MATH 19520/51 Class 10

Size: px
Start display at page:

Download "MATH 19520/51 Class 10"

Transcription

1 MATH 19520/51 Class 10 Minh-Tam Trinh University of Chicago

2 1 Method of Lagrange multipliers. 2 Examples of Lagrange multipliers.

3 The Problem The ingredients: 1 A set of parameters, say x 1,..., x n. 2 A function of those parameters, say f (x 1,..., x n ), that we want to optimize. 3 A constraint g(x 1,..., x n ) = c on the parameters. The problem: Optimize the function subject to the constraint.

4 Rephrased: Find the global maxima/minima of f relative to a level set of g.

5 Rephrased: Find the global maxima/minima of f relative to a level set of g. (Above, the red curve is not the level curve, but the value of f along the level curve.)

6 Example Suppose we need to build the rectangular garden with the largest possible area, given exactly 100 m of fencing.

7 Example Suppose we need to build the rectangular garden with the largest possible area, given exactly 100 m of fencing. 1 The parameters are the dimensions of the garden, say length l and width w.

8 Example Suppose we need to build the rectangular garden with the largest possible area, given exactly 100 m of fencing. 1 The parameters are the dimensions of the garden, say length l and width w. 2 The function to maximize is the area A = l w.

9 Example Suppose we need to build the rectangular garden with the largest possible area, given exactly 100 m of fencing. 1 The parameters are the dimensions of the garden, say length l and width w. 2 The function to maximize is the area A = l w. 3 The constraint is that its perimeter P = 2l + 2w must equal 100 m, i.e., P = 100 m. Technically, another constraint is that only l 0 and w 0 make sense.

10 Example Suppose we want to find the point(s) on the level surface (x + y + z) 2 = 9 closest to the origin.

11 Example Suppose we want to find the point(s) on the level surface (x + y + z) 2 = 9 closest to the origin. 1 The parameters are the coordinates x, y, z of the point.

12 Example Suppose we want to find the point(s) on the level surface (x + y + z) 2 = 9 closest to the origin. 1 The parameters are the coordinates x, y, z of the point. 2 The function to minimize is its distance r from (0, 0, 0), i.e., r(x, y, z) = x 2 + y 2 + z 2. Actually, it s easier to work with R(x, y, z) = r(x, y, z) 2.

13 Example Suppose we want to find the point(s) on the level surface (x + y + z) 2 = 9 closest to the origin. 1 The parameters are the coordinates x, y, z of the point. 2 The function to minimize is its distance r from (0, 0, 0), i.e., r(x, y, z) = x 2 + y 2 + z 2. Actually, it s easier to work with R(x, y, z) = r(x, y, z) 2. 3 The constraint is that the point belongs to the surface, i.e., g(x, y, z) = 1 where g(x, y, z) = (x + y + z) 2.

14 The Method We want the global maxima/minima of f relative to the level set g = c.

15 The Method We want the global maxima/minima of f relative to the level set g = c. We need to find and compare the values of f at: 1 Its local maxima/minima relative to the level set. 2 Boundary points of the level set. Lagrange saw how to identify the relative local maxima/minima.

16 When f attains local maxima/minima relative to g = c, the level curves of f and g are tangent. Thus f and are parallel.

17 When f attains local maxima/minima relative to g = c, the level curves of f and g are tangent. Thus f and are parallel.

18 Lagrange s algorithm, stated for two variables:

19 Lagrange s algorithm, stated for two variables: 1 Find all points on the level curve g(x, y) = c where f (x, y) and g(x, y) are parallel, i.e., (1) f (x, y) = λ g(x, y) for some scalar λ, the Lagrange multiplier at the point. These points are the local extrema of f relative to the level curve.

20 Lagrange s algorithm, stated for two variables: 1 Find all points on the level curve g(x, y) = c where f (x, y) and g(x, y) are parallel, i.e., (1) f (x, y) = λ g(x, y) for some scalar λ, the Lagrange multiplier at the point. These points are the local extrema of f relative to the level curve. 2 Find all points on the level curve that belong to the boundary of the domain of g.

21 Lagrange s algorithm, stated for two variables: 1 Find all points on the level curve g(x, y) = c where f (x, y) and g(x, y) are parallel, i.e., (1) f (x, y) = λ g(x, y) for some scalar λ, the Lagrange multiplier at the point. These points are the local extrema of f relative to the level curve. 2 Find all points on the level curve that belong to the boundary of the domain of g. 3 Compare the values of f at all the points from (1) and (2) to find the global extrema of f relative to the level curve.

22 Examples Example In our garden problem, we want to maximize A = l w subject to P = 2l + 2w = 100 m.

23 Examples Example In our garden problem, we want to maximize A = l w subject to P = 2l + 2w = 100 m. 1 A = (A l, A w ) = (w,l ) and P = (P l, P w ) = (2, 2), so the identity A = λ P becomes (2) (w,l ) = (2λ, 2λ). On the level curve 2l + 2w = 100 m, this only occurs at (l, w) = (25 m, 25 m), where λ = 25/2 m.

