LDA for Big Data - Outline

Size: px
Start display at page:

Download "LDA for Big Data - Outline"

Transcription

1 LDA FOR BIG DATA 1

2 LDA for Big Data - Outline Quick review of LDA model clustering words-in-context Parallel LDA ~= IPM Fast sampling tricks for LDA Sparsified sampler Alias table Fenwick trees LDA for text à LDA-like models for graphs 2

3 Recap: The LDA Topic Model 3

4 Unsupervised NB vs LDA one class prior α π α different class distrib θ for each doc θ d one Y per doc Y W one Z per word ZY di W di N d N d D D β γ K β 4 γ k K

5 LDA topics: top words w by Pr(w Z=k) Z=13 Z=22 Z=27 Z=19 5

6 LDA s view of a document Mixed membership model 6

7 LDA and (Collapsed) Gibbs Sampling Gibbs sampling works for any directed model! - Applicable when joint distribution is hard to evaluate but conditional distribution is known - Sequence of samples comprises a Markov Chain - Stationary distribution of the chain is the joint distribution Key capability: estimate distribution of one latent variables given the other latent variables and observed variables. 7

8 Recap: Collapsed Sampling for LDA α θ d Pr(Z E+) Pr(E- Z) ZY di fraction of time Z=t in doc d fraction of time W=w in topic t W di ignores a detail counts should not include the Z di being sampled N d D Only sample the Z s β 8 γ k K

9 PARALLEL LDA 9

10 JMLR

11 Observation How much does the choice of z depend on the other z s in the same document? quite a lot How much does the choice of z depend on the other z s in elsewhere in the corpus? maybe not so much depends on Pr(w t) but that changes slowly Can we parallelize Gibbs and still get good results? 11

12 Question Can we parallelize Gibbs sampling? formally, no: every choice of z depends on all the other z s Gibbs needs to be sequential just like SGD 12

13 What if you try and parallelize? Split document/term matrix randomly and distribute to p processors.. then run Approximate Distributed LDA This is iterative parameter mixing 13

14 What if you try and parallelize? All-Reduce cost D=#docs W=#word(types) K=#topics N=words in corpus 14

15 15

16 16

17 17

18 18

19 Later work. Algorithms: Distributed variational EM Asynchronous LDA (AS-LDA) Approximate Distributed LDA (AD-LDA) Ensemble versions of LDA: HLDA, DCM-LDA Implementations: GitHub Yahoo_LDA not Hadoop, special-purpose communication code for synchronizing the global counts Alex Smola, YahooàCMU Mahout LDA Andy Schlaikjer, CMUàTwitter 19

20 FAST SAMPLING FOR LDA 20

21 RECAP More detail linear in corpus size and #topics time and space 21

22 RECAP each iteration: linear in corpus size resample: linear in #topics most of the time is resampling 22

23 RECAP random z=1 z=2 z=3 unit height 1. You spend a lot of time sampling 2. There s a loop over all topics here in the sampler 23

24 KDD 09 24

25 random z=1 z=2 z=3 unit height

26 z=s+r+q z=2 z=3 height s z=2 z=3 r z=1 z=2 z=3 q 26

27 Draw random U from uniform[0,1] If U<s: lookup U on line segment with tic-marks at α 1 β/(βv + n. 1 ), α 2 β/(βv + n. 2 ), lizer = s+r+q random U height s 27

28 If U<s: lookup U on line segment with tic-marks at α 1 β/(βv + n. 1 ), α 2 β/(βv + n. 2 ), If s<u<r: lookup U on line segment for r Only need to check t such that n t d >0 z=s+r+q 28

29 If U<s: lookup U on line segment with tic-marks at α 1 β/(βv + n. 1 ), α 2 β/(βv + n. 2 ), If s<u<s+r: lookup U on line segment for r If s+r<u: lookup U on line segment for q z=s+r+q Only need to check t such that n w t >0 29

30 Only need to check occasionally (< 10% of the time) Only need to check t such that n t d >0 z=s+r+q Only need to check t such that n w t >0 30

31 Only need to store (and maintain) total words per topic and α s,β,v Trick; count up n t d for d when you start working on d and update incrementally Only need to store n t d for current d z=s+r+q Need to store n w t for each word, topic pair??? 31

32 z=1 z=2 z=3 z=2 z=3 z=1 1. Precompute, for each t, 2. Quickly find t s such that n w t is large for w Most (>90%) of the time and space is here z=s+r+q Need to store n w t for each word, topic pair??? 32

33 1. Precompute, for each t, 2. Quickly find t s such that n w t is large for w associate each w with an int array no larger than frequency of w no larger than #topics encode (t,n) as a bit vector n in the high-order bits t in the low-order bits keep ints sorted in descending order Most (>90%) of the time and space is here Need to store n w t for each word, topic pair??? 33

