Math 2A Vector Calculus Chapter 11 Test Fall 07 Name Show your work. Don t use a calculator. Write responses on separate paper.

Size: px
Start display at page:

Download "Math 2A Vector Calculus Chapter 11 Test Fall 07 Name Show your work. Don t use a calculator. Write responses on separate paper."

Transcription

1 Math A Vector Calculus Chapter Test Fall 7 Name Show our work. Don t use a calculator. Write responses on separate paper.. Consider the nice, smooth unction z, whose contour map is shown at right. a. Estimate unction alues to the nearest tenth to ill in the blank cells in the table below: \ b. Use the alue in our table aboe to estimate (.4,.) and (.4,.) to the nearest tenth. c. Let be the ector rom P(.6,.4) to Q(.,.5) Compute D.4,. in two was: z as h and as z d. Let be the ector rom P(.,.4) to Q(.6,.5) Compute D.4,. in two was: as z h and as z.. B considering dierent lines o approach, show that the unction has no limit as (, ) (,)., 3. Use polar coordinates to proe that the limit eists: e lim 4. Sketch leel cures (,) =, (,) = ½ and (,) = ½ or the i,, unction,. i,,

2 5. Find points on the surace + z + z z = where the tangent plane is parallel to the -plane. 6. Find an equation or the plane tangent to the parametricall deined surace,, cos,cos sin,cos z u u where (u,) = (,π/). 7. Show that, arctan / satisies the two dimensional Laplace equation,. 8. Find the direction in which increases and decreases most rapidl at P and the rates at which changes in these directions. a. (,) = + cos, P (,). b. (,,z) = z ln( + ), P (,,) 9. Consider 3 3, 3 a. Find the critical points. b. Find all maima, minima and saddle points and ealuate the unction at those points.. A lat circular plate has the shape o the region +. The plate, including the boundar where + =, is heated so the temperature at an point (, ) is T,. Find the absolute ma. and min. alues o (, ) = on the ellipse + 4 = 8 in two was: a. B using the parameterization, cos t, sin t b. B using Lagrange multipliers.. Find a leel surace or the densit unction the tangent plane + 3 z = 3.,, z z that has

3 Math A Vector Calculus Chapter Test Solutions Fall 9. Consider the nice, smooth unction z, whose contour map is shown at right. a) Estimate unction alues to the nearest tenth to ill in the blank cells in the table below: \ b) Use the alue in our table aboe to estimate (.4,.) and (.4,.) to the nearest tenth. z.3..4,..6. z.3..4,..5.4 c) Let be the ector rom P(.6,.4) to Q(.,.5) Compute D.4,. in two was: as z h and as z SOLN: PQ..6, z So, D.4,. or h h.4,..4,... z,.5, d) Let be the ector rom P(.,.4) to Q(.6,.5) Compute D.4,. in two was: as z h and as z. SOLN: PQ.6., z.37 So, D.4,..3 or h.7.4,..4,..4 z,.5, B considering dierent lines o approach, show that the unction has no limit as (, ) (,).,

4 SOLN: Along the line =, lim lim lim,, lim lim lim lim does not eist because 3. Use polar coordinates to proe that the limit eists: e lim r e e SOLN: Since goes to ininit onl i r goes to ininit, lim lim r r Now it ma happen that r goes to ininit but, =, but this wouldn t appl to this limit. 4. Sketch leel cures (,) =, (,) = ½ and (,) = ½ or the i,, unction,. i,, SOLN: This shows, b the wa, that there is no limiting alue o z as (,) approaches (,). 5. Find points on the surace + z + z z = where the tangent plane is parallel to the -plane. SOLN: We need z and z. Each o these equations describes a plane, and the intersection o these planes is the line r t t, t, t,, t,,.