24 Examples Example In our garden problem, we want to maximize A = l w subject to P = 2l + 2w = 100 m. 1 A = (A l, A w ) = (w,l ) and P = (P l, P w ) = (2, 2), so the identity A = λ P becomes (2) (w,l ) = (2λ, 2λ). On the level curve 2l + 2w = 100 m, this only occurs at (l, w) = (25 m, 25 m), where λ = 25/2 m. 2 The domain is {(l, w) : l, w 0}, so the boundary points of the level curve are (l, w) = (0 m, 50 m) and (50 m, 0 m).

25 Examples Example In our garden problem, we want to maximize A = l w subject to P = 2l + 2w = 100 m. 1 A = (A l, A w ) = (w,l ) and P = (P l, P w ) = (2, 2), so the identity A = λ P becomes (2) (w,l ) = (2λ, 2λ). On the level curve 2l + 2w = 100 m, this only occurs at (l, w) = (25 m, 25 m), where λ = 25/2 m. 2 The domain is {(l, w) : l, w 0}, so the boundary points of the level curve are (l, w) = (0 m, 50 m) and (50 m, 0 m). 3 The maximum occurs at (l, w) = (25 m, 25 m), which gives us A = 625 m 2.

26 Example In our distance problem, we must minimize R = x 2 + y 2 + z 2 subject to g = 9, where g = (x + y + z) 2.

27 Example In our distance problem, we must minimize R = x 2 + y 2 + z 2 subject to g = 9, where g = (x + y + z) 2. 1 R = (2x, 2y, 2z) and g = (2(x + y + z), 2(x + y + z), 2(x + y + z)), so we seek (3) (2x, 2y, 2z) = (2λ(x + y + z), 2λ(x + y + z), 2λ(x + y + z)). Then x = y = z, so the relative extrema on the level surface are (x, y, z) = (1, 1, 1) and ( 1, 1, 1), with λ = 1/3.

28 Example In our distance problem, we must minimize R = x 2 + y 2 + z 2 subject to g = 9, where g = (x + y + z) 2. 1 R = (2x, 2y, 2z) and g = (2(x + y + z), 2(x + y + z), 2(x + y + z)), so we seek (3) (2x, 2y, 2z) = (2λ(x + y + z), 2λ(x + y + z), 2λ(x + y + z)). Then x = y = z, so the relative extrema on the level surface are (x, y, z) = (1, 1, 1) and ( 1, 1, 1), with λ = 1/3. 2 The domain of g is all of R 3, so no boundary points.

29 Example In our distance problem, we must minimize R = x 2 + y 2 + z 2 subject to g = 9, where g = (x + y + z) 2. 1 R = (2x, 2y, 2z) and g = (2(x + y + z), 2(x + y + z), 2(x + y + z)), so we seek (3) (2x, 2y, 2z) = (2λ(x + y + z), 2λ(x + y + z), 2λ(x + y + z)). Then x = y = z, so the relative extrema on the level surface are (x, y, z) = (1, 1, 1) and ( 1, 1, 1), with λ = 1/3. 2 The domain of g is all of R 3, so no boundary points. 3 Both (1, 1, 1) and ( 1, 1, 1) give R = 3.

30 Variations Variation 1: Constraints given by inequalities, not equations. Example How to optimize f (x, y) subject to the constraints a g(x, y) b?

31 Variations Variation 1: Constraints given by inequalities, not equations. Example How to optimize f (x, y) subject to the constraints a g(x, y) b? Each value a c b gives us a level curve g(x, y) = c within this region. Run the Lagrange-multiplier step for each level curve individually.

32 Variations Variation 1: Constraints given by inequalities, not equations. Example How to optimize f (x, y) subject to the constraints a g(x, y) b? Each value a c b gives us a level curve g(x, y) = c within this region. Run the Lagrange-multiplier step for each level curve individually. To find the global optima on the whole region, compare the points from all of the level curves together.

33 Variation 2: Two constraint equations instead of one. Example How to optimize f (x, y, z) subject to g 1 (x, y, z) = c 1 and g 2 (x, y, z) = c 2?

34 Variation 2: Two constraint equations instead of one. Example How to optimize f (x, y, z) subject to g 1 (x, y, z) = c 1 and g 2 (x, y, z) = c 2? f is constrained to the intersection of two level sets.

35 Variation 2: Two constraint equations instead of one. Example How to optimize f (x, y, z) subject to g 1 (x, y, z) = c 1 and g 2 (x, y, z) = c 2? f is constrained to the intersection of two level sets. f is a linear combination of g 1 and g 2 at its local extrema relative to the intersection. Thus, two Lagrange multipliers: (4) f (x, y, z) = λ 1 g 1 (x, y, z) + λ 2 g 2 (x, y, z). Solve for (x, y, z) satisfying both g 1 (x, y, z) = c 1 and g 2 (x, y, z) = c 2.