34 34

35 Other Fast Samplers for LDA 35

36 Alias tables O(K) Basic problem: how can we sample from a biased coin quickly? If the distribution changes slowly maybe we can do some preprocessing and then sample multiple times. Proof of concept: generate r~uniform and use a binary tree r in (23/40,7/10] O(log2K) 36

37 Alias tables Basic problem: how can we sample from a biased die quickly? O(K) 37

38 Alias tables Another idea Simulate the dart with two drawn values: rx è int(u1*k) ry è u1*p max keep throwing till you hit a stripe 38

39 Alias tables An even more clever idea: minimize the brown space (where the dart misses ) by sizing the rectangle s height to the average probability, not the maximum probability, and cutting and pasting a bit. You can always do this using only two colors in each column of the final alias table and the dart never misses! mathematically speaking 39

40 LDA with Alias Sampling [KDD 2014] Sample Z s with alias sampler Don t update the sampler with each flip: Correct for staleness with Metropolis-Hastings algorithm 40

41 41

42 Yet More Fast Samplers for LDA 42

43 WWW

44 Fenwick Tree (1994) O(K) Basic problem: how can we sample from a biased die quickly. and update quickly? maybe we can use a binary tree. r in (23/40,7/10] O(log2K) 44

45 Data structures and algorithms LSearch: linear search 45

46 Data structures and algorithms BSearch: binary search store cumulative probability 46

47 Data structures and algorithms Alias sampling.. 47

48 Data structures and algorithms Fenwick tree 48

49 Data structures and algorithms Fenwick tree βq: dense, changes slowly, re-used for each word in a document Sampler is: Binary search r: sparse, a different one is needed for each uniq term in doc 49

50 Speedup vs std LDA sampler (1024 topics) 50

51 Speedup vs std LDA sampler (10k-50k opics) 51

52 And Parallelism. 52

53 Second idea: you can sample document-by-document or word-byword. or. use a MF-like approach to distributing the data. 53

54 54

55 Multi-core NOMAD method 55

56 LDA-LIKE MODELS FOR GRAPHS 56

57 Network Datasets UBMCBlog AGBlog MSPBlog Cora Citeseer 57

58 Motivation Social graphs seem to have some aspects of randomness small diameter, giant connected components,.. some structure homophily, scale-free degree dist? How do you model it? 58

59 More terms Stochastic block model, aka Block-stochastic matrix : Draw n i nodes in block i With probability p ij, connect pairs (u,v) where u is in block i, v is in block j Special, simple case: p ii =q i, and pij=s for all i j Question: can you fit this model to a graph? find each p ij and latent nodeàblock mapping 59

60 Not? football 60

61 Not? books 61

62 Stochastic Block models: assume 1) nodes w/in a block z and 2) edges between blocks z p,z q are exchangeable a b zp z p z q p N a pq N 2 62

63 Another mixed membership block model 63

64 Another mixed membership block model z=(zi,zj) is a pair of block ids n z = #pairs z q z1, i = #links to i from block z1 q z1,. = #outlinks in block z1 δ = indicator for diagonal M = #nodes 64

65 Experiments Balasubramanyan, Lin, Cohen, NIPS w/s

CS281 Section 9: Graph Models and Practical MCMC

CS281 Section 9: Graph Models and Practical MCMC CS281 Section 9: Graph Models and Practical MCMC Scott Linderman November 11, 213 Now that we have a few MCMC inference algorithms in our toolbox, let s try them out on some random graph models. Graphs

More information

Feature LDA: a Supervised Topic Model for Automatic Detection of Web API Documentations from the Web

Feature LDA: a Supervised Topic Model for Automatic Detection of Web API Documentations from the Web Feature LDA: a Supervised Topic Model for Automatic Detection of Web API Documentations from the Web Chenghua Lin, Yulan He, Carlos Pedrinaci, and John Domingue Knowledge Media Institute, The Open University

More information

Parallel Gibbs Sampling From Colored Fields to Thin Junction Trees

Parallel Gibbs Sampling From Colored Fields to Thin Junction Trees Parallel Gibbs Sampling From Colored Fields to Thin Junction Trees Joseph Gonzalez Yucheng Low Arthur Gretton Carlos Guestrin Draw Samples Sampling as an Inference Procedure Suppose we wanted to know the

More information

Semi-supervised learning SSL (on graphs)

Semi-supervised learning SSL (on graphs) Semi-supervised learning SSL (on graphs) 1 Announcement No office hour for William after class today! 2 Semi-supervised learning Given: A pool of labeled examples L A (usually larger) pool of unlabeled

More information

Markov chain Monte Carlo methods

Markov chain Monte Carlo methods Markov chain Monte Carlo methods (supplementary material) see also the applet http://www.lbreyer.com/classic.html February 9 6 Independent Hastings Metropolis Sampler Outline Independent Hastings Metropolis

More information

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov ECE521: Week 11, Lecture 20 27 March 2017: HMM learning/inference With thanks to Russ Salakhutdinov Examples of other perspectives Murphy 17.4 End of Russell & Norvig 15.2 (Artificial Intelligence: A Modern