5 So since ( + z) = the intersection o the line with the leel surace occurs where z z = or t + t t = t(t ) = so either t = or t = ½ whence the points where tangent plane is horizontal are (,,) and ( ½, ½, ½). To help isualize what s going on here, ou might sole the equation or the surace or z: 4 z z z. We can isualize this in Mathematica Plot3D[{{( Sqrt[( ) 4 ( )]) / }, with the ollowing command: {( Sqrt[( ) 4 ( )]) / }, {},{/ }},{, 5,5},{, 5,5}] The graph shows a tilted hperboloid o one sheet. 6. Find an equation or the plane tangent to the parametricall deined surace,, cos,cos sin,cos z u u where (u,) = (,π/). SOLN: The point o tangenc is cos /,cos sin /,cos,, The tangent ector r ', / sin /,cos cos /,,, but the other one is r u ', /, sin sin /, sin, so what to do? What does this mean? It could mean there s a cusp in that direction, but this doesn t mean there isn t a tangent plane. It could be we could do a directional deriatie in some other direction and get another ector or the cross product normal to the tangent plane, but the simplicit o the ormula or the surace suggests we tr to eliminate the parameters and get a rectangular orm or the equation o the surace. Obsering that z = cos(u) so = z sin() leads to z sin z cos z so the solution set to this rectangular equation can be iewed rom a higher dimension as the leel surace w = or the densit unction w,, z z. Thus a normal to the tangent plane at (,,) can be ound b ealuating the gradient ector there: w z z so an equation or the,,,,,, tangent plane is obtained b requiring that the normal be perpendicular to an arbitrar ector in the plane:,,,, z z z To isualize this in Mathematica, the ollowing command will graph the surace and tangent plane:

6 ParametricPlot3 D[{{ Cos[ ], Cos[ u] Sin[ ], Cos[ u]},{ / Pi, u / Pi, u / Pi}},{ u, Pi, Pi},{, Pi, Pi }] It s worth eamining this igure in detail. For instance, u = is a circle o radius in the plane z =. 7. Show that, arctan / satisies the two dimensional Laplace equation, SOLN:. d d, arctan /, arctan /,, / / d d, 8. Find the direction in which increases and decreases most rapidl at P and the rates at which changes in these directions. a) (,) = + cos, P (,). SOLN:, sin, sin, so grows at a rate o / in that direction., b) (,,z) = z ln( + ), P (,,)

7 SOLN: 9. Consider z z,,,,ln,, So is growing at a rate o / is that direction. 3 3, 3 a) Find the critical points. SOLN: 3 3 and 4,, 3 3, substituting, we get or, leading to critical points (,) and (, ). b) Find all maima, minima and saddle points and ealuate the unction at those points. SOLN: D is positie at (, ) where = 6 <, so this is a local maimum. The point (,) has D < so the point is a saddle. In the diagram below, the local ma at (-,-,) seems eident. The saddle is a little more subtle. 3 Look at the cures r t, t,t 3t and r t, t, 3t are shown on the plot and ou can see the irst is curing up at (,,) and the other is curing down A lat circular plate has the shape o the region +. The plate, including the boundar where + =, is heated so the temperature at an point (, ) is T,. Find the etreme temperatures o the plate and where the occur. SOLN: The critical points are where T and T 4. So there s a critical point at (½, ) where = indicates that (½,, -¼) is a local (turns out to be global) minimum. On the boundar we

8 hae the cure r cos t,sin t, cos t sin t cost cos t,sin t, sin t cost cos t,sin t, cost cos t the tangent line is horizontal when dz dt sin t cos t sin t sin t cos t t k or t dz. 3 We eamine the point where t = and ind (,,) where cost cos t 3 and so that s a local dt min on the edge, (ront right o edge in the image below,) but neither a ma nor a min. Where t = π, d z (,,) has, so that s also a local min along the edge, but neither a local min nor a local ma on dt the surace. At t = π/3 the point (-½, 3/,9/4) and at t = π/3 the point ( ½, 3/,9/4) hae d z, so those are global maima. dt. Find the absolute ma. and min. alues o (, ) = on the ellipse + 4 = 8 in two was a) B using the parameterization, cos t, sin t SOLN: Along the path, cos t, sin t, z = 4cos t sin t = sint so z = 4cost = i t = an odd multiple o π/4. At π/4 and 5π/4 z = 4 so (,, ) and (,,) are global maima and at 3π/4 and 7π/4 z = 4 so (,, ) and (,, ) are global minima. b) B using Lagrange multipliers. SOLN: g,,8 leads to the sstem Substituting rom the second to the irst, 6, we know that either 8 = or λ = ±¼. I = then = and then constraint 4 8 can t 4 8 be met so λ = ±¼ which means = ±/ and substituting into the the ellipse equation, 8 meaning that Ater inestigating we determine that the global ma is occurring at (,) and (, ) and the global min is occurring at (,) and (, ).