Constrained Optimization and Lagrange Multipliers

Constrained Optimization and Lagrange Multipliers Constrained Optimization and Lagrange Multipliers MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Constrained Optimization In the previous section we found the local or absolute

More information

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers In this section we present Lagrange s method for maximizing or minimizing a general function f(x, y, z) subject to a constraint (or side condition) of the form g(x, y, z) = k. Figure 1 shows this curve

More information

1. Show that the rectangle of maximum area that has a given perimeter p is a square.

1. Show that the rectangle of maximum area that has a given perimeter p is a square. Constrained Optimization - Examples - 1 Unit #23 : Goals: Lagrange Multipliers To study constrained optimization; that is, the maximizing or minimizing of a function subject to a constraint (or side condition).

More information

Math 233. Lagrange Multipliers Basics

Math 233. Lagrange Multipliers Basics Math 233. Lagrange Multipliers Basics Optimization problems of the form to optimize a function f(x, y, z) over a constraint g(x, y, z) = k can often be conveniently solved using the method of Lagrange

More information

MATH2111 Higher Several Variable Calculus Lagrange Multipliers

MATH2111 Higher Several Variable Calculus Lagrange Multipliers MATH2111 Higher Several Variable Calculus Lagrange Multipliers Dr. Jonathan Kress School of Mathematics and Statistics University of New South Wales Semester 1, 2016 [updated: February 29, 2016] JM Kress

More information

Bounded, Closed, and Compact Sets

Bounded, Closed, and Compact Sets Bounded, Closed, and Compact Sets Definition Let D be a subset of R n. Then D is said to be bounded if there is a number M > 0 such that x < M for all x D. D is closed if it contains all the boundary points.

More information

Math 233. Lagrange Multipliers Basics

Math 233. Lagrange Multipliers Basics Math 33. Lagrange Multipliers Basics Optimization problems of the form to optimize a function f(x, y, z) over a constraint g(x, y, z) = k can often be conveniently solved using the method of Lagrange multipliers:

More information

Lagrange multipliers October 2013

Lagrange multipliers October 2013 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 1 1 3/2 Example: Optimization

More information

MATH 19520/51 Class 6

MATH 19520/51 Class 6 MATH 19520/51 Class 6 Minh-Tam Trinh University of Chicago 2017-10-06 1 Review partial derivatives. 2 Review equations of planes. 3 Review tangent lines in single-variable calculus. 4 Tangent planes to

More information

Lagrange multipliers 14.8

Lagrange multipliers 14.8 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 Maximum? 1 1 Minimum? 3/2 Idea:

More information

we wish to minimize this function; to make life easier, we may minimize

we wish to minimize this function; to make life easier, we may minimize Optimization and Lagrange Multipliers We studied single variable optimization problems in Calculus 1; given a function f(x), we found the extremes of f relative to some constraint. Our ability to find

More information

14.5 Directional Derivatives and the Gradient Vector

14.5 Directional Derivatives and the Gradient Vector 14.5 Directional Derivatives and the Gradient Vector 1. Directional Derivatives. Recall z = f (x, y) and the partial derivatives f x and f y are defined as f (x 0 + h, y 0 ) f (x 0, y 0 ) f x (x 0, y 0

More information

MATH Lagrange multipliers in 3 variables Fall 2016

MATH Lagrange multipliers in 3 variables Fall 2016 MATH 20550 Lagrange multipliers in 3 variables Fall 2016 1. The one constraint they The problem is to find the extrema of a function f(x, y, z) subject to the constraint g(x, y, z) = c. The book gives

More information

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers 3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers Prof. Tesler Math 20C Fall 2018 Prof. Tesler 3.3 3.4 Optimization Math 20C / Fall 2018 1 / 56 Optimizing y = f (x) In Math 20A, we

More information

Lagrange Multipliers

Lagrange Multipliers Lagrange Multipliers Christopher Croke University of Pennsylvania Math 115 How to deal with constrained optimization. How to deal with constrained optimization. Let s revisit the problem of finding the

More information

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided.

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided. Math 213 Exam 2 Name: Section: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used other than a onepage cheat

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

Paul's Online Math Notes Calculus III (Notes) / Applications of Partial Derivatives / Lagrange Multipliers Problems][Assignment Problems]

Paul's Online Math Notes Calculus III (Notes) / Applications of Partial Derivatives / Lagrange Multipliers Problems][Assignment Problems] 1 of 9 25/04/2016 13:15 Paul's Online Math Notes Calculus III (Notes) / Applications of Partial Derivatives / Lagrange Multipliers Problems][Assignment Problems] [Notes] [Practice Calculus III - Notes

More information

Lagrangian Multipliers

Lagrangian Multipliers Università Ca Foscari di Venezia - Dipartimento di Management - A.A.2017-2018 Mathematics Lagrangian Multipliers Luciano Battaia November 15, 2017 1 Two variables functions and constraints Consider a two

More information

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ Math 0 Prelim I Solutions Spring 010 1. Let f(x, y) = x3 y for (x, y) (0, 0). x 6 + y (4 pts) (a) Show that the cubic curves y = x 3 are level curves of the function f. Solution. Substituting y = x 3 in

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function.