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 4, 2016 Outline Multi-core v.s. multi-processor Parallel Gradient Descent Parallel Stochastic Gradient Parallel Coordinate Descent Parallel

More information

Templates. for scalable data analysis. 3 Distributed Latent Variable Models. Amr Ahmed, Alexander J Smola, Markus Weimer

Templates. for scalable data analysis. 3 Distributed Latent Variable Models. Amr Ahmed, Alexander J Smola, Markus Weimer Templates for scalable data analysis 3 Distributed Latent Variable Models Amr Ahmed, Alexander J Smola, Markus Weimer Yahoo! Research & UC Berkeley & ANU Variations on a theme inference for mixtures Parallel

More information

Parallelizing Big Data Machine Learning Algorithms with Model Rotation

Parallelizing Big Data Machine Learning Algorithms with Model Rotation Parallelizing Big Data Machine Learning Algorithms with Model Rotation Bingjing Zhang, Bo Peng, Judy Qiu School of Informatics and Computing Indiana University Bloomington, IN, USA Email: {zhangbj, pengb,

More information

Parallelism for LDA Yang Ruan, Changsi An

Parallelism for LDA Yang Ruan, Changsi An Parallelism for LDA Yang Ruan, Changsi An (yangruan@indiana.edu, anch@indiana.edu) 1. Overview As parallelism is very important for large scale of data, we want to use different technology to parallelize

More information

Quantitative Biology II!

Quantitative Biology II! Quantitative Biology II! Lecture 3: Markov Chain Monte Carlo! March 9, 2015! 2! Plan for Today!! Introduction to Sampling!! Introduction to MCMC!! Metropolis Algorithm!! Metropolis-Hastings Algorithm!!

More information

Partitioning Algorithms for Improving Efficiency of Topic Modeling Parallelization

Partitioning Algorithms for Improving Efficiency of Topic Modeling Parallelization Partitioning Algorithms for Improving Efficiency of Topic Modeling Parallelization Hung Nghiep Tran University of Information Technology VNU-HCMC Vietnam Email: nghiepth@uit.edu.vn Atsuhiro Takasu National

More information

Efficient and Scalable Topic Model Training on Distributed Data-Parallel Platform

Efficient and Scalable Topic Model Training on Distributed Data-Parallel Platform Efficient and Scalable Topic Model Training on Distributed Data-Parallel Platform Bo Zhao 12, Hucheng Zhou 1, Guoqiang Li 3 and Yihua Huang 2 1 Microsoft Research 2 Nanjing University 3 Huawei Inc. Submission

More information

Recap: The E-M algorithm. Biostatistics 615/815 Lecture 22: Gibbs Sampling. Recap - Local minimization methods

Recap: The E-M algorithm. Biostatistics 615/815 Lecture 22: Gibbs Sampling. Recap - Local minimization methods Recap: The E-M algorithm Biostatistics 615/815 Lecture 22: Gibbs Sampling Expectation step (E-step) Given the current estimates of parameters λ (t), calculate the conditional distribution of latent variable

More information

INTRO TO SEMI-SUPERVISED LEARNING (SSL)

INTRO TO SEMI-SUPERVISED LEARNING (SSL) SSL (on graphs) 1 INTRO TO SEMI-SUPERVISED LEARNING (SSL) Semi-supervised learning Given: A pool of labeled examples L A (usually larger) pool of unlabeled examples U Option 1 for using L and U : Ignore

More information

More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server

More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server Q. Ho, J. Cipar, H. Cui, J.K. Kim, S. Lee, *P.B. Gibbons, G.A. Gibson, G.R. Ganger, E.P. Xing Carnegie Mellon University

More information

Statistical Matching using Fractional Imputation

Statistical Matching using Fractional Imputation Statistical Matching using Fractional Imputation Jae-Kwang Kim 1 Iowa State University 1 Joint work with Emily Berg and Taesung Park 1 Introduction 2 Classical Approaches 3 Proposed method 4 Application:

More information

Clustering web search results

Clustering web search results Clustering K-means Machine Learning CSE546 Emily Fox University of Washington November 4, 2013 1 Clustering images Set of Images [Goldberger et al.] 2 1 Clustering web search results 3 Some Data 4 2 K-means

More information

Short-Cut MCMC: An Alternative to Adaptation

Short-Cut MCMC: An Alternative to Adaptation Short-Cut MCMC: An Alternative to Adaptation Radford M. Neal Dept. of Statistics and Dept. of Computer Science University of Toronto http://www.cs.utoronto.ca/ radford/ Third Workshop on Monte Carlo Methods,

More information

Collective classification in network data

Collective classification in network data 1 / 50 Collective classification in network data Seminar on graphs, UCSB 2009 Outline 2 / 50 1 Problem 2 Methods Local methods Global methods 3 Experiments Outline 3 / 50 1 Problem 2 Methods Local methods

