Matrix Methods in Optics For more complicated systems use Matrix methods & CAD tools Both are based on Ray Tracing concepts Solve the optical system

Size: px
Start display at page:

Download "Matrix Methods in Optics For more complicated systems use Matrix methods & CAD tools Both are based on Ray Tracing concepts Solve the optical system"

Transcription

1 Matrix Method in Optic For more complicated ytem ue Matrix method & tool oth are baed on Ray Tracin concept Solve the optical ytem by tracin may optical ray In ree pace a ray ha poition and anle o direction y i radial ditance rom optical axi V i the anle (in radian) o the ray No aume you ant to a Tranlation: ind the poition at a ditance t urther on Then the baic Ray equation are in ree pace makin the parallex aumption y y Vt V V

2 Matrix Method: Tranlation Matrix an deine a matrix method to obtain the reult or any optical proce onider a imple tranlation ditance t Then the Tranlation Matrix (or T matrix) V y t V y V y The revere direction ue the invere matrix V y t V y V y V y

3 General Matrix or Optical evice Optical urace hoever ill chane anle or location Example a len ill keep ame location but dierent anle Reerence or more len matrice & operation. Gerrard & J.M. urch, Introduction to Matrix Method in Optic, over 994 Matrix method equal Ray Trace Proram or imple calculation

4 General Optical Matrix Operation Place Matrix on the let or operation on the riht an olve or calculate a inle matrix or the ytem [ ][ ][ ] V y M M M V y object len imae V y V y

5 Solvin or imae ith Optical Matrix Operation For any len ytem can create an equivalent matrix ombine the len (mirror) and pacin beteen them reate a inle matrix [ ] [ ][ ] [ ] M M M M ytem n L No add the object and imae ditance tranlation matrice [ ][ ][ ] object len imae M M M ( ) Imae ditance i ound by olvin or Imae maniication i m

6 Example Solvin or the Optical Matrix To len ytem: olve or imae poition and ie iconvex len 8 cm located 4 cm rom 3 cm tall object Second len biconcave - cm located d6 cm rom irt len Then the matrix olution i X X.4.5 X X Solvin or the imae poition uin the matrix & X matrix: cm X or X Then the maniication i m Thu the object i at cm rom nd len, -3 cm hih

7 Matrix Method and Spread Sheet Eay to ue matrix method in Excel or matlab or maple Ue mmult array unction in excel Select array output cell (e. matrix) and enter mmult( Select pace cell then comma Select len cell (e mmult(g5:h6,i5:j6) ) Then do controlhitenter (very important) Here i example rom previou pae

8 Optical Matrix Equivalent Len For any len ytem can create an equivalent matrix & len ombine all the matrice or the len and pace The or the combined matrix here RP irt len let vertex RP lat len riht mot vertex n index o reraction beore t len n index o reraction ater lat len

9 Example ombined Optical Matrix Uin To len ytem rom beore iconvex len 8 cm Second len biconcave - cm located 6 cm rom Then the ytem matrix i Second ocal lenth (relative to H ) i cm Second ocal point, relative to RP (econd vertex). 5 rp. 4 cm. 4 Second principal point, relative to RP (econd vertex). 5 H cm

10 Gauian Plane Wave Plane ave have lat ema ield in x,y Tend to et ditorted by diraction into pherical plane ave and Gauian Spherical Wave E ield intenity ollo: U ( ) x y u( x, y,r,t ) exp iω t Kr R R here ω anular requency π U max value o E ield R radiu rom ource t time K propaation vector in direction o motion r unite radial vector rom ource x,y plane poition perpendicular to R R increae ave become Gauian in phae R become the radiu o curvature o the ave ront Thee are really TEM mode emiion rom laer

11 Gauian eam ume a Gauian haped beam I( r ) r exp P π r exp I Where P total poer in the beam /e beam radiu at point ()

12 Meaurement o Spotie beam pot ie i meaured in 3 poible ay /e radiu o beam /e radiu () o the radiance (liht intenity) mot common laer peciication value 3% o peak poer point point here ema ield don by /e Full Width Hal Maximum (FWHM) point here the laer poer all to hal it initial value ood or many interaction ith material ueul relationhip FWHM.665r FWHM.77.77r r e.849 e FWHM e

13 Gauian eam hane ith itance The Gauian beam radiu o curvature ith ditance ) R( λ π Gauian pot ie ith ditance ) ( π λ Note: or len ytem len diameter mut be 3. 99% o poer Note: ome book deine a the ull idth rather than hal idth become lare relative to the beam aymptotically approache ) ( π λ π λ ymptotically liht cone anle (in radian) approache ( ) Z π λ θ

14 Rayleih Rane o Gauian eam Spread in beam i mall hen idth increae < alled the Rayleih Rane R R π eam expand or - R to R rom a ocued pot an rerite Gauian ormula uin R R ( ) λ R ( ) R ain or >> R ( ) R

15 eam Expander Telecope beam expand chane both potie and Rayleih Rane For maniication m o ide relative ide then a beore chane o beam ie i Ralyeih Rane become m π R m λ R here the maniication i m

16 Example o eam iverence e HeNe 4 mw laer ha.8 mm rated diameter. What i it R, potie at m, m and the expanion anle For HeNe avelenth λ 63.8 nm Rayleih Rane i t metre π λ π(.4) 6.38x R m ( ).643 m R mm t m >> R θ ( ) 7 4 ( ) λ π 6.38x π.4 θ ( 5.4x 4 5.4x ).54 m Radian 5.4 mm What i beam a run throuh a beam expander o m m (. 4 ). 4 m 4 mm θ ( ) m θ m. 4x θ ( 5.4x 5. 4x 5 Radian ).54 m 5.4 mm Hence et a maller beam at m by creatin a larer beam irt