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function. 1 The Lagrange multipliers is a mathematical method for performing constrained optimization of differentiable functions. Recall unconstrained optimization of differentiable functions, in which we want

More information

21-256: Lagrange multipliers

21-256: Lagrange multipliers 21-256: Lagrange multipliers Clive Newstead, Thursday 12th June 2014 Lagrange multipliers give us a means of optimizing multivariate functions subject to a number of constraints on their variables. Problems

More information

Math 241, Final Exam. 12/11/12.

Math 241, Final Exam. 12/11/12. Math, Final Exam. //. No notes, calculator, or text. There are points total. Partial credit may be given. ircle or otherwise clearly identify your final answer. Name:. (5 points): Equation of a line. Find

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

Finding the Maximum or Minimum of a Quadratic Function. f(x) = x 2 + 4x + 2.

Finding the Maximum or Minimum of a Quadratic Function. f(x) = x 2 + 4x + 2. Section 5.6 Optimization 529 5.6 Optimization In this section we will explore the science of optimization. Suppose that you are trying to find a pair of numbers with a fixed sum so that the product of

More information

Lagrange multipliers. Contents. Introduction. From Wikipedia, the free encyclopedia

Lagrange multipliers. Contents. Introduction. From Wikipedia, the free encyclopedia Lagrange multipliers From Wikipedia, the free encyclopedia In mathematical optimization problems, Lagrange multipliers, named after Joseph Louis Lagrange, is a method for finding the local extrema of a

More information

Lagrange Multipliers. Joseph Louis Lagrange was born in Turin, Italy in Beginning

Lagrange Multipliers. Joseph Louis Lagrange was born in Turin, Italy in Beginning Andrew Roberts 5/4/2017 Honors Contract Lagrange Multipliers Joseph Louis Lagrange was born in Turin, Italy in 1736. Beginning at age 16, Lagrange studied mathematics and was hired as a professor by age

More information

Math 1120, Section 4 Calculus Test 2. November 5, 2008 Name. work. 1. (15 points) Consider the function f(x) = (2x + 3) 2 (x 1) 2.

Math 1120, Section 4 Calculus Test 2. November 5, 2008 Name. work. 1. (15 points) Consider the function f(x) = (2x + 3) 2 (x 1) 2. November 5, 2008 Name The total number of points available is 139 work Throughout this test, show your 1 (15 points) Consider the function f(x) = (2x + 3) 2 (x 1) 2 (a) Use the product rule to find f (x)

More information

Machine Learning for Signal Processing Lecture 4: Optimization

Machine Learning for Signal Processing Lecture 4: Optimization Machine Learning for Signal Processing Lecture 4: Optimization 13 Sep 2015 Instructor: Bhiksha Raj (slides largely by Najim Dehak, JHU) 11-755/18-797 1 Index 1. The problem of optimization 2. Direct optimization

More information

Lagrangian Multipliers

Lagrangian Multipliers Università Ca Foscari di Venezia - Dipartimento di Economia - A.A.2016-2017 Mathematics (Curriculum Economics, Markets and Finance) Lagrangian Multipliers Luciano Battaia November 15, 2017 1 Two variables

More information

Second Midterm Exam Math 212 Fall 2010

Second Midterm Exam Math 212 Fall 2010 Second Midterm Exam Math 22 Fall 2 Instructions: This is a 9 minute exam. You should work alone, without access to any book or notes. No calculators are allowed. Do not discuss this exam with anyone other

More information

Math 21a Homework 22 Solutions Spring, 2014

Math 21a Homework 22 Solutions Spring, 2014 Math 1a Homework Solutions Spring, 014 1. Based on Stewart 11.8 #6 ) Consider the function fx, y) = e xy, and the constraint x 3 + y 3 = 16. a) Use Lagrange multipliers to find the coordinates x, y) of

More information

MATH 19520/51 Class 8

MATH 19520/51 Class 8 MATH 19520/51 Class 8 Minh-Tam Trinh University of Chicago 2017-10-11 1 Directional derivatives. 2 Gradient vectors. 3 Review level sets. 4 Tangent planes to level surfaces of functions of three variables.