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University June 15, 2015 David Rosenberg (New York University) DS-GA 1003 June 15, 2015 1 / 43 K-Means Clustering Example: Old Faithful Geyser

More information

Markov Random Fields and Gibbs Sampling for Image Denoising

Markov Random Fields and Gibbs Sampling for Image Denoising Markov Random Fields and Gibbs Sampling for Image Denoising Chang Yue Electrical Engineering Stanford University changyue@stanfoed.edu Abstract This project applies Gibbs Sampling based on different Markov

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

Case Study IV: Bayesian clustering of Alzheimer patients

Case Study IV: Bayesian clustering of Alzheimer patients Case Study IV: Bayesian clustering of Alzheimer patients Mike Wiper and Conchi Ausín Department of Statistics Universidad Carlos III de Madrid Advanced Statistics and Data Mining Summer School 2nd - 6th

More information

Using Butterfly-Patterned Partial Sums to Draw from Discrete Distributions

Using Butterfly-Patterned Partial Sums to Draw from Discrete Distributions Using Butterfly-Patterned Partial Sums to Draw from Discrete Distributions Guy L. Steele Jr. Software Architect Oracle Labs April 6, 2016 The image part with relationship Copyright 2016 Oracle and/or its

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

Clustering Relational Data using the Infinite Relational Model

Clustering Relational Data using the Infinite Relational Model Clustering Relational Data using the Infinite Relational Model Ana Daglis Supervised by: Matthew Ludkin September 4, 2015 Ana Daglis Clustering Data using the Infinite Relational Model September 4, 2015

More information

CSE 546 Machine Learning, Autumn 2013 Homework 2

CSE 546 Machine Learning, Autumn 2013 Homework 2 CSE 546 Machine Learning, Autumn 2013 Homework 2 Due: Monday, October 28, beginning of class 1 Boosting [30 Points] We learned about boosting in lecture and the topic is covered in Murphy 16.4. On page

More information

Mathematical Analysis of Google PageRank

Mathematical Analysis of Google PageRank INRIA Sophia Antipolis, France Ranking Answers to User Query Ranking Answers to User Query How a search engine should sort the retrieved answers? Possible solutions: (a) use the frequency of the searched

More information

Online Social Networks and Media

Online Social Networks and Media Online Social Networks and Media Absorbing Random Walks Link Prediction Why does the Power Method work? If a matrix R is real and symmetric, it has real eigenvalues and eigenvectors: λ, w, λ 2, w 2,, (λ

More information

MCMC Diagnostics. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) MCMC Diagnostics MATH / 24

MCMC Diagnostics. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) MCMC Diagnostics MATH / 24 MCMC Diagnostics Yingbo Li Clemson University MATH 9810 Yingbo Li (Clemson) MCMC Diagnostics MATH 9810 1 / 24 Convergence to Posterior Distribution Theory proves that if a Gibbs sampler iterates enough,

More information

Expectation Maximization: Inferring model parameters and class labels

Expectation Maximization: Inferring model parameters and class labels Expectation Maximization: Inferring model parameters and class labels Emily Fox University of Washington February 27, 2017 Mixture of Gaussian recap 1 2/26/17 Jumble of unlabeled images HISTOGRAM blue

More information

Cycles in Random Graphs

Cycles in Random Graphs Cycles in Random Graphs Valery Van Kerrebroeck Enzo Marinari, Guilhem Semerjian [Phys. Rev. E 75, 066708 (2007)] [J. Phys. Conf. Series 95, 012014 (2008)] Outline Introduction Statistical Mechanics Approach

More information

Overview. Monte Carlo Methods. Statistics & Bayesian Inference Lecture 3. Situation At End Of Last Week

Overview. Monte Carlo Methods. Statistics & Bayesian Inference Lecture 3. Situation At End Of Last Week Statistics & Bayesian Inference Lecture 3 Joe Zuntz Overview Overview & Motivation Metropolis Hastings Monte Carlo Methods Importance sampling Direct sampling Gibbs sampling Monte-Carlo Markov Chains Emcee

More information

Behavioral Data Mining. Lecture 18 Clustering

Behavioral Data Mining. Lecture 18 Clustering Behavioral Data Mining Lecture 18 Clustering Outline Why? Cluster quality K-means Spectral clustering Generative Models Rationale Given a set {X i } for i = 1,,n, a clustering is a partition of the X i

More information

Stochastic Simulation: Algorithms and Analysis

Stochastic Simulation: Algorithms and Analysis Soren Asmussen Peter W. Glynn Stochastic Simulation: Algorithms and Analysis et Springer Contents Preface Notation v xii I What This Book Is About 1 1 An Illustrative Example: The Single-Server Queue 1

More information

Liangjie Hong*, Dawei Yin*, Jian Guo, Brian D. Davison*

Liangjie Hong*, Dawei Yin*, Jian Guo, Brian D. Davison* Tracking Trends: Incorporating Term Volume into Temporal Topic Models Liangjie Hong*, Dawei Yin*, Jian Guo, Brian D. Davison* Dept. of Computer Science and Engineering, Lehigh University, Bethlehem, PA,