9 . Find a leel surace or the densit unction,, z z that has the tangent plane + 3 z = 3. SOLN: The normal to the leel surace will be parallel to the normal to the plane i,, z,3, so that λ = = /3 = z and substituting into the equation o the plane, λ + 9λ/ λ/ = 6λ = 3 or λ = / and thus /,3 / 4,/ 4 / 3 / 4 / 4 3 / 4. So the leel surace is z 3/ 4

10

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

Reflection and Refraction

Reflection and Refraction Relection and Reraction Object To determine ocal lengths o lenses and mirrors and to determine the index o reraction o glass. Apparatus Lenses, optical bench, mirrors, light source, screen, plastic or

More information

6, 1 0, f x x 1 2 x h x x x 3, f x sin x cos x, f x x 2 6x 5 f x 4x 3 5x 30. g x x3 8x 31. f x x f x x2 3x 4 33.

6, 1 0, f x x 1 2 x h x x x 3, f x sin x cos x, f x x 2 6x 5 f x 4x 3 5x 30. g x x3 8x 31. f x x f x x2 3x 4 33. Chapter Applications o Dierentiation Review Eercises See CalcChat.com or tutorial help and worked-out solutions to odd-numbered eercises. Finding Etrema on a Closed Interval In Eercises, ind the absolute

More information

Math 241, Final Exam. 12/11/12.

Math 241, Final Exam. 12/11/12. Math, Final Exam. //. No notes, calculator, or text. There are points total. Partial credit may be given. ircle or otherwise clearly identify your final answer. Name:. (5 points): Equation of a line. Find

More information

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. . Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. f (x, y) = x y, x + y = 8. Set up the triple integral of an arbitrary continuous function

More information

Math 21a Final Exam Solutions Spring, 2009

Math 21a Final Exam Solutions Spring, 2009 Math a Final Eam olutions pring, 9 (5 points) Indicate whether the following statements are True or False b circling the appropriate letter No justifications are required T F The (vector) projection of

More information

ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM

ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM 61 LESSON 4-1 ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM Definitions (informal) The absolute maimum (global maimum) of a function is the -value that is greater than or equal to all other -values in the

More information

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z.

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z. Week 1 Worksheet Sections from Thomas 13 th edition: 12.4, 12.5, 12.6, 13.1 1. A plane is a set of points that satisfies an equation of the form c 1 x + c 2 y + c 3 z = c 4. (a) Find any three distinct

More information

Section 4.1: Maximum and Minimum Values

Section 4.1: Maximum and Minimum Values Section 4.: Maimum and Minimum Values In this chapter, we shall consider further applications of the derivative. The main application we shall consider is using derivatives to sketch accurate graphs of

More information

Larger K-maps. So far we have only discussed 2 and 3-variable K-maps. We can now create a 4-variable map in the

Larger K-maps. So far we have only discussed 2 and 3-variable K-maps. We can now create a 4-variable map in the EET 3 Chapter 3 7/3/2 PAGE - 23 Larger K-maps The -variable K-map So ar we have only discussed 2 and 3-variable K-maps. We can now create a -variable map in the same way that we created the 3-variable

More information

Mat 241 Homework Set 7 Due Professor David Schultz

Mat 241 Homework Set 7 Due Professor David Schultz Mat 41 Homework Set 7 Due Professor David Schultz Directions: Show all algebraic steps neatly and concisely using proper mathematical symbolism When graphs and technology are to be implemented, do so appropriately

More information

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided.

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided. Math 213 Exam 2 Name: Section: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used other than a onepage cheat

More information

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota Questions to:

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota   Questions to: Lab_B.nb Lab B Parametrizing Surfaces Math 37 University of Minnesota http://www.math.umn.edu/math37 Questions to: rogness@math.umn.edu Introduction As in last week s lab, there is no calculus in this

More information

9.8 Graphing Rational Functions

9.8 Graphing Rational Functions 9. Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm P where P and Q are polynomials. Q An eample o a simple rational unction

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

14.5 Directional Derivatives and the Gradient Vector

14.5 Directional Derivatives and the Gradient Vector 14.5 Directional Derivatives and the Gradient Vector 1. Directional Derivatives. Recall z = f (x, y) and the partial derivatives f x and f y are defined as f (x 0 + h, y 0 ) f (x 0, y 0 ) f x (x 0, y 0

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

Put your initials on the top of every page, in case the pages become separated.