More information

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints:

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints: Math 9 (Fall 7) Calculus III Solution #5. Find the minimum and maximum values of the following functions f under the given constraints: (a) f(x, y) 4x + 6y, x + y ; (b) f(x, y) x y, x + y 6. Solution:

More information

Physics 235 Chapter 6. Chapter 6 Some Methods in the Calculus of Variations

Physics 235 Chapter 6. Chapter 6 Some Methods in the Calculus of Variations Chapter 6 Some Methods in the Calculus of Variations In this Chapter we focus on an important method of solving certain problems in Classical Mechanics. In many problems we need to determine how a system

More information

30. Constrained Optimization

30. Constrained Optimization 30. Constrained Optimization The graph of z = f(x, y) is represented by a surface in R 3. Normally, x and y are chosen independently of one another so that one may roam over the entire surface of f (within

More information

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 covers essentially the same material as MAT201, but is more in depth and theoretical. Exam problems are often more sophisticated in scope and difficulty

More information

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs)

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs) Data Mining: Concepts and Techniques Chapter 9 Classification: Support Vector Machines 1 Support Vector Machines (SVMs) SVMs are a set of related supervised learning methods used for classification Based

More information

(c) 0 (d) (a) 27 (b) (e) x 2 3x2

(c) 0 (d) (a) 27 (b) (e) x 2 3x2 1. Sarah the architect is designing a modern building. The base of the building is the region in the xy-plane bounded by x =, y =, and y = 3 x. The building itself has a height bounded between z = and

More information

Constrained extrema of two variables functions

Constrained extrema of two variables functions Constrained extrema of two variables functions Apellidos, Nombre: Departamento: Centro: Alicia Herrero Debón aherrero@mat.upv.es) Departamento de Matemática Aplicada Instituto de Matemática Multidisciplnar

More information

Math 112 Spring 2016 Midterm 2 Review Problems Page 1

Math 112 Spring 2016 Midterm 2 Review Problems Page 1 Math Spring Midterm Review Problems Page. Solve the inequality. The solution is: x x,,,,,, (E) None of these. Which one of these equations represents y as a function of x? x y xy x y x y (E) y x 7 Math

More information

Section 4: Extreme Values & Lagrange Multipliers.

Section 4: Extreme Values & Lagrange Multipliers. Section 4: Extreme Values & Lagrange Multipliers. Compiled by Chris Tisdell S1: Motivation S2: What are local maxima & minima? S3: What is a critical point? S4: Second derivative test S5: Maxima and Minima

More information

Chapter II. Linear Programming

Chapter II. Linear Programming 1 Chapter II Linear Programming 1. Introduction 2. Simplex Method 3. Duality Theory 4. Optimality Conditions 5. Applications (QP & SLP) 6. Sensitivity Analysis 7. Interior Point Methods 1 INTRODUCTION

More information

Mat 241 Homework Set 7 Due Professor David Schultz

Mat 241 Homework Set 7 Due Professor David Schultz Mat 41 Homework Set 7 Due Professor David Schultz Directions: Show all algebraic steps neatly and concisely using proper mathematical symbolism When graphs and technology are to be implemented, do so appropriately

More information

15.4 Constrained Maxima and Minima

15.4 Constrained Maxima and Minima 15.4 Constrained Maxima and Minima Question 1: Ho do ou find the relative extrema of a surface hen the values of the variables are constrained? Question : Ho do ou model an optimization problem ith several

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

Math 142 Week-in-Review #7 (Exam 2 Review: Sections and )

Math 142 Week-in-Review #7 (Exam 2 Review: Sections and ) Math 142 WIR, copyright Angie Allen, Spring 2013 1 Math 142 Week-in-Review #7 (Exam 2 Review: Sections 4.1-4.5 and 5.1-5.6) Note: This collection of questions is intended to be a brief overview of the

More information

Inverse and Implicit functions

Inverse and Implicit functions CHAPTER 3 Inverse and Implicit functions. Inverse Functions and Coordinate Changes Let U R d be a domain. Theorem. (Inverse function theorem). If ϕ : U R d is differentiable at a and Dϕ a is invertible,

More information

11/1/2017 Second Hourly Practice 11 Math 21a, Fall Name:

11/1/2017 Second Hourly Practice 11 Math 21a, Fall Name: 11/1/217 Second Hourly Practice 11 Math 21a, Fall 217 Name: MWF 9 Jameel Al-Aidroos MWF 9 Dennis Tseng MWF 1 Yu-Wei Fan MWF 1 Koji Shimizu MWF 11 Oliver Knill MWF 11 Chenglong Yu MWF 12 Stepan Paul TTH

More information

Math 126 Final Examination SPR CHECK that your exam contains 8 problems on 8 pages.