More information

Missing Data Analysis for the Employee Dataset

Missing Data Analysis for the Employee Dataset Missing Data Analysis for the Employee Dataset 67% of the observations have missing values! Modeling Setup Random Variables: Y i =(Y i1,...,y ip ) 0 =(Y i,obs, Y i,miss ) 0 R i =(R i1,...,r ip ) 0 ( 1

More information

Today s lecture. Clustering and unsupervised learning. Hierarchical clustering. K-means, K-medoids, VQ

Today s lecture. Clustering and unsupervised learning. Hierarchical clustering. K-means, K-medoids, VQ Clustering CS498 Today s lecture Clustering and unsupervised learning Hierarchical clustering K-means, K-medoids, VQ Unsupervised learning Supervised learning Use labeled data to do something smart What

More information

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask Machine Learning and Data Mining Clustering (1): Basics Kalev Kask Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand patterns of

More information

Predictive Discrete Latent Factor Models for Large Scale Dyadic Data Deepak Agarwal, Srujana Merugu Yahoo! Research

Predictive Discrete Latent Factor Models for Large Scale Dyadic Data Deepak Agarwal, Srujana Merugu Yahoo! Research Predictive Discrete Latent Factor Models for Large Scale Dyadic Data Deepak Agarwal, Srujana Merugu Yahoo! Research March 5, 2009 Outline 1 Motivation 2 Background 3 Algorithm 4 Analysis Recommender System

More information

1 Methods for Posterior Simulation

1 Methods for Posterior Simulation 1 Methods for Posterior Simulation Let p(θ y) be the posterior. simulation. Koop presents four methods for (posterior) 1. Monte Carlo integration: draw from p(θ y). 2. Gibbs sampler: sequentially drawing

More information

Link Structure Analysis

Link Structure Analysis Link Structure Analysis Kira Radinsky All of the following slides are courtesy of Ronny Lempel (Yahoo!) Link Analysis In the Lecture HITS: topic-specific algorithm Assigns each page two scores a hub score

More information

Classification. 1 o Semestre 2007/2008

Classification. 1 o Semestre 2007/2008 Classification Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2007/2008 Slides baseados nos slides oficiais do livro Mining the Web c Soumen Chakrabarti. Outline 1 2 3 Single-Class

More information

Warm-up as you walk in

Warm-up as you walk in arm-up as you walk in Given these N=10 observations of the world: hat is the approximate value for P c a, +b? A. 1/10 B. 5/10. 1/4 D. 1/5 E. I m not sure a, b, +c +a, b, +c a, b, +c a, +b, +c +a, b, +c

More information

Unsupervised Rank Aggregation with Distance-Based Models

Unsupervised Rank Aggregation with Distance-Based Models Unsupervised Rank Aggregation with Distance-Based Models Alexandre Klementiev, Dan Roth, and Kevin Small University of Illinois at Urbana-Champaign Motivation Consider a panel of judges Each (independently)

More information

Stochastic Algorithms

Stochastic Algorithms Stochastic Algorithms Some of the fastest known algorithms for certain tasks rely on chance Stochastic/Randomized Algorithms Two common variations Monte Carlo Las Vegas We have already encountered some

More information

Stat 321: Transposable Data Clustering

Stat 321: Transposable Data Clustering Stat 321: Transposable Data Clustering Art B. Owen Stanford Statistics Art B. Owen (Stanford Statistics) Clustering 1 / 27 Clustering Given n objects with d attributes, place them (the objects) into groups.

More information

Harp-DAAL for High Performance Big Data Computing

Harp-DAAL for High Performance Big Data Computing Harp-DAAL for High Performance Big Data Computing Large-scale data analytics is revolutionizing many business and scientific domains. Easy-touse scalable parallel techniques are necessary to process big

More information

HARP: A MACHINE LEARNING FRAMEWORK ON TOP OF THE COLLECTIVE COMMUNICATION LAYER FOR THE BIG DATA SOFTWARE STACK. Bingjing Zhang

HARP: A MACHINE LEARNING FRAMEWORK ON TOP OF THE COLLECTIVE COMMUNICATION LAYER FOR THE BIG DATA SOFTWARE STACK. Bingjing Zhang HARP: A MACHINE LEARNING FRAMEWORK ON TOP OF THE COLLECTIVE COMMUNICATION LAYER FOR THE BIG DATA SOFTWARE STACK Bingjing Zhang Submitted to the faculty of the University Graduate School in partial fulfillment

More information

Bayesian Statistics Group 8th March Slice samplers. (A very brief introduction) The basic idea

Bayesian Statistics Group 8th March Slice samplers. (A very brief introduction) The basic idea Bayesian Statistics Group 8th March 2000 Slice samplers (A very brief introduction) The basic idea lacements To sample from a distribution, simply sample uniformly from the region under the density function