Put your initials on the top of every page, in case the pages become separated. Math 1201, Fall 2016 Name (print): Dr. Jo Nelson s Calculus III Practice for 1/2 of Final, Midterm 1 Material Time Limit: 90 minutes DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED TO DO SO. This exam contains

More information

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers 3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers Prof. Tesler Math 20C Fall 2018 Prof. Tesler 3.3 3.4 Optimization Math 20C / Fall 2018 1 / 56 Optimizing y = f (x) In Math 20A, we

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1 PRACTICE FINAL - MATH 2, Spring 22 The Final will have more material from Chapter 4 than other chapters. To study for chapters -3 you should review the old practice eams IN ADDITION TO what appears here.

More information

Chapter 10 Homework: Parametric Equations and Polar Coordinates

Chapter 10 Homework: Parametric Equations and Polar Coordinates Chapter 1 Homework: Parametric Equations and Polar Coordinates Name Homework 1.2 1. Consider the parametric equations x = t and y = 3 t. a. Construct a table of values for t =, 1, 2, 3, and 4 b. Plot the

More information

Flux Integrals. Solution. We want to visualize the surface together with the vector field. Here s a picture of exactly that:

Flux Integrals. Solution. We want to visualize the surface together with the vector field. Here s a picture of exactly that: Flu Integrals The pictures for problems # - #4 are on the last page.. Let s orient each of the three pictured surfaces so that the light side is considered to be the positie side. Decide whether each of

More information

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

dt Acceleration is the derivative of velocity with respect to time. If a body's position at time t is S = f(t), the body's acceleration at time t is

dt Acceleration is the derivative of velocity with respect to time. If a body's position at time t is S = f(t), the body's acceleration at time t is APPLICATIN F DERIVATIVE INTRDUCTIN In this section we eamine some applications in which derivatives are used to represent and interpret the rates at which things change in the world around us. Let S be

More information

Second Midterm Exam Math 212 Fall 2010

Second Midterm Exam Math 212 Fall 2010 Second Midterm Exam Math 22 Fall 2 Instructions: This is a 9 minute exam. You should work alone, without access to any book or notes. No calculators are allowed. Do not discuss this exam with anyone other

More information

Math-3 Lesson 1-7 Analyzing the Graphs of Functions

Math-3 Lesson 1-7 Analyzing the Graphs of Functions Math- Lesson -7 Analyzing the Graphs o Functions Which unctions are symmetric about the y-axis? cosx sin x x We call unctions that are symmetric about the y -axis, even unctions. Which transormation is

More information

4.4. Concavity and Curve Sketching. Concavity

4.4. Concavity and Curve Sketching. Concavity 4.4 Concavit and Curve Sketching 267 4.4 Concavit and Curve Sketching f' decreases CONCAVE DOWN 3 f' increases 0 CONCAVE UP FIGURE 4.25 The graph of ƒsd = 3 is concave down on s - q, 0d and concave up

More information

(i) Find the exact value of p. [4] Show that the area of the shaded region bounded by the curve, the x-axis and the line

(i) Find the exact value of p. [4] Show that the area of the shaded region bounded by the curve, the x-axis and the line H Math : Integration Apps 0. M p The diagram shows the curve e e and its maimum point M. The -coordinate of M is denoted b p. (i) Find the eact value of p. [] (ii) Show that the area of the shaded region

More information

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ Math 0 Prelim I Solutions Spring 010 1. Let f(x, y) = x3 y for (x, y) (0, 0). x 6 + y (4 pts) (a) Show that the cubic curves y = x 3 are level curves of the function f. Solution. Substituting y = x 3 in

More information

Winter 2012 Math 255 Section 006. Problem Set 7

Winter 2012 Math 255 Section 006. Problem Set 7 Problem Set 7 1 a) Carry out the partials with respect to t and x, substitute and check b) Use separation of varibles, i.e. write as dx/x 2 = dt, integrate both sides and observe that the solution also

More information

The Graph of an Equation Graph the following by using a table of values and plotting points.