17 Focued Laer Spot Lene ocu Gauian eam to a Wait Modiication o Len ormula or Gauian eam From S.. Sel "Focuin o Spherical Gauian eam" pp. Optic, p v., 5, 983 Ue the input beam ait ditance a object ditance to primary principal point Output beam ait poition a imae ditance '' to econdary principal point

18 Gauain eam Len Formula Normal len ormula in reular and dimenionle orm or Thi ormula applie to both input and output object Gauian beam len ormula or input beam include Rayleih Rane eect R in dimenionle orm R in ar ield a R oe to (ie pot mall compared to len) thi reduce to eometric optic equation

19 Gauain eam Len ehavior Plot ho 3 reion o interet or poitive thin len Real object and real imae Real object and virtual imae Virtual object and real imae

20 Main ierence o Gauian eam Optic For Gauian eam there i a maximum and minimum imae ditance Maximum imae not at intead at There i a common point in Gauian beam expreion at R For poitive len hen incident beam ait at ront ocu then emerin beam ait at back ocu No minimum object-imae eparation or Gauian Len appear to decreae a R / increae rom ero i.e. Gauian ocal hit

21 Maniication and Output eam alculate R and, and '' or each len Maniication o beam R m ain the Rayleih rane chane ith output R R m The Gauian eam len ormula i not ymmetric From the output beam ide ( ) R

22 Special Solution to Gauian eam To cae o particular interet Input Wait at Firt Principal Surace condition, imae ditance and ait become R R π λ Input Wait at Firt Focal Point condition, imae ditance and ait become π λ

23 Gauian Spot and avity Stability In laer cavitie ait poition i controlled by mirror Recall the cavity actor or cavity tability i i r L Wait o cavity i iven by ( ) [ ] [ ] 4 L π λ here iback mirror, i ront

24 Gauian Wait ithin a avity Wait location relative to output mirror or cavity lenth L i ( ) L [ ] [ ] 4 4 L L π λ π λ I (i.e. r L) ait become.5 L π λ I, (curved back, plane ront) ait i located at the output mirror (common cae or HeNe and many a laer) I (i.e. plane mirror) there i no ait

Lens Conventions From Jenkins & White: Fundamentals of Optics, pg 50 Incident rays travel left to right Object distance s + if left to vertex, - if

Lens Conventions From Jenkins & White: Fundamentals of Optics, pg 50 Incident rays travel left to right Object distance s + if left to vertex, - if Len Convention From Jenkin & White: Fundamental o Optic, pg 50 Incident ray travel let to right Object ditance + i let to vertex, - i right to vertex Image ditance ' + i right to vertex, - i let to vertex

More information

Lens Conventions From Jenkins & White: Fundamentals of Optics, pg 50 Incident rays travel left to right Object distance s + if left to vertex, - if

Lens Conventions From Jenkins & White: Fundamentals of Optics, pg 50 Incident rays travel left to right Object distance s + if left to vertex, - if Len Convention From Jenkin & White: Fundamental o Optic, pg 50 Incident ray travel let to right Object ditance + i let to vertex, - i right to vertex Image ditance ' + i right to vertex, - i let to vertex

More information

Lecturer: Ivan Kassamakov, Docent Assistants: Risto Montonen and Anton Nolvi, Doctoral

Lecturer: Ivan Kassamakov, Docent Assistants: Risto Montonen and Anton Nolvi, Doctoral Lecturer: Ivan Kaamakov, Docent Aitant: Rito Montonen and Anton Nolvi, Doctoral tudent Coure webpage: Coure webpage: http://electronic.phyic.helinki.i/teaching/optic-06-/ Peronal inormation Ivan Kaamakov

More information

Course Updates. Reminders: 1) Assignment #13 due Monday. 2) Mirrors & Lenses. 3) Review for Final: Wednesday, May 5th

Course Updates. Reminders: 1) Assignment #13 due Monday. 2) Mirrors & Lenses. 3) Review for Final: Wednesday, May 5th Coure Update http://www.phy.hawaii.edu/~varner/phys272-spr0/phyic272.html Reminder: ) Aignment #3 due Monday 2) Mirror & Lene 3) Review for Final: Wedneday, May 5th h R- R θ θ -R h Spherical Mirror Infinite

More information

Lenses & Prism Consider light entering a prism At the plane surface perpendicular light is unrefracted Moving from the glass to the slope side light

Lenses & Prism Consider light entering a prism At the plane surface perpendicular light is unrefracted Moving from the glass to the slope side light Lenses & Prism Consider light entering a prism At the plane surace perpendicular light is unreracted Moving rom the glass to the slope side light is bent away rom the normal o the slope Using Snell's law

More information

Chapter 31: Images and Optical Instruments

Chapter 31: Images and Optical Instruments Capter 3: Image and Optical Intrument Relection at a plane urace Image ormation Te relected ray entering eye look a toug tey ad come rom image P. P virtual image P Ligt ray radiate rom a point object at

More information

11/13/2018. Lenses. Lenses. Light refracts at both surfaces. Non-parallel surfaces results in net bend.

