations are

More information

Computer Graphics: Viewing in 3-D. Course Website:

Computer Graphics: Viewing in 3-D. Course Website: Computer Graphics: Viewing in 3-D Course Website: http://www.comp.dit.ie/bmacnamee 2 Contents Transformations in 3-D How do transformations in 3-D work? 3-D homogeneous coordinates and matrix based transformations

More information

Questions HW1 Transform Q/A. Transform. Shaoting Zhang. May 11, 2008

Questions HW1 Transform Q/A. Transform. Shaoting Zhang. May 11, 2008 May 11, 2008 My office Hour: Mon. 1:00-3:00pm, Hill-418 All of the slides and codes can be found by clicking my name in the course s website 1 2 3 4 Question 1 What s the result? glcolor3f(1.0,0.0,0.0);

More information

Modeling Objects by Polygonal Approximations. Linear and Affine Transformations (Maps)

Modeling Objects by Polygonal Approximations. Linear and Affine Transformations (Maps) Modeling Objects by Polygonal Approximations Define volumetric objects in terms of surfaces patches that surround the volume Each surface patch is approximated set of polygons Each polygon is specified

More information

蔡侑庭 (Yu-Ting Tsai) National Chiao Tung University, Taiwan. Prof. Wen-Chieh Lin s CG Slides OpenGL 2.1 Specification

蔡侑庭 (Yu-Ting Tsai) National Chiao Tung University, Taiwan. Prof. Wen-Chieh Lin s CG Slides OpenGL 2.1 Specification 蔡侑庭 (Yu-Ting Tsai) Department of Computer Science National Chiao Tung University, Taiwan Prof. Wen-Chieh Lin s CG Slides OpenGL 2.1 Specification OpenGL Programming Guide, Chap. 3 & Appendix F 2 OpenGL

More information

Affine Transformations Computer Graphics Scott D. Anderson

Affine Transformations Computer Graphics Scott D. Anderson Affine Transformations Computer Graphics Scott D. Anderson 1 Linear Combinations To understand the poer of an affine transformation, it s helpful to understand the idea of a linear combination. If e have

More information

Hello, welcome to the video lecture series on Digital Image Processing. So in today's lecture

Hello, welcome to the video lecture series on Digital Image Processing. So in today's lecture Digital Image Processing Prof. P. K. Biswas Department of Electronics and Electrical Communications Engineering Indian Institute of Technology, Kharagpur Module 02 Lecture Number 10 Basic Transform (Refer

More information

Reading. Hierarchical Modeling. Symbols and instances. Required: Angel, sections , 9.8. Optional:

Reading. Hierarchical Modeling. Symbols and instances. Required: Angel, sections , 9.8. Optional: Reading Required: Angel, sections 9.1 9.6, 9.8 Optional: Hierarchical Modeling OpenGL rogramming Guide, the Red Book, chapter 3 cse457-07-hierarchical 1 cse457-07-hierarchical 2 Symbols and instances Most

More information

Transformations. Mike Bailey. Oregon State University. Oregon State University. Computer Graphics. transformations.

Transformations. Mike Bailey. Oregon State University. Oregon State University. Computer Graphics. transformations. 1 Transformations Mike Bailey mjb@cs.oregonstate.edu transformations.pptx Geometry vs. Topology 2 Original Object 4 1 2 4 Geometry: Where things are (e.g., coordinates) 3 1 3 2 Geometry = changed Topology

More information

3D Mathematics. Co-ordinate systems, 3D primitives and affine transformations

3D Mathematics. Co-ordinate systems, 3D primitives and affine transformations 3D Mathematics Co-ordinate systems, 3D primitives and affine transformations Coordinate Systems 2 3 Primitive Types and Topologies Primitives Primitive Types and Topologies 4 A primitive is the most basic

More information

Graphics and Interaction Transformation geometry and homogeneous coordinates

Graphics and Interaction Transformation geometry and homogeneous coordinates 433-324 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

Affine Transformation. Edith Law & Mike Terry

Affine Transformation. Edith Law & Mike Terry Affine Transformation Edith Law & Mike Terry Graphic Models vs. Images Computer Graphics: the creation, storage and manipulation of images and their models Model: a mathematical representation of an image