The Graph of an Equation Graph the following by using a table of values and plotting points. Calculus Preparation - Section 1 Graphs and Models Success in math as well as Calculus is to use a multiple perspective -- graphical, analytical, and numerical. Thanks to Rene Descartes we can represent

More information

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b.

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. Practice problems 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. 1, 1 = c 1 3, 2 + c 2 2, 1. Solve c 1, c 2. 2. Suppose a is a vector in the plane. If the component of the a in

More information

Math 295: Exam 3 Name: Caleb M c Whorter Solutions Fall /16/ Minutes

Math 295: Exam 3 Name: Caleb M c Whorter Solutions Fall /16/ Minutes Math 295: Eam 3 Name: Caleb M c Whorter Solutions Fall 2018 11/16/2018 50 Minutes Write your name on the appropriate line on the eam cover sheet. This eam contains 10 pages (including this cover page)

More information

Three-Dimensional Object Representations Chapter 8

Three-Dimensional Object Representations Chapter 8 Three-Dimensional Object Representations Chapter 8 3D Object Representation A surace can be analticall generated using its unction involving the coordinates. An object can be represented in terms o its

More information

11/1/2017 Second Hourly Math 21a, Fall Name:

11/1/2017 Second Hourly Math 21a, Fall Name: 11/1/2017 Second Hourly Math 21a, Fall 2017 Name: MWF 9 Jameel Al-Aidroos MWF 9 Dennis Tseng MWF 10 Yu-Wei Fan MWF 10 Koji Shimizu MWF 11 Oliver Knill MWF 11 Chenglong Yu MWF 12 Stepan Paul TTH 10 Matt

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points.

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. 1. Evaluate the area A of the triangle with the vertices

More information

ID: Find all the local maxima, local minima, and saddle points of the function.

ID: Find all the local maxima, local minima, and saddle points of the function. 1. Find all the local maxima, local minima, and saddle points of the function. f(x,y) = x + xy + y + 5x 5y + 4 A. A local maximum occurs at. The local maximum value(s) is/are. B. There are no local maxima.

More information

x=2 26. y 3x Use calculus to find the area of the triangle with the given vertices. y sin x cos 2x dx 31. y sx 2 x dx

x=2 26. y 3x Use calculus to find the area of the triangle with the given vertices. y sin x cos 2x dx 31. y sx 2 x dx 4 CHAPTER 6 APPLICATIONS OF INTEGRATION 6. EXERCISES 4 Find the area of the shaded region.. =5-. (4, 4) =. 4. = - = (_, ) = -4 =œ + = + =.,. sin,. cos, sin,, 4. cos, cos, 5., 6., 7.,, 4, 8., 8, 4 4, =_

More information

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables Math 1314 Lesson 4 Maxima and Minima o Functions o Several Variables We learned to ind the maxima and minima o a unction o a single variable earlier in the course. We had a second derivative test to determine

More information

What you will learn today

What you will learn today What you will learn today Tangent Planes and Linear Approximation and the Gradient Vector Vector Functions 1/21 Recall in one-variable calculus, as we zoom in toward a point on a curve, the graph becomes

More information

Math 136 Exam 1 Practice Problems

Math 136 Exam 1 Practice Problems Math Exam Practice Problems. Find the surface area of the surface of revolution generated by revolving the curve given by around the x-axis? To solve this we use the equation: In this case this translates

More information

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14 Vector and Multivariable Calculus L Marizza A Bailey Practice Trimester Final Exam Name: Problem 1. To prepare for true/false and multiple choice: Compute the following (a) (4, 3) ( 3, 2) Solution 1. (4)(

More information

4.3 Maximum and Minimum Values of a Function

4.3 Maximum and Minimum Values of a Function MA: Prepared b Asst.Prof.Dr. Archara Pacheenburawana 83 4.3 Maimum and Minimum Values of a Function Some of the most important applications of differential calculus are optimization problems, in which

More information

Math 21a Homework 22 Solutions Spring, 2014

Math 21a Homework 22 Solutions Spring, 2014 Math 1a Homework Solutions Spring, 014 1. Based on Stewart 11.8 #6 ) Consider the function fx, y) = e xy, and the constraint x 3 + y 3 = 16. a) Use Lagrange multipliers to find the coordinates x, y) of