11/13/2018. Lenses. Lenses. Light refracts at both surfaces. Non-parallel surfaces results in net bend. Light reracts at both suraces. Non-parallel suraces results in net bend. Focusing power o the lens is unction o radius o curvature o each surace and index o reraction o lens. Converging lenses are thicker

More information

PHYS 1420: College Physics II Fall Exam IV: Chapters 20 23

PHYS 1420: College Physics II Fall Exam IV: Chapters 20 23 PHYS 1420: ollege Phyic II Fall 2009 N Exam IV: hapter 20 23 We want to ue the magnet hown on the let to induce a current in the cloed loop o wire. hown in the picture, your eye i at ome poition +x, and

More information

Outline F. OPTICS. Objectives. Introduction. Wavefronts. Light Rays. Geometrical Optics. Reflection and Refraction

Outline F. OPTICS. Objectives. Introduction. Wavefronts. Light Rays. Geometrical Optics. Reflection and Refraction F. OPTICS Outline 22. Spherical mirrors 22.2 Reraction at spherical suraces 22.3 Thin lenses 22. Geometrical optics Objectives (a) use the relationship = r/2 or spherical mirrors (b) draw ray agrams to

More information

A6525 Fall 2015 Solutions to Problem Set #2. This is the case of a single plano-convex lens. The specifications are:

A6525 Fall 2015 Solutions to Problem Set #2. This is the case of a single plano-convex lens. The specifications are: A655 Fall 05 Solutions to Problem Set # Problem : This is the case o a single plano-convex lens. The speciications are: Focal length ~ 5 cm Diameter D = 0 cm Index o reraction n =. Size o aperture stop

More information

Reflection and Refraction

Reflection and Refraction Relection and Reraction Object To determine ocal lengths o lenses and mirrors and to determine the index o reraction o glass. Apparatus Lenses, optical bench, mirrors, light source, screen, plastic or

More information

2.3 Additional Relations

2.3 Additional Relations 3 2.3 Additional Relations Figure 2.3 identiies additional relations, indicating te locations o te object and image, and te ratio o teir eigts (magniication) and orientations. Ray enters te lens parallel

More information

Shortest Paths Problem. CS 362, Lecture 20. Today s Outline. Negative Weights

Shortest Paths Problem. CS 362, Lecture 20. Today s Outline. Negative Weights Shortet Path Problem CS 6, Lecture Jared Saia Univerity of New Mexico Another intereting problem for graph i that of finding hortet path Aume we are given a weighted directed graph G = (V, E) with two

More information

Representations and Transformations. Objectives

Representations and Transformations. Objectives Repreentation and Tranformation Objective Derive homogeneou coordinate tranformation matrice Introduce tandard tranformation - Rotation - Tranlation - Scaling - Shear Scalar, Point, Vector Three baic element

More information

Lab 9 - GEOMETRICAL OPTICS

Lab 9 - GEOMETRICAL OPTICS 161 Name Date Partners Lab 9 - GEOMETRICAL OPTICS OBJECTIVES Optics, developed in us through study, teaches us to see - Paul Cezanne Image rom www.weidemyr.com To examine Snell s Law To observe total internal

More information

Today s Outline. CS 561, Lecture 23. Negative Weights. Shortest Paths Problem. The presence of a negative cycle might mean that there is

Today s Outline. CS 561, Lecture 23. Negative Weights. Shortest Paths Problem. The presence of a negative cycle might mean that there is Today Outline CS 56, Lecture Jared Saia Univerity of New Mexico The path that can be trodden i not the enduring and unchanging Path. The name that can be named i not the enduring and unchanging Name. -

More information

Chapter 34. Images. Two Types of Images. A Common Mirage. Plane Mirrors, Extended Object. Plane Mirrors, Point Object

Chapter 34. Images. Two Types of Images. A Common Mirage. Plane Mirrors, Extended Object. Plane Mirrors, Point Object Capter Images One o te most important uses o te basic laws governing ligt is te production o images. Images are critical to a variety o ields and industries ranging rom entertainment, security, and medicine

More information

GEOMETRICAL OPTICS OBJECTIVES

GEOMETRICAL OPTICS OBJECTIVES Geometrical Optics 207 Name Date Partners OBJECTIVES OVERVIEW GEOMETRICAL OPTICS To examine Snell s Law and observe total internal relection. To understand and use the lens equations. To ind the ocal length

More information

References Photography, B. London and J. Upton Optics in Photography, R. Kingslake The Camera, The Negative, The Print, A. Adams

References Photography, B. London and J. Upton Optics in Photography, R. Kingslake The Camera, The Negative, The Print, A. Adams Page 1 Camera Simulation Eect Cause Field o view Depth o ield Motion blur Exposure Film size, stops and pupils Aperture, ocal length Shutter Film speed, aperture, shutter Reerences Photography, B. London

More information

Simplified Algorithm for Implementing an ABCD Ray Matrix Wave-Optics Propagator

Simplified Algorithm for Implementing an ABCD Ray Matrix Wave-Optics Propagator Simpliied Algorithm or Implementing an ABC Ray atrix Wave-Optics Propagator Justin. ansell, Robert Praus, Anthony Seward, and Steve Coy ZA Associates Corporation Outline Introduction & otivation Ray atrices

More information

Reflection & Refraction

Reflection & Refraction Name: Anwer Key Date: Regent Phyic Tet # 14 Review Reflection & Refraction 1. Ue GUESS method and indicate all vector direction.. Term to know: electromagnetic pectrum, diffue reflection, regular reflection,