More information

Exercise Max. Points Total 90

Exercise Max. Points Total 90 University of California San Diego Department of Computer Science CSE167: Introduction to Computer Graphics Fall Quarter 2014 Midterm Examination #1 Thursday, October 30 th, 2014 Instructor: Dr. Jürgen

More information

Rendering Pipeline and Coordinates Transforms

Rendering Pipeline and Coordinates Transforms Rendering Pipeline and Coordinates Transforms Alessandro Martinelli alessandro.martinelli@unipv.it 16 October 2013 Rendering Pipeline (3): Coordinates Transforms Rendering Architecture First Rendering

More information

Coordinate transformations. 5554: Packet 8 1

Coordinate transformations. 5554: Packet 8 1 Coordinate transformations 5554: Packet 8 1 Overview Rigid transformations are the simplest Translation, rotation Preserve sizes and angles Affine transformation is the most general linear case Homogeneous

More information

2D and 3D Transformations AUI Course Denbigh Starkey

2D and 3D Transformations AUI Course Denbigh Starkey 2D and 3D Transformations AUI Course Denbigh Starkey. Introduction 2 2. 2D transformations using Cartesian coordinates 3 2. Translation 3 2.2 Rotation 4 2.3 Scaling 6 3. Introduction to homogeneous coordinates

More information

CS4202: Test. 1. Write the letter corresponding to the library name next to the statement or statements that describe library.

CS4202: Test. 1. Write the letter corresponding to the library name next to the statement or statements that describe library. CS4202: Test Name: 1. Write the letter corresponding to the library name next to the statement or statements that describe library. (4 points) A. GLUT contains routines that use lower level OpenGL commands

More information

Transformations Computer Graphics I Lecture 4

Transformations Computer Graphics I Lecture 4 15-462 Computer Graphics I Lecture 4 Transformations Vector Spaces Affine and Euclidean Spaces Frames Homogeneous Coordinates Transformation Matrices January 23, 2003 [Angel, Ch. 4] Frank Pfenning Carnegie

More information

This library uses only GL functions but contains code for creating common objects and simplifying viewing.

This library uses only GL functions but contains code for creating common objects and simplifying viewing. PES Institute of Technology, Bangalore South Campus (Formerly PES School of Engineering) (Hosur Road, 1KM before Electronic City, Bangalore-560 100) INTERNAL TEST (SCHEME AND SOLUTION) 1 Subject Name:

More information

Computer Graphics: Geometric Transformations

Computer Graphics: Geometric Transformations Computer Graphics: Geometric Transformations Geometric 2D transformations By: A. H. Abdul Hafez Abdul.hafez@hku.edu.tr, 1 Outlines 1. Basic 2D transformations 2. Matrix Representation of 2D transformations

More information

PreCalculus Unit 1: Unit Circle Trig Quiz Review (Day 9)

PreCalculus Unit 1: Unit Circle Trig Quiz Review (Day 9) PreCalculus Unit 1: Unit Circle Trig Quiz Review (Day 9) Name Date Directions: You may NOT use Right Triangle Trigonometry for any of these problems! Use your unit circle knowledge to solve these problems.

More information

Lecture 4: Transformations and Matrices. CSE Computer Graphics (Fall 2010)

Lecture 4: Transformations and Matrices. CSE Computer Graphics (Fall 2010) Lecture 4: Transformations and Matrices CSE 40166 Computer Graphics (Fall 2010) Overall Objective Define object in object frame Move object to world/scene frame Bring object into camera/eye frame Instancing!

More information

CS452/552; EE465/505. Transformations

CS452/552; EE465/505. Transformations CS452/552; EE465/55 Transformations 1-29-15 Outline! Transformations Read: Angel, Chapter 4 (study cube.html/cube.js example) Helpful links: Linear Algebra: Khan Academy Lab1 is posted on github, due:

More information

1. We ll look at: Types of geometrical transformation. Vector and matrix representations

1. We ll look at: Types of geometrical transformation. Vector and matrix representations Tob Howard COMP272 Computer Graphics and Image Processing 3: Transformations Tob.Howard@manchester.ac.uk Introduction We ll look at: Tpes of geometrical transformation Vector and matri representations