Math 126 Final Examination SPR CHECK that your exam contains 8 problems on 8 pages. Math 126 Final Examination SPR 2018 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name CHECK that your exam contains 8 problems on 8 pages. This exam is closed book. You may

More information

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two: Final Solutions. Suppose that the equation F (x, y, z) implicitly defines each of the three variables x, y, and z as functions of the other two: z f(x, y), y g(x, z), x h(y, z). If F is differentiable

More information

AP Calculus. Extreme Values: Graphically. Slide 1 / 163 Slide 2 / 163. Slide 4 / 163. Slide 3 / 163. Slide 5 / 163. Slide 6 / 163

AP Calculus. Extreme Values: Graphically. Slide 1 / 163 Slide 2 / 163. Slide 4 / 163. Slide 3 / 163. Slide 5 / 163. Slide 6 / 163 Slide 1 / 163 Slide 2 / 163 AP Calculus Analyzing Functions Using Derivatives 2015-11-04 www.njctl.org Slide 3 / 163 Table of Contents click on the topic to go to that section Slide 4 / 163 Extreme Values

More information

Optimizations and Lagrange Multiplier Method

Optimizations and Lagrange Multiplier Method Introduction Applications Goal and Objectives Reflection Questions Once an objective of any real world application is well specified as a function of its control variables, which may subject to a certain

More information

Maximizing the Area of a Garden

Maximizing the Area of a Garden Math Objectives Students will determine the relationship between the width and length of a garden with a rectangular shape and a fixed amount of fencing. The garden is attached to a barn, and exactly three

More information

Daily WeBWorK, #1. This means the two planes normal vectors must be multiples of each other.

Daily WeBWorK, #1. This means the two planes normal vectors must be multiples of each other. Daily WeBWorK, #1 Consider the ellipsoid x 2 + 3y 2 + z 2 = 11. Find all the points where the tangent plane to this ellipsoid is parallel to the plane 2x + 3y + 2z = 0. In order for the plane tangent to

More information

Constrained Optimization

Constrained Optimization Constrained Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Constrained Optimization 1 / 46 EC2040 Topic 5 - Constrained Optimization Reading 1 Chapters 12.1-12.3

More information

IB Math SL Year 2 Name: Date: 8-3: Optimization in 2D Today s Goals: What is optimization? How do you maximize/minimize quantities using calculus?

IB Math SL Year 2 Name: Date: 8-3: Optimization in 2D Today s Goals: What is optimization? How do you maximize/minimize quantities using calculus? Name: Date: 8-3: Optimization in 2D Today s Goals: What is optimization? How do you maximize/minimize quantities using calculus? What is optimization? It involves finding the or value of a function subjected

More information

Lecture 2 Optimization with equality constraints

Lecture 2 Optimization with equality constraints Lecture 2 Optimization with equality constraints Constrained optimization The idea of constrained optimisation is that the choice of one variable often affects the amount of another variable that can be

More information

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution 13 Functions of Several Variables 13.1 Introduction to Functions of Several Variables Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Objectives Understand

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

Math Exam 2a. 1) Take the derivatives of the following. DO NOT SIMPLIFY! 2 c) y = tan(sec2 x) ) b) y= , for x 2.

Math Exam 2a. 1) Take the derivatives of the following. DO NOT SIMPLIFY! 2 c) y = tan(sec2 x) ) b) y= , for x 2. Math 111 - Exam 2a 1) Take the derivatives of the following. DO NOT SIMPLIFY! a) y = ( + 1 2 x ) (sin(2x) - x- x 1 ) b) y= 2 x + 1 c) y = tan(sec2 x) 2) Find the following derivatives a) Find dy given

More information

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;...

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;... Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; 2 Application of Gradient; Tutorial Class V 3-10/10/2012 1 First Order

More information

Demo 1: KKT conditions with inequality constraints

Demo 1: KKT conditions with inequality constraints MS-C5 Introduction to Optimization Solutions 9 Ehtamo Demo : KKT conditions with inequality constraints Using the Karush-Kuhn-Tucker conditions, see if the points x (x, x ) (, 4) or x (x, x ) (6, ) are

More information

QEM Optimization, WS 2017/18 Part 4. Constrained optimization

QEM Optimization, WS 2017/18 Part 4. Constrained optimization QEM Optimization, WS 2017/18 Part 4 Constrained optimization (about 4 Lectures) Supporting Literature: Angel de la Fuente, Mathematical Methods and Models for Economists, Chapter 7 Contents 4 Constrained

More information

Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions 1. Module - 2 Lecture Notes 5. Kuhn-Tucker Conditions

Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions 1. Module - 2 Lecture Notes 5. Kuhn-Tucker Conditions Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions Module - Lecture Notes 5 Kuhn-Tucker Conditions Introduction In the previous lecture the optimization of functions of multiple variables

More information

13.7 LAGRANGE MULTIPLIER METHOD

13.7 LAGRANGE MULTIPLIER METHOD 13.7 Lagrange Multipliers Contemporary Calculus 1 13.7 LAGRANGE MULTIPLIER METHOD Suppose we go on a walk on a hillside, but we have to stay on a path. Where along this path are we at the highest elevation?