More information

1. Observe Observe your image on each side of a spoon. Record your observations using words and a picture.

1. Observe Observe your image on each side of a spoon. Record your observations using words and a picture. Concave Mirrors 1. Observe Observe your image on each side o a spoon. Record your observations using words and a picture. Inner spoon Outer spoon 2. Observe and Explain http://www.youtube.com/watch?v=kqxdwpmof9c&eature=player_embedded

More information

Motion Control (wheeled robots)

Motion Control (wheeled robots) 3 Motion Control (wheeled robot) Requirement for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground Definition of required motion -> peed control,

More information

Physics 2C: Optics. refraction, Snell s law, polarization, images, thin mirrors, thin lenses July 11,

Physics 2C: Optics. refraction, Snell s law, polarization, images, thin mirrors, thin lenses July 11, Physics C: Optics Relection, reraction, Snell s law, polarization, images, thin mirrors, thin lenses July, 0 4 Relection: specularand diuse Size o objects a>>λ, treat waves as rays Light strikes medium,

More information

THIN LENSES: BASICS. There are at least three commonly used symbols for object and image distances:

THIN LENSES: BASICS. There are at least three commonly used symbols for object and image distances: THN LENSES: BASCS BJECTVE: To study and veriy some o the laws o optics applicable to thin lenses by determining the ocal lengths o three such lenses ( two convex, one concave) by several methods. THERY:

More information

Generation of nearly nondiffracting Bessel beams with a Fabry Perot interferometer

Generation of nearly nondiffracting Bessel beams with a Fabry Perot interferometer Horváth et al. Vol. 14, No. 11/November 1997/J. Opt. Soc. Am. A 3009 Generation of nearly nondiffracting Beel beam with a Fabry Perot interferometer Z. L. Horváth, M. Erdélyi, G. Szabó, and Z. Bor Department

More information

10.2 Single-Slit Diffraction

10.2 Single-Slit Diffraction 10. Single-Slit Diffraction If you shine a beam of light through a ide-enough opening, you might expect the beam to pass through ith very little diffraction. Hoever, hen light passes through a progressively

More information

Focused Video Estimation from Defocused Video Sequences

Focused Video Estimation from Defocused Video Sequences Focued Video Etimation from Defocued Video Sequence Junlan Yang a, Dan Schonfeld a and Magdi Mohamed b a Multimedia Communication Lab, ECE Dept., Univerity of Illinoi, Chicago, IL b Phyical Realization

More information

Chapter 3 Geometric Optics

Chapter 3 Geometric Optics Chapter 3 Geometric Optics [Reading assignment: Goodman, Fourier Optics, Appendix B Ray Optics The full three dimensional wave equation is: (3.) One solution is E E o ûe i ωt± k r ( ). This is a plane

More information

8. Wavelength measurement with a grating spectrometer

8. Wavelength measurement with a grating spectrometer Spm 8. Wavelength meaurement with a grating pectrometer 8.1 Introuction A very exact examination of the chemical compoition of a ubtance can be unertaken by analying the electromagnetic raiation it emit

More information

Research note: Calculating spectral irradiance indoors

Research note: Calculating spectral irradiance indoors Lighting Re. Technol. 217; Vol. 49: 122 127 Reearch note: Calculating pectral irradiance indoor S Bará PhD a and J Ecofet PhD b a Área de Óptica, Facultade de Óptica e Optometría, Univeridade de Santiago

More information

Planning of scooping position and approach path for loading operation by wheel loader

Planning of scooping position and approach path for loading operation by wheel loader 22 nd International Sympoium on Automation and Robotic in Contruction ISARC 25 - September 11-14, 25, Ferrara (Italy) 1 Planning of cooping poition and approach path for loading operation by wheel loader

More information

Unit 10 Reflection. Grading: Show all work, keeping it neat and organized. Show equations used and include all units.

Unit 10 Reflection. Grading: Show all work, keeping it neat and organized. Show equations used and include all units. Name: Hr: Unit 0 Relection Grading: Show all work, keeping it neat and organized. Show equations used and include all units. REFLECTION Vocabulary Relection: The bouncing o light. The angle a beam o light

More information

Lecture 14: Minimum Spanning Tree I

Lecture 14: Minimum Spanning Tree I COMPSCI 0: Deign and Analyi of Algorithm October 4, 07 Lecture 4: Minimum Spanning Tree I Lecturer: Rong Ge Scribe: Fred Zhang Overview Thi lecture we finih our dicuion of the hortet path problem and introduce

More information

Thick Lenses and the ABCD Formalism

Thick Lenses and the ABCD Formalism Thick Lenses and the ABCD Formalism Thursday, 10/12/2006 Physics 158 Peter Beyersdorf Document info 12. 1 Class Outline Properties of Thick Lenses Paraxial Ray Matrices General Imaging Systems 12. 2 Thick

More information

IMPLEMENTATION OF AREA, VOLUME AND LINE SOURCES

IMPLEMENTATION OF AREA, VOLUME AND LINE SOURCES December 01 ADMS 5 P503I1 IMPEMENTATION OF AREA, VOUME AND INE SOURCES The Met. Office (D J Thomon) and CERC 1. INTRODUCTION ADMS model line ource, and area and volume ource with conve polgon bae area.