More information

Hidden Surface Removal. 3D Graphics with OpenGL. Back-Face Culling

Hidden Surface Removal. 3D Graphics with OpenGL. Back-Face Culling Hidden Surface Removal Back Face Culling 3D Surfaces Bicubic Parametric Bezier Surface Patches 3D Graphics with OpenGL Back-Face Culling Define one side of each polygon to be the visible side That side

More information

Interactive Computer Graphics. Hearn & Baker, chapter D transforms Hearn & Baker, chapter 5. Aliasing and Anti-Aliasing

Interactive Computer Graphics. Hearn & Baker, chapter D transforms Hearn & Baker, chapter 5. Aliasing and Anti-Aliasing Interactive Computer Graphics Aliasing and Anti-Aliasing Hearn & Baker, chapter 4-7 D transforms Hearn & Baker, chapter 5 Aliasing and Anti-Aliasing Problem: jaggies Also known as aliasing. It results

More information

CS 591B Lecture 9: The OpenGL Rendering Pipeline

CS 591B Lecture 9: The OpenGL Rendering Pipeline CS 591B Lecture 9: The OpenGL Rendering Pipeline 3D Polygon Rendering Many applications use rendering of 3D polygons with direct illumination Spring 2007 Rui Wang 3D Polygon Rendering Many applications

More information

Transformations. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science

Transformations. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Transformations CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science 1 Objectives Introduce standard transformations - Rotation - Translation - Scaling - Shear Derive

More information

EECE 478. Learning Objectives. Learning Objectives. Linear Algebra and 3D Geometry. Linear algebra in 3D. Coordinate systems

EECE 478. Learning Objectives. Learning Objectives. Linear Algebra and 3D Geometry. Linear algebra in 3D. Coordinate systems EECE 478 Linear Algebra and 3D Geometry Learning Objectives Linear algebra in 3D Define scalars, points, vectors, lines, planes Manipulate to test geometric properties Coordinate systems Use homogeneous

More information

Hierarchical Modeling. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Hierarchical Modeling. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Hierarchical Modeling University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Angel, sections 9.1-9.6 [reader pp. 169-185] OpenGL Programming Guide, chapter 3 Focus especially

More information

Transformations Computer Graphics I Lecture 4

Transformations Computer Graphics I Lecture 4 15-462 Computer Graphics I Lecture 4 Transformations Vector Spaces Affine and Euclidean Spaces Frames Homogeneous Coordinates Transformation Matrices January 24, 2002 [Angel, Ch. 4] Frank Pfenning Carnegie

More information

Quaternion properties: addition. Introduction to quaternions. Quaternion properties: multiplication. Derivation of multiplication

Quaternion properties: addition. Introduction to quaternions. Quaternion properties: multiplication. Derivation of multiplication Introduction to quaternions Definition: A quaternion q consists of a scalar part s, s, and a vector part v ( xyz,,, v 3 : q where, [ s, v q [ s, ( xyz,, q s+ ix + jy + kz i 2 j 2 k 2 1 ij ji k k Quaternion

More information

Modeling with Transformations

Modeling with Transformations Modeling with Transformations Prerequisites This module requires some understanding of 3D geometry, particularly a sense of how objects can be moved around in 3-space. The student should also have some

More information

CS475/675: Computer Graphics End-Semester Examination (Solutions), Fall 2016

CS475/675: Computer Graphics End-Semester Examination (Solutions), Fall 2016 CS475/675: Computer Graphics End-Semester Examination (Solutions), Fall 2016 This paper has 6 (six) pages and 10 (ten) questions, totalling 80 (eighty) points. No calculators, notes, books, phones, tablets,

More information

Animating orientation. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University

Animating orientation. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Animating orientation CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Orientation in the plane θ (cos θ, sin θ) ) R θ ( x y = sin θ ( cos θ sin θ )( x y ) cos θ Refresher: Homogenous

More information

Vector Calculus: Understanding the Cross Product

Vector Calculus: Understanding the Cross Product University of Babylon College of Engineering Mechanical Engineering Dept. Subject : Mathematics III Class : 2 nd year - first semester Date: / 10 / 2016 2016 \ 2017 Vector Calculus: Understanding the Cross

More information

UNIT 2 2D TRANSFORMATIONS

UNIT 2 2D TRANSFORMATIONS UNIT 2 2D TRANSFORMATIONS Introduction With the procedures for displaying output primitives and their attributes, we can create variety of pictures and graphs. In many applications, there is also a need