More information

CS 179 Lecture 16. Logistic Regression & Parallel SGD

CS 179 Lecture 16. Logistic Regression & Parallel SGD CS 179 Lecture 16 Logistic Regression & Parallel SGD 1 Outline logistic regression (stochastic) gradient descent parallelizing SGD for neural nets (with emphasis on Google s distributed neural net implementation)

More information

10.4 Linear interpolation method Newton s method

10.4 Linear interpolation method Newton s method 10.4 Linear interpolation method The next best thing one can do is the linear interpolation method, also known as the double false position method. This method works similarly to the bisection method by

More information

Sampling Large Graphs: Algorithms and Applications

Sampling Large Graphs: Algorithms and Applications Sampling Large Graphs: Algorithms and Applications Don Towsley College of Information & Computer Science Umass - Amherst Collaborators: P.H. Wang, J.C.S. Lui, J.Z. Zhou, X. Guan Measuring, analyzing large

More information

Overview of this week

Overview of this week Overview of this week Debugging tips for ML algorithms Graph algorithms at scale A prototypical graph algorithm: PageRank n memory Putting more and more on disk Sampling from a graph What is a good sample

More information

Scalable Network Analysis

Scalable Network Analysis Inderjit S. Dhillon University of Texas at Austin COMAD, Ahmedabad, India Dec 20, 2013 Outline Unstructured Data - Scale & Diversity Evolving Networks Machine Learning Problems arising in Networks Recommender

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

Expectation-Maximization. Nuno Vasconcelos ECE Department, UCSD

Expectation-Maximization. Nuno Vasconcelos ECE Department, UCSD Expectation-Maximization Nuno Vasconcelos ECE Department, UCSD Plan for today last time we started talking about mixture models we introduced the main ideas behind EM to motivate EM, we looked at classification-maximization

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Clustering and EM Barnabás Póczos & Aarti Singh Contents Clustering K-means Mixture of Gaussians Expectation Maximization Variational Methods 2 Clustering 3 K-

More information

Approximate Bayesian Computation. Alireza Shafaei - April 2016

Approximate Bayesian Computation. Alireza Shafaei - April 2016 Approximate Bayesian Computation Alireza Shafaei - April 2016 The Problem Given a dataset, we are interested in. The Problem Given a dataset, we are interested in. The Problem Given a dataset, we are interested

More information

Accelerating Machine Learning on Emerging Architectures

Accelerating Machine Learning on Emerging Architectures Accelerating Machine Learning on Emerging Architectures Big Simulation and Big Data Workshop January 9, 2017 Indiana University Judy Qiu Associate Professor of Intelligent Systems Engineering Indiana University

More information

CPSC 340: Machine Learning and Data Mining. Recommender Systems Fall 2017

CPSC 340: Machine Learning and Data Mining. Recommender Systems Fall 2017 CPSC 340: Machine Learning and Data Mining Recommender Systems Fall 2017 Assignment 4: Admin Due tonight, 1 late day for Monday, 2 late days for Wednesday. Assignment 5: Posted, due Monday of last week

More information

Hidden Markov Models. Slides adapted from Joyce Ho, David Sontag, Geoffrey Hinton, Eric Xing, and Nicholas Ruozzi

Hidden Markov Models. Slides adapted from Joyce Ho, David Sontag, Geoffrey Hinton, Eric Xing, and Nicholas Ruozzi Hidden Markov Models Slides adapted from Joyce Ho, David Sontag, Geoffrey Hinton, Eric Xing, and Nicholas Ruozzi Sequential Data Time-series: Stock market, weather, speech, video Ordered: Text, genes Sequential

More information

Bilevel Sparse Coding

Bilevel Sparse Coding Adobe Research 345 Park Ave, San Jose, CA Mar 15, 2013 Outline 1 2 The learning model The learning algorithm 3 4 Sparse Modeling Many types of sensory data, e.g., images and audio, are in high-dimensional

More information

CS6200 Information Retreival. The WebGraph. July 13, 2015

CS6200 Information Retreival. The WebGraph. July 13, 2015 CS6200 Information Retreival The WebGraph The WebGraph July 13, 2015 1 Web Graph: pages and links The WebGraph describes the directed links between pages of the World Wide Web. A directed edge connects

More information

Fast Clustering using MapReduce

Fast Clustering using MapReduce Fast Clustering using MapReduce Alina Ene, Sungjin Im, Benjamin Moseley UIUC KDD 2011 Clustering Massive Data Group web pages based on their content Group users based on their online behavior Finding communities

More information

Discrete Mathematics Course Review 3

Discrete Mathematics Course Review 3 21-228 Discrete Mathematics Course Review 3 This document contains a list of the important definitions and theorems that have been covered thus far in the course. It is not a complete listing of what has

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu Can we identify node groups? (communities, modules, clusters) 2/13/2014 Jure Leskovec, Stanford C246: Mining