More information

Announcements. CSE332: Data Abstractions Lecture 19: Parallel Prefix and Sorting. The prefix-sum problem. Outline. Parallel prefix-sum

Announcements. CSE332: Data Abstractions Lecture 19: Parallel Prefix and Sorting. The prefix-sum problem. Outline. Parallel prefix-sum Announcement Homework 6 due Friday Feb 25 th at the BEGINNING o lecture CSE332: Data Abtraction Lecture 19: Parallel Preix and Sorting Project 3 the lat programming project! Verion 1 & 2 - Tue March 1,

More information

Log1 Contest Round 2 Theta Geometry. 4 points each 1 What is the area of an isosceles right triangle with legs of length 3?

Log1 Contest Round 2 Theta Geometry. 4 points each 1 What is the area of an isosceles right triangle with legs of length 3? 009 00 Log Contet Round Theta Geometry Name: 4 point each What i the area of an iocele right triangle with leg of length? What i perimeter of a regular heptagon with ide of length 8? Matt built a foot

More information

Motivation: Level Sets. Input Data Noisy. Easy Case Use Marching Cubes. Intensity Varies. Non-uniform Exposure. Roger Crawfis

Motivation: Level Sets. Input Data Noisy. Easy Case Use Marching Cubes. Intensity Varies. Non-uniform Exposure. Roger Crawfis Level Set Motivation: Roger Crawfi Slide collected from: Fan Ding, Charle Dyer, Donald Tanguay and Roger Crawfi 4/24/2003 R. Crawfi, Ohio State Univ. 109 Eay Cae Ue Marching Cube Input Data Noiy 4/24/2003

More information

Chapter 5: Light and Vision CHAPTER 5: LIGHT AND VISION

Chapter 5: Light and Vision CHAPTER 5: LIGHT AND VISION CHAPTER 5: LIGHT AND VISION These notes have been compiled in a way to make it easier or revision. The topics are not in order as per the syllabus. 5.1 Mirrors and Lenses 5.1.1 Image Characteristics Image

More information

Adaptive Beam Director for a Tiled Fiber Array

Adaptive Beam Director for a Tiled Fiber Array Adaptive Beam Director for a Tiled Fiber Array Mikhail A. Vorontov Intelligent Optic Laboratory, Computational and Information Science Directorate, U.S. Army Reearch Laboratory, 2800 Powder Mill Road,

More information

Ch. 25 The Reflection of Light

Ch. 25 The Reflection of Light Ch. 25 The Reflection of Light 25. Wave fronts and rays We are all familiar with mirrors. We see images because some light is reflected off the surface of the mirror and into our eyes. In order to describe

More information

TAM 212 Worksheet 3. The worksheet is concerned with the design of the loop-the-loop for a roller coaster system.

TAM 212 Worksheet 3. The worksheet is concerned with the design of the loop-the-loop for a roller coaster system. Name: Group member: TAM 212 Workheet 3 The workheet i concerned with the deign of the loop-the-loop for a roller coater ytem. Old loop deign: The firt generation of loop wa circular, a hown below. R New

More information

Snell s Law n i sin! i = n r sin! r

Snell s Law n i sin! i = n r sin! r Mr. Rawson Physics Snell s Law n i sin! i = n r sin! r Angle o Reraction n glass = 1.5 Angle o Incidence n air = 1.00 32 o 32 o 1 Mr. Rawson Physics 4 Mr. Rawson Physics 2 Mr. Rawson Physics 3 !"#$%&&&&

More information

Markov Random Fields in Image Segmentation

Markov Random Fields in Image Segmentation Preented at SSIP 2011, Szeged, Hungary Markov Random Field in Image Segmentation Zoltan Kato Image Proceing & Computer Graphic Dept. Univerity of Szeged Hungary Zoltan Kato: Markov Random Field in Image

More information

Optical Sensor Technology

Optical Sensor Technology Optical Sensor Technology Wei-Chih Wang University o Washington Department o Mechanical Engineering Objectives The main goal o this course is to introduce the characteristics o light that can be used to

More information

521466S Machine Vision Exercise #1 Camera models

521466S Machine Vision Exercise #1 Camera models 52466S Machine Vision Exercise # Camera models. Pinhole camera. The perspective projection equations or a pinhole camera are x n = x c, = y c, where x n = [x n, ] are the normalized image coordinates,

More information

Computer Data Analysis and Plotting

Computer Data Analysis and Plotting Phys 122 February 6, 2006 quark%//~bland/docs/manuals/ph122/pcintro/pcintro.doc Computer Data Analysis and Plotting In this lab we will use Microsot EXCEL to do our calculations. This program has been

More information

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville,

More information

L ENSES. Lenses Spherical refracting surfaces. n 1 n 2

L ENSES. Lenses Spherical refracting surfaces. n 1 n 2 Lenses 2 L ENSES 2. Sherical reracting suraces In order to start discussing lenses uantitatively, it is useul to consider a simle sherical surace, as shown in Fig. 2.. Our lens is a semi-ininte rod with

More information

Mirror shape recovery from image curves and intrinsic parameters: Rotationally symmetric and conic mirrors. Abstract. 2. Mirror shape recovery

Mirror shape recovery from image curves and intrinsic parameters: Rotationally symmetric and conic mirrors. Abstract. 2. Mirror shape recovery Mirror hape recovery from image curve and intrinic parameter: Rotationally ymmetric and conic mirror Nuno Gonçalve and Helder Araújo Λ Intitute of Sytem and Robotic Univerity of Coimbra Pinhal de Marroco

More information

TAM 212 Worksheet 3. Solutions

TAM 212 Worksheet 3. Solutions Name: Group member: TAM 212 Workheet 3 Solution The workheet i concerned with the deign of the loop-the-loop for a roller coater ytem. Old loop deign: The firt generation of loop wa circular, a hown below.