More information

Name: [20 points] Consider the following OpenGL commands:

Name: [20 points] Consider the following OpenGL commands: Name: 2 1. [20 points] Consider the following OpenGL commands: glmatrimode(gl MODELVIEW); glloadidentit(); glrotatef( 90.0, 0.0, 1.0, 0.0 ); gltranslatef( 2.0, 0.0, 0.0 ); glscalef( 2.0, 1.0, 1.0 ); What

More information

Coordinate Frames and Transforms

Coordinate Frames and Transforms Coordinate Frames and Transforms 1 Specifiying Position and Orientation We need to describe in a compact way the position of the robot. In 2 dimensions (planar mobile robot), there are 3 degrees of freedom

More information

Introduction to 3D Graphics with OpenGL. Z-Buffer Hidden Surface Removal. Binghamton University. EngiNet. Thomas J. Watson

Introduction to 3D Graphics with OpenGL. Z-Buffer Hidden Surface Removal. Binghamton University. EngiNet. Thomas J. Watson Binghamton University EngiNet State University of New York EngiNet Thomas J. Watson School of Engineering and Applied Science WARNING All rights reserved. No Part of this video lecture series may be reproduced

More information

ME5286 Robotics Spring 2014 Quiz 1 Solution. Total Points: 30

ME5286 Robotics Spring 2014 Quiz 1 Solution. Total Points: 30 Page 1 of 7 ME5286 Robotics Spring 2014 Quiz 1 Solution Total Points: 30 (Note images from original quiz are not included to save paper/ space. Please see the original quiz for additional information and

More information

Lesson 28: When Can We Reverse a Transformation?

Lesson 28: When Can We Reverse a Transformation? Lesson 8 M Lesson 8: Student Outcomes Students determine inverse matrices using linear systems. Lesson Notes In the final three lessons of this module, students discover how to reverse a transformation

More information

CS 428: Fall Introduction to. Transformations in OpenGL + hierarchical modeling. Andrew Nealen, Rutgers, /21/2009 1

CS 428: Fall Introduction to. Transformations in OpenGL + hierarchical modeling. Andrew Nealen, Rutgers, /21/2009 1 CS 428: Fall 2009 Introduction to Computer Graphics Transformations in OpenGL + hierarchical modeling 9/21/2009 1 Review of affine transformations Use projective geometry staple of CG Euclidean (x,z) (x,y,z)

More information

Objectives. transformation. General Transformations. Affine Transformations. Notation. Pipeline Implementation. Introduce standard transformations

Objectives. transformation. General Transformations. Affine Transformations. Notation. Pipeline Implementation. Introduce standard transformations Objectives Transformations CS Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Introduce standard transformations - Rotation - Translation - Scaling - Shear Derive homogeneous

More information

Drawing and Coordinate Systems

Drawing and Coordinate Systems Drawing and Coordinate Systems Coordinate Systems World Coordinate system World window Screen Coordinate system Viewport Window to viewport mapping Screen Coordinate System Glut OpenGL (0,0) 0) Screen

More information

Affine Transformations. Transforming shape models Combining affine transformations Scene graphs, interactor trees Hit tests on transformed shapes

Affine Transformations. Transforming shape models Combining affine transformations Scene graphs, interactor trees Hit tests on transformed shapes Affine Transformations Transforming shape models Combining affine transformations Scene graphs, interactor trees Hit tests on transformed shapes Reacll: Shape Models We can think of widgets as shape models

More information

2D TRANSFORMATIONS AND MATRICES

2D TRANSFORMATIONS AND MATRICES 2D TRANSFORMATIONS AND MATRICES Representation of Points: 2 x 1 matrix: x y General Problem: B = T A T represents a generic operator to be applied to the points in A. T is the geometric transformation

More information

Game Engineering CS S-05 Linear Transforms

Game Engineering CS S-05 Linear Transforms Game Engineering CS420-2016S-05 Linear Transforms David Galles Department of Computer Science University of San Francisco 05-0: Matrices as Transforms Recall that Matrices are transforms Transform vectors

More information

Quiz #2 Review. Transformations & Matrices. Quiz #2 Review. Quiz #2 Review. Example: Change the time on y the clock. Example: Move clock hands