More information

Name: Date: 1. Match the equation with its graph. Page 1

Name: Date: 1. Match the equation with its graph. Page 1 Name: Date: 1. Match the equation with its graph. y 6x A) C) Page 1 D) E) Page . Match the equation with its graph. ( x3) ( y3) A) C) Page 3 D) E) Page 4 3. Match the equation with its graph. ( x ) y 1

More information

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002 Math 13 Calculus III Practice Exam Solutions Fall 00 1. Let g(x, y, z) = e (x+y) + z (x + y). (a) What is the instantaneous rate of change of g at the point (,, 1) in the direction of the origin? We want

More information

Polar Coordinates

Polar Coordinates Polar Coordinates 7-7-2 Polar coordinates are an alternative to rectangular coordinates for referring to points in the plane. A point in the plane has polar coordinates r,θ). r is roughly) the distance

More information

3.5 Rational Functions

3.5 Rational Functions 0 Chapter Polnomial and Rational Functions Rational Functions For a rational function, find the domain and graph the function, identifing all of the asmptotes Solve applied problems involving rational

More information

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative Polar (BC Only) Polar coordinates are another way of expressing points in a plane. Instead of being centered at an origin and moving horizontally or vertically, polar coordinates are centered at the pole

More information

Lagrange multipliers October 2013

Lagrange multipliers October 2013 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 1 1 3/2 Example: Optimization

More information

Graphing square root functions. What would be the base graph for the square root function? What is the table of values?

Graphing square root functions. What would be the base graph for the square root function? What is the table of values? Unit 3 (Chapter 2) Radical Functions (Square Root Functions Sketch graphs of radical functions b appling translations, stretches and reflections to the graph of Analze transformations to identif the of

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution 13 Functions of Several Variables 13.1 Introduction to Functions of Several Variables Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Objectives Understand

More information

2.3 Polynomial Functions of Higher Degree with Modeling

2.3 Polynomial Functions of Higher Degree with Modeling SECTION 2.3 Polnomial Functions of Higher Degree with Modeling 185 2.3 Polnomial Functions of Higher Degree with Modeling What ou ll learn about Graphs of Polnomial Functions End Behavior of Polnomial

More information

Math 20C. Lecture Examples.

Math 20C. Lecture Examples. Math 0C. Lecture Eamples. (8/30/08) Section 14.1, Part 1. Functions of two variables Definition 1 A function f of the two variables and is a rule = f(,) that assigns a number denoted f(,), to each point

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 9 ARAMETRIC EQUATIONS AND OLAR COORDINATES So far we have described plane curves b giving as a function of f or as a function of t or b giving a relation between and that defines implicitl as a function

More information

Lagrange multipliers 14.8

Lagrange multipliers 14.8 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 Maximum? 1 1 Minimum? 3/2 Idea:

More information

The directional derivative of f x, y in the direction of at x, y u. f x sa y sb f x y (, ) (, ) 0 0 y 0 0

The directional derivative of f x, y in the direction of at x, y u. f x sa y sb f x y (, ) (, ) 0 0 y 0 0 Review: 0, lim D f u 0 0 0 0 u The directional derivative of f, in the direction of at, is denoted b D f, : u a, b must a unit vector u f sa sb f s 0 (, ) (, ) s f (, ) a f (, ) b 0 0 0 0 0 0 D f, f u

More information

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12.

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12. Multivariable Calculus Exam 2 Preparation Math 28 (Spring 2) Exam 2: Thursday, May 2. Friday May, is a day off! Instructions: () There are points on the exam and an extra credit problem worth an additional

More information

MATH 2023 Multivariable Calculus

MATH 2023 Multivariable Calculus MATH 2023 Multivariable Calculus Problem Sets Note: Problems with asterisks represent supplementary informations. You may want to read their solutions if you like, but you don t need to work on them. Set

More information

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA:

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA: MA 114 Exam 3 Spring 217 Exam 3 Name: Section and/or TA: Last Four Digits of Student ID: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test.