More information

Inverse Kinematics 1 1/29/2018

Inverse Kinematics 1 1/29/2018 Invere Kinemati 1 Invere Kinemati 2 given the poe of the end effetor, find the joint variable that produe the end effetor poe for a -joint robot, given find 1 o R T 3 2 1,,,,, q q q q q q RPP + Spherial

More information

1 The secretary problem

1 The secretary problem Thi i new material: if you ee error, pleae email jtyu at tanford dot edu 1 The ecretary problem We will tart by analyzing the expected runtime of an algorithm, a you will be expected to do on your homework.

More information

Quadrilaterals. Learning Objectives. Pre-Activity

Quadrilaterals. Learning Objectives. Pre-Activity Section 3.4 Pre-Activity Preparation Quadrilateral Intereting geometric hape and pattern are all around u when we tart looking for them. Examine a row of fencing or the tiling deign at the wimming pool.

More information

Algebra Based Physics

Algebra Based Physics Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Table of ontents Slide 3 / 66 lick on the topic to go to that section Reflection Spherical Mirror Refraction and

More information

Unit 10 Reflection & Refraction

Unit 10 Reflection & Refraction Name: Hr: Unit 0 Relection & Reraction Grading: Show all work, keeping it neat and organized. Show equations used and include all units. REFLECTION Vocabulary Relection: The bouncing o light. The angle

More information

Optics Quiz #2 April 30, 2014

Optics Quiz #2 April 30, 2014 .71 - Optics Quiz # April 3, 14 Problem 1. Billet s Split Lens Setup I the ield L(x) is placed against a lens with ocal length and pupil unction P(x), the ield (X) on the X-axis placed a distance behind

More information

Interface Tracking in Eulerian and MMALE Calculations

Interface Tracking in Eulerian and MMALE Calculations Interface Tracking in Eulerian and MMALE Calculation Gabi Luttwak Rafael P.O.Box 2250, Haifa 31021,Irael Interface Tracking in Eulerian and MMALE Calculation 3D Volume of Fluid (VOF) baed recontruction

More information

KS3 Maths Assessment Objectives

KS3 Maths Assessment Objectives KS3 Math Aement Objective Tranition Stage 9 Ratio & Proportion Probabilit y & Statitic Appreciate the infinite nature of the et of integer, real and rational number Can interpret fraction and percentage

More information

CHAPTER 35. Answer to Checkpoint Questions

CHAPTER 35. Answer to Checkpoint Questions 956 CHAPTER 35 GEMETRICAL PTICS CHAPTER 35 Answer to Checkpoint Questions answer to kaleidoscope question: two mirrors that orm a V with an angle o 60. 0:d, :8d, :d. (a) real; (b) inverted; (c) same 3.

More information

An Intro to LP and the Simplex Algorithm. Primal Simplex

An Intro to LP and the Simplex Algorithm. Primal Simplex An Intro to LP and the Simplex Algorithm Primal Simplex Linear programming i contrained minimization of a linear objective over a olution pace defined by linear contraint: min cx Ax b l x u A i an m n

More information

Anisotropy Estimation and Image Remapping Using Model Based Moveout

Anisotropy Estimation and Image Remapping Using Model Based Moveout Aniotropy Etiation and Iae Reappin Uin Model Baed Moveout Z. Liu* (PGS), N.D. Whitore (PGS) & C. Zhou (PGS) SUMMARY Typically odel paraeter etiation i achieved throuh ultiple iteration of linearized tooraphy

More information

EE119 Homework 3. Due Monday, February 16, 2009

EE119 Homework 3. Due Monday, February 16, 2009 EE9 Homework 3 Professor: Jeff Bokor GSI: Julia Zaks Due Monday, February 6, 2009. In class we have discussed that the behavior of an optical system changes when immersed in a liquid. Show that the longitudinal

More information

MAT 155: Describing, Exploring, and Comparing Data Page 1 of NotesCh2-3.doc

MAT 155: Describing, Exploring, and Comparing Data Page 1 of NotesCh2-3.doc MAT 155: Decribing, Exploring, and Comparing Data Page 1 of 8 001-oteCh-3.doc ote for Chapter Summarizing and Graphing Data Chapter 3 Decribing, Exploring, and Comparing Data Frequency Ditribution, Graphic

More information

Computer Arithmetic Homework Solutions. 1 An adder for graphics. 2 Partitioned adder. 3 HDL implementation of a partitioned adder

Computer Arithmetic Homework Solutions. 1 An adder for graphics. 2 Partitioned adder. 3 HDL implementation of a partitioned adder Computer Arithmetic Homework 3 2016 2017 Solution 1 An adder for graphic In a normal ripple carry addition of two poitive number, the carry i the ignal for a reult exceeding the maximum. We ue thi ignal

More information

ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK

ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK ES05 Analyi and Deign of Engineering Sytem: Lab : An Introductory Tutorial: Getting Started with SIMULINK What i SIMULINK? SIMULINK i a oftware package for modeling, imulating, and analyzing dynamic ytem.

More information

Diffraction I Version 1.0 : March 12, 2019

Diffraction I Version 1.0 : March 12, 2019 Diffraction I Interference an Diffraction of Light Through Slit: The Jut Give Me The Formulae Verion! Steve Smith March 12, 2019 Content 1 Introuction 3 1.1 Huygen Principle.............................................