Quiz #2 Review. Transformations & Matrices. Quiz #2 Review. Quiz #2 Review. Example: Change the time on y the clock. Example: Move clock hands Quiz #2 Review Transformations & Matrices Introduction to Computer Graphics Dot Product a. b a b cos θ a b + a y b y + a z b z a. b a T b thus b [a a y a z ] b y b z a b + a y b y + a z b z Quiz #2 Review

More information

Representing 2D Transformations as Matrices

Representing 2D Transformations as Matrices Representing 2D Transformations as Matrices John E. Howland Department of Computer Science Trinity University One Trinity Place San Antonio, Texas 78212-7200 Voice: (210) 999-7364 Fax: (210) 999-7477 E-mail:

More information

Lesson 5.6: Angles in Standard Position

Lesson 5.6: Angles in Standard Position Lesson 5.6: Angles in Standard Position IM3 - Santowski IM3 - Santowski 1 Fast Five Opening Exercises! Use your TI 84 calculator:! Evaluate sin(50 ) " illustrate with a diagram! Evaluate sin(130 ) " Q

More information

CS D Transformation. Junqiao Zhao 赵君峤

CS D Transformation. Junqiao Zhao 赵君峤 CS10101001 3D Transformation Junqiao Zhao 赵君峤 Department of Computer Science and Technology College of Electronics and Information Engineering Tongji University Review Translation Linear transformation

More information

Luiz Fernando Martha André Pereira

Luiz Fernando Martha André Pereira Computer Graphics for Engineering Numerical simulation in technical sciences Color / OpenGL Luiz Fernando Martha André Pereira Graz, Austria June 2014 To Remember Computer Graphics Data Processing Data

More information

3D Viewing Episode 2

3D Viewing Episode 2 3D Viewing Episode 2 1 Positioning and Orienting the Camera Recall that our projection calculations, whether orthographic or frustum/perspective, were made with the camera at (0, 0, 0) looking down the

More information

Transformation. Computer Graphics October. Dr Anton Gerdelan

Transformation. Computer Graphics October. Dr Anton Gerdelan Transformation Computer Graphics 4052 6 October Dr Anton Gerdelan gerdela@scss.tcd.ie Simplest Example Easiest way to scale our triangle? Easiest way to move our triangle? Demo time First Maths Revision

More information

Transformation Pipeline

Transformation Pipeline Transformation Pipeline Local (Object) Space Modeling World Space Clip Space Projection Eye Space Viewing Perspective divide NDC space Normalized l d Device Coordinatesd Viewport mapping Screen space Coordinate

More information

Rotation with Quaternions

Rotation with Quaternions Rotation with Quaternions Contents 1 Introduction 1.1 Translation................... 1. Rotation..................... 3 Quaternions 5 3 Rotations Represented as Quaternions 6 3.1 Dynamics....................

More information

Shadows in Computer Graphics

Shadows in Computer Graphics Shadows in Computer Graphics Steven Janke November 2014 Steven Janke (Seminar) Shadows in Computer Graphics November 2014 1 / 49 Shadows (from Doom) Steven Janke (Seminar) Shadows in Computer Graphics

More information

Affine Transformations in 3D

Affine Transformations in 3D Affine Transformations in 3D 1 Affine Transformations in 3D 1 Affine Transformations in 3D General form 2 Translation Elementary 3D Affine Transformations 3 Scaling Around the Origin 4 Along x-axis Shear

More information

Introduction to Computer Graphics with WebGL

Introduction to Computer Graphics with WebGL Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science Laboratory University of New Mexico WebGL Transformations

More information

Fundamental Types of Viewing

Fundamental Types of Viewing Viewings Fundamental Types of Viewing Perspective views finite COP (center of projection) Parallel views COP at infinity DOP (direction of projection) perspective view parallel view Classical Viewing Specific

More information

Mobile Application Programming. OpenGL ES 3D

Mobile Application Programming. OpenGL ES 3D Mobile Application Programming OpenGL ES 3D All Points Transformations xf = xo + tx yf = yo + ty xf = xo sx yf = yo sy xf = xi cosθ - yi sinθ yf = xi sinθ + yi cosθ All Points Transformations xf = xo +