More information

FINAL EXAM (PRACTICE A) MATH 265

FINAL EXAM (PRACTICE A) MATH 265 UNIVERSITY OF CALGARY FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS & STATISTICS FINAL EXAM (PRACTICE A) MATH 265 NAME STUDENT ID EXAMINATION RULES 1. This is a closed book eamination. 2. Calculators are

More information

(i) h(7,8,24) (ii) h(6,5,6) (iii) h( 7,8,9) (iv) h(10,9, 16) (iv) g 3,32 8

(i) h(7,8,24) (ii) h(6,5,6) (iii) h( 7,8,9) (iv) h(10,9, 16) (iv) g 3,32 8 M252 Practice Eam for 12.1-12.9 1. Find and simplify the function values. f ( y, ) = 5 10y (i) f(0,0) (ii) f(0,1) (iii) f(3,9) (iv) f(1,y) (v) f(,0) (vi) f(t,1) 2. Find and simplify the function values.

More information

EE 264: Image Processing and Reconstruction. Image Motion Estimation II. EE 264: Image Processing and Reconstruction. Outline

EE 264: Image Processing and Reconstruction. Image Motion Estimation II. EE 264: Image Processing and Reconstruction. Outline Peman Milanar Image Motion Estimation II Peman Milanar Outline. Introduction to Motion. Wh Estimate Motion? 3. Global s. Local Motion 4. Block Motion Estimation 5. Optical Flow Estimation Basics 6. Optical

More information

MATH 261 EXAM III PRACTICE PROBLEMS

MATH 261 EXAM III PRACTICE PROBLEMS MATH 6 EXAM III PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 3 typically has 5 (not 6!) problems on it, with no more than one problem of any given

More information

5.2 Properties of Rational functions

5.2 Properties of Rational functions 5. Properties o Rational unctions A rational unction is a unction o the orm n n1 polynomial p an an 1 a1 a0 k k1 polynomial q bk bk 1 b1 b0 Eample 3 5 1 The domain o a rational unction is the set o all

More information

Chapter 4.1 & 4.2 (Part 1) Practice Problems

Chapter 4.1 & 4.2 (Part 1) Practice Problems Chapter 4. & 4. Part Practice Problems EXPECTED SKILLS: Understand how the signs of the first and second derivatives of a function are related to the behavior of the function. Know how to use the first

More information

14.1. It s very difficult to visualize a function f of three variables by its graph, since that

14.1. It s very difficult to visualize a function f of three variables by its graph, since that + +@= + +@=4 SECTION 4. FUNCTIONS OF SEVERAL VARIABLES 86 It s ver difficult to visualie a function f of three variables b its graph, since that would lie in a four-dimensional space. However, we do gain

More information

MATH 200 (Fall 2016) Exam 1 Solutions (a) (10 points) Find an equation of the sphere with center ( 2, 1, 4).

MATH 200 (Fall 2016) Exam 1 Solutions (a) (10 points) Find an equation of the sphere with center ( 2, 1, 4). MATH 00 (Fall 016) Exam 1 Solutions 1 1. (a) (10 points) Find an equation of the sphere with center (, 1, 4). (x ( )) + (y 1) + (z ( 4)) 3 (x + ) + (y 1) + (z + 4) 9 (b) (10 points) Find an equation of

More information

EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES

EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES A. HAVENS These problems are for extra-credit, which is counted against lost points on quizzes or WebAssign. You do not

More information

We will be sketching 3-dimensional functions. You will be responsible for doing this both by hand and with Mathematica.

We will be sketching 3-dimensional functions. You will be responsible for doing this both by hand and with Mathematica. Review polar coordinates before 9.7. Section 9.6 Functions and Surfaces We will be sketching 3-dimensional functions. You will be responsible for doing this both b hand and with Mathematica. Remember:

More information

8.6 Three-Dimensional Cartesian Coordinate System

8.6 Three-Dimensional Cartesian Coordinate System SECTION 8.6 Three-Dimensional Cartesian Coordinate Sstem 69 What ou ll learn about Three-Dimensional Cartesian Coordinates Distance and Midpoint Formulas Equation of a Sphere Planes and Other Surfaces

More information

Math RE - Calculus I Application of the derivative (1) Curve Sketching Page 1 of 9