More information

Biostatistics 615/815 Lecture 23: The Baum-Welch Algorithm Advanced Hidden Markov Models

Biostatistics 615/815 Lecture 23: The Baum-Welch Algorithm Advanced Hidden Markov Models Biostatistics 615/815 Lecture 23: The Algorithm Advanced Hidden Markov Models Hyun Min Kang April 12th, 2011 Hyun Min Kang Biostatistics 615/815 - Lecture 22 April 12th, 2011 1 / 35 Annoucement Homework

More information

Exam Review Session. William Cohen

Exam Review Session. William Cohen Exam Review Session William Cohen 1 General hints in studying Understand what you ve done and why There will be questions that test your understanding of the techniques implemented why will/won t this

More information

Developing MapReduce Programs

Developing MapReduce Programs Cloud Computing Developing MapReduce Programs Dell Zhang Birkbeck, University of London 2017/18 MapReduce Algorithm Design MapReduce: Recap Programmers must specify two functions: map (k, v) * Takes

More information

node2vec: Scalable Feature Learning for Networks

node2vec: Scalable Feature Learning for Networks node2vec: Scalable Feature Learning for Networks A paper by Aditya Grover and Jure Leskovec, presented at Knowledge Discovery and Data Mining 16. 11/27/2018 Presented by: Dharvi Verma CS 848: Graph Database

More information

Nearest Neighbor with KD Trees

Nearest Neighbor with KD Trees Case Study 2: Document Retrieval Finding Similar Documents Using Nearest Neighbors Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox January 22 nd, 2013 1 Nearest

More information

732A54/TDDE31 Big Data Analytics

732A54/TDDE31 Big Data Analytics 732A54/TDDE31 Big Data Analytics Lecture 10: Machine Learning with MapReduce Jose M. Peña IDA, Linköping University, Sweden 1/27 Contents MapReduce Framework Machine Learning with MapReduce Neural Networks

More information

Coding for Random Projects

Coding for Random Projects Coding for Random Projects CS 584: Big Data Analytics Material adapted from Li s talk at ICML 2014 (http://techtalks.tv/talks/coding-for-random-projections/61085/) Random Projections for High-Dimensional

More information

1 Document Classification [60 points]

1 Document Classification [60 points] CIS519: Applied Machine Learning Spring 2018 Homework 4 Handed Out: April 3 rd, 2018 Due: April 14 th, 2018, 11:59 PM 1 Document Classification [60 points] In this problem, you will implement several text

More information

Introduction to Optimization Using Metaheuristics. Thomas J. K. Stidsen

Introduction to Optimization Using Metaheuristics. Thomas J. K. Stidsen Introduction to Optimization Using Metaheuristics Thomas J. K. Stidsen Outline General course information Motivation, modelling and solving Hill climbers Simulated Annealing 1 Large-Scale Optimization

More information

Fall 09, Homework 5

Fall 09, Homework 5 5-38 Fall 09, Homework 5 Due: Wednesday, November 8th, beginning of the class You can work in a group of up to two people. This group does not need to be the same group as for the other homeworks. You

More information

An imputation approach for analyzing mixed-mode surveys

An imputation approach for analyzing mixed-mode surveys An imputation approach for analyzing mixed-mode surveys Jae-kwang Kim 1 Iowa State University June 4, 2013 1 Joint work with S. Park and S. Kim Ouline Introduction Proposed Methodology Application to Private

More information

CSE 332: Data Structures & Parallelism Lecture 15: Analysis of Fork-Join Parallel Programs. Ruth Anderson Autumn 2018

CSE 332: Data Structures & Parallelism Lecture 15: Analysis of Fork-Join Parallel Programs. Ruth Anderson Autumn 2018 CSE 332: Data Structures & Parallelism Lecture 15: Analysis of Fork-Join Parallel Programs Ruth Anderson Autumn 2018 Outline Done: How to use fork and join to write a parallel algorithm Why using divide-and-conquer

More information

Text Analytics (Text Mining)

Text Analytics (Text Mining) CSE 6242 / CX 4242 Apr 1, 2014 Text Analytics (Text Mining) Concepts and Algorithms Duen Horng (Polo) Chau Georgia Tech Some lectures are partly based on materials by Professors Guy Lebanon, Jeffrey Heer,

More information

1 Training/Validation/Testing

1 Training/Validation/Testing CPSC 340 Final (Fall 2015) Name: Student Number: Please enter your information above, turn off cellphones, space yourselves out throughout the room, and wait until the official start of the exam to begin.