More information

Supplementary Material: The Rotation Matrix

Supplementary Material: The Rotation Matrix Supplementary Material: The Rotation Matrix Computer Science 4766/6778 Department of Computer Science Memorial University of Newfoundland January 16, 2014 COMP 4766/6778 (MUN) The Rotation Matrix January

More information

(Refer Slide Time: 00:04:20)

(Refer Slide Time: 00:04:20) Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 8 Three Dimensional Graphics Welcome back all of you to the lectures in Computer

More information

3D Transformations World Window to Viewport Transformation Week 2, Lecture 4

3D Transformations World Window to Viewport Transformation Week 2, Lecture 4 CS 430/536 Computer Graphics I 3D Transformations World Window to Viewport Transformation Week 2, Lecture 4 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory

More information

Scene Graphs. CS4620/5620: Lecture 7. Announcements. HW 1 out. PA 1 will be out on Wed

Scene Graphs. CS4620/5620: Lecture 7. Announcements. HW 1 out. PA 1 will be out on Wed CS4620/5620: Lecture 7 Scene Graphs 1 Announcements HW 1 out PA 1 will be out on Wed Next week practicum will have an office hour type session on Open GL 2 Example Can represent drawing with flat list

More information

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Transformations Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Angel: Interactive Computer Graphics 4E Addison-Wesley 25 1 Objectives

More information

Viewing and Projection

Viewing and Projection 15-462 Computer Graphics I Lecture 5 Viewing and Projection Shear Transformation Camera Positioning Simple Parallel Projections Simple Perspective Projections [Angel, Ch. 5.2-5.4] January 30, 2003 [Red

More information

Mobile Application Programming: Android. OpenGL ES 3D

Mobile Application Programming: Android. OpenGL ES 3D Mobile Application Programming: Android OpenGL ES 3D All Points Transformations xf = xo + tx yf = yo + ty xf = xo sx yf = yo sy xf = xi cosθ - yi sinθ yf = xi sinθ + yi cosθ All Points Transformations

More information

T y. x Ax By Cz D. z Ix Jy Kz L. Geometry: Topology: Transformations

T y. x Ax By Cz D. z Ix Jy Kz L. Geometry: Topology: Transformations Transformations Geometr vs. Topolog Original Object This work is licensed under a Creative Commons Attribution-NonCommercial- NoDerivatives.0 International License Mike Baile mjb@cs.oregonstate.edu Geometr:

More information

COMP30019 Graphics and Interaction Three-dimensional transformation geometry and perspective

COMP30019 Graphics and Interaction Three-dimensional transformation geometry and perspective COMP30019 Graphics and Interaction Three-dimensional transformation geometry and perspective Department of Computing and Information Systems The Lecture outline Introduction Rotation about artibrary axis

More information

3D Graphics Pipeline II Clipping. Instructor Stephen J. Guy

3D Graphics Pipeline II Clipping. Instructor Stephen J. Guy 3D Graphics Pipeline II Clipping Instructor Stephen J. Guy 3D Rendering Pipeline (for direct illumination) 3D Geometric Primitives 3D Model Primitives Modeling Transformation 3D World Coordinates Lighting

More information

INF3320 Computer Graphics and Discrete Geometry

INF3320 Computer Graphics and Discrete Geometry INF3320 Computer Graphics and Discrete Geometry Transforms (part II) Christopher Dyken and Martin Reimers 21.09.2011 Page 1 Transforms (part II) Real Time Rendering book: Transforms (Chapter 4) The Red

More information

Overview. By end of the week:

Overview. By end of the week: Overview By end of the week: - Know the basics of git - Make sure we can all compile and run a C++/ OpenGL program - Understand the OpenGL rendering pipeline - Understand how matrices are used for geometric

More information

6. Modelview Transformations

6. Modelview Transformations 6. Modelview Transformations Transformation Basics Transformations map coordinates from one frame of reference to another through matri multiplications Basic transformation operations include: - translation

More information

Hierarchical Modeling II. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Hierarchical Modeling II. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Hierarchical Modeling II Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Objectives Build a tree-structured model of a humanoid figure

More information

2D and 3D Coordinate Systems and Transformations

2D and 3D Coordinate Systems and Transformations Graphics & Visualization Chapter 3 2D and 3D Coordinate Systems and Transformations Graphics & Visualization: Principles & Algorithms Introduction In computer graphics is often necessary to change: the

More information