More information

A METHOD OF REAL-TIME NURBS INTERPOLATION WITH CONFINED CHORD ERROR FOR CNC SYSTEMS

A METHOD OF REAL-TIME NURBS INTERPOLATION WITH CONFINED CHORD ERROR FOR CNC SYSTEMS Vietnam Journal of Science and Technology 55 (5) (017) 650-657 DOI: 10.1565/55-518/55/5/906 A METHOD OF REAL-TIME NURBS INTERPOLATION WITH CONFINED CHORD ERROR FOR CNC SYSTEMS Nguyen Huu Quang *, Banh

More information

Wave optics treats light as a wave and uses a similar analytical framework as sound waves and other mechanical waves.

Wave optics treats light as a wave and uses a similar analytical framework as sound waves and other mechanical waves. Otics 1. Intro: Models o Light 2. The Ray Model 1. Relection 2. Reraction 3. Total Internal Relection 3. Images 1. The lane mirror 2. Sherical Mirrors (concave) 4. Lenses: an introduction 1. The arameters

More information

Conic Sections: Parabolas

Conic Sections: Parabolas Conic Sections: Parabolas Why are the graphs of parabolas, ellipses, and hyperbolas called 'conic sections'? Because if you pass a plane through a double cone, the intersection of the plane and the cone

More information

SPMI 5.7. SEG/Houston 2005 Annual Meeting 1962

SPMI 5.7. SEG/Houston 2005 Annual Meeting 1962 pplication of beamlet propaator to miration amplitude correction Shenwen Jin 1, Minqiu Luo 1,2, Ru-Shan Wu 2, and David Walraven 3 1 Screen main Technoloy, nc., Houton, TX 77074 2 ntitute of Geophyic and

More information

Factor Graphs and Inference

Factor Graphs and Inference Factor Graph and Inerence Sargur Srihari rihari@cedar.bualo.edu 1 Topic 1. Factor Graph 1. Factor in probability ditribution. Deriving them rom graphical model. Eact Inerence Algorithm or Tree graph 1.

More information

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE 58 UNIT VI OPTICS ALL THE POSSIBLE FORMULAE Relation between focal length and radius of curvature of a mirror/lens, f = R/2 Mirror formula: Magnification produced by a mirror: m = - = - Snell s law: 1

More information

Computer Data Analysis and Use of Excel

Computer Data Analysis and Use of Excel Computer Data Analysis and Use o Excel I. Theory In this lab we will use Microsot EXCEL to do our calculations and error analysis. This program was written primarily or use by the business community, so

More information

Chapter 3: Mirrors and Lenses

Chapter 3: Mirrors and Lenses Chapter 3: Mirrors and Lenses Chapter 3: Mirrors and Lenses Lenses Refraction Converging rays Diverging rays Converging Lens Ray tracing rules Image formation Diverging Lens Ray tracing Image formation

More information

Section 3. Imaging With A Thin Lens

Section 3. Imaging With A Thin Lens Section 3 Imaging Wit A Tin Lens 3- at Ininity An object at ininity produces a set o collimated set o rays entering te optical system. Consider te rays rom a inite object located on te axis. Wen te object

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 1 Overview of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror Equation The Refraction of Light Ray Tracing

More information

Practical training Inga Kindermann; Dominik Haeussler

Practical training Inga Kindermann; Dominik Haeussler liht interference Materials: Laserpointer mountin material diffraction ratin with 40 slits per centimetre, CD-ROM (and ), cardboard security advise: Never let the direct beam of a laser hit your eyes!

More information

CENTER-POINT MODEL OF DEFORMABLE SURFACE

CENTER-POINT MODEL OF DEFORMABLE SURFACE CENTER-POINT MODEL OF DEFORMABLE SURFACE Piotr M. Szczypinki Iintitute of Electronic, Technical Univerity of Lodz, Poland Abtract: Key word: Center-point model of deformable urface for egmentation of 3D

More information

Straiht Line Detection Any straiht line in 2D space can be represented by this parametric euation: x; y; ; ) =x cos + y sin, =0 To nd the transorm o a

Straiht Line Detection Any straiht line in 2D space can be represented by this parametric euation: x; y; ; ) =x cos + y sin, =0 To nd the transorm o a Houh Transorm E186 Handout Denition The idea o Houh transorm is to describe a certain line shape straiht lines, circles, ellipses, etc.) lobally in a parameter space { the Houh transorm domain. We assume

More information

Physics 102: Lecture 17 Reflection and Refraction of Light

Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17, Slide 1 Today Last Time Recall from last time. Reflection: q i = q r Flat Mirror: image equidistant behind Spherical

More information

Generic Traverse. CS 362, Lecture 19. DFS and BFS. Today s Outline

Generic Traverse. CS 362, Lecture 19. DFS and BFS. Today s Outline Generic Travere CS 62, Lecture 9 Jared Saia Univerity of New Mexico Travere(){ put (nil,) in bag; while (the bag i not empty){ take ome edge (p,v) from the bag if (v i unmarked) mark v; parent(v) = p;

More information

Drawing Lines in 2 Dimensions

Drawing Lines in 2 Dimensions Drawing Line in 2 Dimenion Drawing a traight line (or an arc) between two end point when one i limited to dicrete pixel require a bit of thought. Conider the following line uperimpoed on a 2 dimenional

More information

Performance of a Robust Filter-based Approach for Contour Detection in Wireless Sensor Networks

Performance of a Robust Filter-based Approach for Contour Detection in Wireless Sensor Networks Performance of a Robut Filter-baed Approach for Contour Detection in Wirele Senor Network Hadi Alati, William A. Armtrong, Jr., and Ai Naipuri Department of Electrical and Computer Engineering The Univerity

More information

Ch. 26: Geometrical Optics

Ch. 26: Geometrical Optics Sec. 6-1: The Reflection of Light Wave Fronts and Rays Ch. 6: Geometrical Optics Wave front: a surface on which E is a maximum. Figure 5-3: Plane Wave *For this wave, the wave fronts are a series of planes.