More information

Applications of admixture models

Applications of admixture models Applications of admixture models CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar, Alkes Price Applications of admixture models 1 / 27

More information

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University NIPS 2008: E. Sudderth & M. Jordan, Shared Segmentation of Natural

More information

Structured Learning. Jun Zhu

Structured Learning. Jun Zhu Structured Learning Jun Zhu Supervised learning Given a set of I.I.D. training samples Learn a prediction function b r a c e Supervised learning (cont d) Many different choices Logistic Regression Maximum

More information

Parallel learning of content recommendations using map- reduce

Parallel learning of content recommendations using map- reduce Parallel learning of content recommendations using map- reduce Michael Percy Stanford University Abstract In this paper, machine learning within the map- reduce paradigm for ranking

More information

The Multi Stage Gibbs Sampling: Data Augmentation Dutch Example

The Multi Stage Gibbs Sampling: Data Augmentation Dutch Example The Multi Stage Gibbs Sampling: Data Augmentation Dutch Example Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601 Module 8 1 Example: Data augmentation / Auxiliary variables A commonly-used

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu SPAM FARMING 2/11/2013 Jure Leskovec, Stanford C246: Mining Massive Datasets 2 2/11/2013 Jure Leskovec, Stanford

More information

Parallel Implementation of Deep Learning Using MPI

Parallel Implementation of Deep Learning Using MPI Parallel Implementation of Deep Learning Using MPI CSE633 Parallel Algorithms (Spring 2014) Instructor: Prof. Russ Miller Team #13: Tianle Ma Email: tianlema@buffalo.edu May 7, 2014 Content Introduction

More information

A Software Architecture for Progressive Scanning of On-line Communities

A Software Architecture for Progressive Scanning of On-line Communities A Software Architecture for Progressive Scanning of On-line Communities Roberto Baldoni, Fabrizio d Amore, Massimo Mecella, Daniele Ucci Sapienza Università di Roma, Italy Motivations On-line communities

More information

Samuel Coolidge, Dan Simon, Dennis Shasha, Technical Report NYU/CIMS/TR

Samuel Coolidge, Dan Simon, Dennis Shasha, Technical Report NYU/CIMS/TR Detecting Missing and Spurious Edges in Large, Dense Networks Using Parallel Computing Samuel Coolidge, sam.r.coolidge@gmail.com Dan Simon, des480@nyu.edu Dennis Shasha, shasha@cims.nyu.edu Technical Report

More information

Spatial Latent Dirichlet Allocation

Spatial Latent Dirichlet Allocation Spatial Latent Dirichlet Allocation Xiaogang Wang and Eric Grimson Computer Science and Computer Science and Artificial Intelligence Lab Massachusetts Tnstitute of Technology, Cambridge, MA, 02139, USA

More information

Clustering: Classic Methods and Modern Views

Clustering: Classic Methods and Modern Views Clustering: Classic Methods and Modern Views Marina Meilă University of Washington mmp@stat.washington.edu June 22, 2015 Lorentz Center Workshop on Clusters, Games and Axioms Outline Paradigms for clustering

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 22, 2016 Course Information Website: http://www.stat.ucdavis.edu/~chohsieh/teaching/ ECS289G_Fall2016/main.html My office: Mathematical Sciences

More information

INTRODUCTION TO DATA SCIENCE. Link Analysis (MMDS5)

INTRODUCTION TO DATA SCIENCE. Link Analysis (MMDS5) INTRODUCTION TO DATA SCIENCE Link Analysis (MMDS5) Introduction Motivation: accurate web search Spammers: want you to land on their pages Google s PageRank and variants TrustRank Hubs and Authorities (HITS)

More information

Semi-Amortized Variational Autoencoders

Semi-Amortized Variational Autoencoders Semi-Amortized Variational Autoencoders Yoon Kim Sam Wiseman Andrew Miller David Sontag Alexander Rush Code: https://github.com/harvardnlp/sa-vae Background: Variational Autoencoders (VAE) (Kingma et al.

More information

Introduction to Machine Learning. Xiaojin Zhu

Introduction to Machine Learning. Xiaojin Zhu Introduction to Machine Learning Xiaojin Zhu jerryzhu@cs.wisc.edu Read Chapter 1 of this book: Xiaojin Zhu and Andrew B. Goldberg. Introduction to Semi- Supervised Learning. http://www.morganclaypool.com/doi/abs/10.2200/s00196ed1v01y200906aim006

More information

Clustering and The Expectation-Maximization Algorithm

Clustering and The Expectation-Maximization Algorithm Clustering and The Expectation-Maximization Algorithm Unsupervised Learning Marek Petrik 3/7 Some of the figures in this presentation are taken from An Introduction to Statistical Learning, with applications

More information

Diffusion and Clustering on Large Graphs

Diffusion and Clustering on Large Graphs Diffusion and Clustering on Large Graphs Alexander Tsiatas Thesis Proposal / Advancement Exam 8 December 2011 Introduction Graphs are omnipresent in the real world both natural and man-made Examples of

More information

Improving Performance of Topic Models by Variable Grouping

Improving Performance of Topic Models by Variable Grouping Improving Performance of Topic Models by Variable Grouping Evgeniy Bart Palo Alto Research Center Palo Alto, CA 94394 bart@parc.com Abstract Topic models have a wide range of applications, including modeling

More information