More information

MATH 2400, Analytic Geometry and Calculus 3

MATH 2400, Analytic Geometry and Calculus 3 MATH 2400, Analytic Geometry and Calculus 3 List of important Definitions and Theorems 1 Foundations Definition 1. By a function f one understands a mathematical object consisting of (i) a set X, called

More information

Absolute extrema of two variables functions

Absolute extrema of two variables functions Absolute extrema of two variables functions Apellidos, Nombre: Departamento: Centro: Alicia Herrero Debón aherrero@mat.upv.es) Departamento de Matemática Aplicada Instituto de Matemática Multidisciplnar

More information

Worksheet 2.7: Critical Points, Local Extrema, and the Second Derivative Test

Worksheet 2.7: Critical Points, Local Extrema, and the Second Derivative Test Boise State Math 275 (Ultman) Worksheet 2.7: Critical Points, Local Extrema, and the Second Derivative Test From the Toolbox (what you need from previous classes) Algebra: Solving systems of two equations

More information

EC5555 Economics Masters Refresher Course in Mathematics September Lecture 6 Optimization with equality constraints Francesco Feri

EC5555 Economics Masters Refresher Course in Mathematics September Lecture 6 Optimization with equality constraints Francesco Feri EC5555 Economics Masters Refresher Course in Mathematics September 2013 Lecture 6 Optimization with equality constraints Francesco Feri Constrained optimization The idea of constrained optimisation is

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

171S3.3p Analyzing Graphs of Quadratic Functions. October 04, Vertex of a Parabola. The vertex of the graph of f (x) = ax 2 + bx + c is

171S3.3p Analyzing Graphs of Quadratic Functions. October 04, Vertex of a Parabola. The vertex of the graph of f (x) = ax 2 + bx + c is MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 3: Quadratic Functions and Equations; Inequalities 3.1 The Complex Numbers 3.2 Quadratic Equations, Functions, Zeros, and

More information

With Great Power... Inverses of Power Functions. Lesson 9.1 Assignment. 1. Consider the power function, f(x) 5 x 7. a. Complete the table for f(x).

With Great Power... Inverses of Power Functions. Lesson 9.1 Assignment. 1. Consider the power function, f(x) 5 x 7. a. Complete the table for f(x). Lesson.1 Assignment Name Date With Great Power... Inverses of Power Functions 1. Consider the power function, f(x) 5 x 7. a. Complete the table for f(x). x 23 22 21 0 1 2 3 f(x) b. Sketch the graph of

More information

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8)

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8) Math 130 Practice Final (Spring 017) Before the exam: Do not write anything on this page. Do not open the exam. Turn off your cell phone. Make sure your books, notes, and electronics are not visible during

More information

2. Find the equation of the normal to the curve with equation y = x at the point (1, 2). (Total 4 marks)

2. Find the equation of the normal to the curve with equation y = x at the point (1, 2). (Total 4 marks) CHAPTER 3 REVIEW FOR SLs ONLY 1. Find the coordinates of the point on the graph of = 2 at which the tangent is parallel to the line = 5. (Total 4 marks) 2. Find the equation of the normal to the curve

More information

EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES

EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES A. HAVENS These problems are for extra-credit, which is counted against lost points on quizzes or WebAssign. You do not

More information

Solutions to assignment 3

Solutions to assignment 3 Math 9 Solutions to assignment Due: : Noon on Thursday, October, 5.. Find the minimum of the function f, y, z) + y + z subject to the condition + y + z 4. Solution. Let s define g, y, z) + y + z, so the

More information

R f da (where da denotes the differential of area dxdy (or dydx)

R f da (where da denotes the differential of area dxdy (or dydx) Math 28H Topics for the second exam (Technically, everything covered on the first exam, plus) Constrained Optimization: Lagrange Multipliers Most optimization problems that arise naturally are not unconstrained;

More information

11/6/2012 SECOND HOURLY Math 21a, Fall Name:

11/6/2012 SECOND HOURLY Math 21a, Fall Name: 11/6/2012 SECOND HOURLY Math 21a, Fall 2012 Name: MWF 9 Oliver Knill MWF 10 Hansheng Diao MWF 10 Joe Rabinoff MWF 11 John Hall MWF 11 Meredith Hegg MWF 12 Charmaine Sia TTH 10 Bence Béky TTH 10 Gijs Heuts

More information

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008 A small review, Second Midterm, Calculus, Prof. Montero 45:-4, Fall 8 Maxima and minima Let us recall first, that for a function f(x, y), the gradient is the vector ( f)(x, y) = ( ) f f (x, y); (x, y).