More information

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ =

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ = Radiometry (From Intro to Optics, Pedrotti -4) Radiometry is measurement of Emag radiation (light) Consider a small spherical source Total energy radiating from the body over some time is Q total Radiant

More information

Universität Augsburg. Institut für Informatik. Approximating Optimal Visual Sensor Placement. E. Hörster, R. Lienhart.

Universität Augsburg. Institut für Informatik. Approximating Optimal Visual Sensor Placement. E. Hörster, R. Lienhart. Univerität Augburg à ÊÇÅÍÆ ËÀǼ Approximating Optimal Viual Senor Placement E. Hörter, R. Lienhart Report 2006-01 Januar 2006 Intitut für Informatik D-86135 Augburg Copyright c E. Hörter, R. Lienhart Intitut

More information

Reflection and Refraction

Reflection and Refraction Reflection and Refraction Theory: Whenever a wave traveling in some medium encounters an interface or boundary with another medium either (or both) of the processes of (1) reflection and (2) refraction

More information

Karen L. Collins. Wesleyan University. Middletown, CT and. Mark Hovey MIT. Cambridge, MA Abstract

Karen L. Collins. Wesleyan University. Middletown, CT and. Mark Hovey MIT. Cambridge, MA Abstract Mot Graph are Edge-Cordial Karen L. Collin Dept. of Mathematic Weleyan Univerity Middletown, CT 6457 and Mark Hovey Dept. of Mathematic MIT Cambridge, MA 239 Abtract We extend the definition of edge-cordial

More information

Routing Definition 4.1

Routing Definition 4.1 4 Routing So far, we have only looked at network without dealing with the iue of how to end information in them from one node to another The problem of ending information in a network i known a routing

More information

Video: The Mirror. Unit #3 - Optics. Geometric Optics. A) The Law of Reflection. applications Mirrors.

Video: The Mirror. Unit #3 - Optics. Geometric Optics. A) The Law of Reflection. applications Mirrors. Video: The Mirror http://vimeo.com/6212004 Unit #3 - Optics 11.1 - Mirrors Geometric Optics the science of how light reflects and bends optical device is any technology that uses light A) The Law of Reflection

More information

9.8 Graphing Rational Functions

9.8 Graphing Rational Functions 9. Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm P where P and Q are polynomials. Q An eample o a simple rational unction

More information

Physics 11 Chapter 18: Ray Optics

Physics 11 Chapter 18: Ray Optics Physics 11 Chapter 18: Ray Optics "... Everything can be taken from a man but one thing; the last of the human freedoms to choose one s attitude in any given set of circumstances, to choose one s own way.

More information

Geometrical Optics INTRODUCTION

Geometrical Optics INTRODUCTION n i u i u r n t u t 2 Geometrical ptic INTRDUCTIN The treatment of light a wave motion allow for a region of approximation in which the wavelength i conidered to be negligible compared with the dimenion

More information

Math 2A Vector Calculus Chapter 11 Test Fall 07 Name Show your work. Don t use a calculator. Write responses on separate paper.

Math 2A Vector Calculus Chapter 11 Test Fall 07 Name Show your work. Don t use a calculator. Write responses on separate paper. Math A Vector Calculus Chapter Test Fall 7 Name Show our work. Don t use a calculator. Write responses on separate paper.. Consider the nice, smooth unction z, whose contour map is shown at right. a. Estimate

More information

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Phys 531 Lecture 8 20 September 2005 Ray Optics I Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Today shift gears, start applying

More information

Introduction to PET Image Reconstruction. Tomographic Imaging. Projection Imaging. PET Image Reconstruction 11/6/07

Introduction to PET Image Reconstruction. Tomographic Imaging. Projection Imaging. PET Image Reconstruction 11/6/07 Introduction to PET Image Recontruction Adam Aleio Nuclear Medicine Lecture Imaging Reearch Laboratory Diviion of Nuclear Medicine Univerity of Wahington Fall 2007 http://dept.wahington.edu/nucmed/irl/education.html

More information

3D SMAP Algorithm. April 11, 2012

3D SMAP Algorithm. April 11, 2012 3D SMAP Algorithm April 11, 2012 Baed on the original SMAP paper [1]. Thi report extend the tructure of MSRF into 3D. The prior ditribution i modified to atify the MRF property. In addition, an iterative

More information

Exercise 4: Markov Processes, Cellular Automata and Fuzzy Logic

Exercise 4: Markov Processes, Cellular Automata and Fuzzy Logic Exercie 4: Marko rocee, Cellular Automata and Fuzzy Logic Formal Method II, Fall Semeter 203 Solution Sheet Marko rocee Theoretical Exercie. (a) ( point) 0.2 0.7 0.3 tanding 0.25 lying 0.5 0.4 0.2 0.05

More information