More information

Lesson 11: Duality in linear programming

Lesson 11: Duality in linear programming Unit 1 Lesson 11: Duality in linear programming Learning objectives: Introduction to dual programming. Formulation of Dual Problem. Introduction For every LP formulation there exists another unique linear

More information

12/11/2018 Algebra II - Semester 1 Review

12/11/2018 Algebra II - Semester 1 Review Name: Semester Review - Study Guide Score: 72 / 73 points (99%) Algebra II - Semester 1 Review Multiple Choice Identify the choice that best completes the statement or answers the question. Name the property

More information

AB Calculus: Extreme Values of a Function

AB Calculus: Extreme Values of a Function AB Calculus: Extreme Values of a Function Name: Extrema (plural for extremum) are the maximum and minimum values of a function. In the past, you have used your calculator to calculate the maximum and minimum

More information

Numerical Optimization

Numerical Optimization Convex Sets Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Let x 1, x 2 R n, x 1 x 2. Line and line segment Line passing through x 1 and x 2 : {y

More information

Worksheet 3.1: Introduction to Double Integrals

Worksheet 3.1: Introduction to Double Integrals Boise State Math 75 (Ultman) Worksheet.: Introduction to ouble Integrals Prerequisites In order to learn the new skills and ideas presented in this worksheet, you must: Be able to integrate functions of

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

1-1. What you'll Learn About Critical Points/Extreme Values. 1 P a g e

1-1. What you'll Learn About Critical Points/Extreme Values. 1 P a g e CALCULUS: by Rogawski 8) 1 y x 1-1 x Chapter 4.2: Extreme Values What you'll Learn About Critical Points/Extreme Values 12) f(x) 4x - x 1 1 P a g e Determine the extreme values of each function 2 21) f(x)

More information

February 23 Math 2335 sec 51 Spring 2016

February 23 Math 2335 sec 51 Spring 2016 February 23 Math 2335 sec 51 Spring 2016 Section 4.1: Polynomial Interpolation Interpolation is the process of finding a curve or evaluating a function whose curve passes through a known set of points.

More information

Sample tasks from: Algebra Assessments Through the Common Core (Grades 6-12)

Sample tasks from: Algebra Assessments Through the Common Core (Grades 6-12) Sample tasks from: Algebra Assessments Through the Common Core (Grades 6-12) A resource from The Charles A Dana Center at The University of Texas at Austin 2011 About the Dana Center Assessments More than

More information

MATH 209, Lab 5. Richard M. Slevinsky

MATH 209, Lab 5. Richard M. Slevinsky MATH 209, Lab 5 Richard M. Slevinsky Problems 1. Say the temperature T at any point (x, y, z) in space is given by T = 4 x y z 2. Find the hottest point on the sphere F = x 2 + y 2 + z 2 100 = 0; We equate

More information

12 and the critical numbers of f ( )

12 and the critical numbers of f ( ) Math 1314 Lesson 15 Second Derivative Test and Optimization There is a second derivative test to find relative extrema. It is sometimes convenient to use; however, it can be inconclusive. Later in the

More information

27. Tangent Planes & Approximations

27. Tangent Planes & Approximations 27. Tangent Planes & Approximations If z = f(x, y) is a differentiable surface in R 3 and (x 0, y 0, z 0 ) is a point on this surface, then it is possible to construct a plane passing through this point,

More information

Local and Global Minimum

Local and Global Minimum Local and Global Minimum Stationary Point. From elementary calculus, a single variable function has a stationary point at if the derivative vanishes at, i.e., 0. Graphically, the slope of the function

More information

Section 18-1: Graphical Representation of Linear Equations and Functions

Section 18-1: Graphical Representation of Linear Equations and Functions Section 18-1: Graphical Representation of Linear Equations and Functions Prepare a table of solutions and locate the solutions on a coordinate system: f(x) = 2x 5 Learning Outcome 2 Write x + 3 = 5 as

More information

Unconstrained and Constrained Optimization

Unconstrained and Constrained Optimization Unconstrained and Constrained Optimization Agenda General Ideas of Optimization Interpreting the First Derivative Interpreting the Second Derivative Unconstrained Optimization Constrained Optimization

More information

CS522: Advanced Algorithms

CS522: Advanced Algorithms Lecture 1 CS5: Advanced Algorithms October 4, 004 Lecturer: Kamal Jain Notes: Chris Re 1.1 Plan for the week Figure 1.1: Plan for the week The underlined tools, weak duality theorem and complimentary slackness,

More information

5.6 Exercises. Section 5.6 Optimization Find the exact maximum value of the function f(x) = x 2 3x.

5.6 Exercises. Section 5.6 Optimization Find the exact maximum value of the function f(x) = x 2 3x. Section 5.6 Optimization 541 5.6 Exercises 1. Find the exact maximum value of the function fx) = x 2 3x. 2. Find the exact maximum value of the function fx) = x 2 5x 2. 3. Find the vertex of the graph

More information

Math 210, Exam 2, Spring 2010 Problem 1 Solution

Math 210, Exam 2, Spring 2010 Problem 1 Solution Math, Exam, Spring Problem Solution. Find and classify the critical points of the function f(x,y) x 3 +3xy y 3. Solution: By definition, an interior point (a,b) in the domain of f is a critical point of

More information