Math RE - Calculus I Application of the derivative (1) Curve Sketching Page 1 of 9 Math 201-103-RE - Calculus I Application of the derivative (1) Curve Sketching Page 1 of 9 Critical numbers - Increasing and decreasing intervals - Relative Etrema Given f(), the derivatives f () and f

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints:

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints: Math 9 (Fall 7) Calculus III Solution #5. Find the minimum and maximum values of the following functions f under the given constraints: (a) f(x, y) 4x + 6y, x + y ; (b) f(x, y) x y, x + y 6. Solution:

More information

SECTION 1.2 (e-book 2.3) Functions: Graphs & Properties

SECTION 1.2 (e-book 2.3) Functions: Graphs & Properties SECTION 1.2 (e-book 2.3) Functions: Graphs & Properties Definition (Graph Form): A function f can be defined by a graph in the xy-plane. In this case the output can be obtained by drawing vertical line

More information

48. Logistic Growth (BC) Classwork

48. Logistic Growth (BC) Classwork 48. Logistic Growth (BC) Classwork Using the exponential growth model, the growth of a population is proportion to its current size. The differential equation for exponential growth is dp = kp leading

More information

ENGI Parametric & Polar Curves Page 2-01

ENGI Parametric & Polar Curves Page 2-01 ENGI 3425 2. Parametric & Polar Curves Page 2-01 2. Parametric and Polar Curves Contents: 2.1 Parametric Vector Functions 2.2 Parametric Curve Sketching 2.3 Polar Coordinates r f 2.4 Polar Curve Sketching

More information

9.1 Parametric Curves

9.1 Parametric Curves Math 172 Chapter 9A notes Page 1 of 20 9.1 Parametric Curves So far we have discussed equations in the form. Sometimes and are given as functions of a parameter. Example. Projectile Motion Sketch and axes,

More information

Constrained Optimization and Lagrange Multipliers

Constrained Optimization and Lagrange Multipliers Constrained Optimization and Lagrange Multipliers MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Constrained Optimization In the previous section we found the local or absolute

More information

Piecewise polynomial interpolation

Piecewise polynomial interpolation Chapter 2 Piecewise polynomial interpolation In ection.6., and in Lab, we learned that it is not a good idea to interpolate unctions by a highorder polynomials at equally spaced points. However, it transpires

More information

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 covers essentially the same material as MAT201, but is more in depth and theoretical. Exam problems are often more sophisticated in scope and difficulty

More information

Solutions to assignment 3

Solutions to assignment 3 Math 9 Solutions to assignment Due: : Noon on Thursday, October, 5.. Find the minimum of the function f, y, z) + y + z subject to the condition + y + z 4. Solution. Let s define g, y, z) + y + z, so the

More information

Curved Edge Physics. Erik Neumann September 4, 2015

Curved Edge Physics. Erik Neumann September 4, 2015 Cured Edge Physics Erik Neumann erikn@myphysicslab.com September 4, 2015 1 Introduction We derie the physics of 2 dimensional rigid bodies with cured edges for calculating contact forces in a rigid body

More information

Updated: August 24, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University

Updated: August 24, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University Updated: August 24, 216 Calculus III Section 1.2 Math 232 Calculus III Brian Veitch Fall 215 Northern Illinois University 1.2 Calculus with Parametric Curves Definition 1: First Derivative of a Parametric

More information

Slope Fields Introduction / G. TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System

Slope Fields Introduction / G. TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System Math Objectives Students will describe the idea behind slope fields in terms of visualization of the famil of solutions to a differential equation. Students will describe the slope of a tangent line at

More information

Rectangular Coordinates in Space

Rectangular Coordinates in Space Rectangular Coordinates in Space Philippe B. Laval KSU Today Philippe B. Laval (KSU) Rectangular Coordinates in Space Today 1 / 11 Introduction We quickly review one and two-dimensional spaces and then

More information

Module 2, Section 2 Graphs of Trigonometric Functions

Module 2, Section 2 Graphs of Trigonometric Functions Principles of Mathematics Section, Introduction 5 Module, Section Graphs of Trigonometric Functions Introduction You have studied trigonometric ratios since Grade 9 Mathematics. In this module ou will

More information

Math 206 First Midterm October 5, 2012

Math 206 First Midterm October 5, 2012 Math 206 First Midterm October 5, 2012 Name: EXAM SOLUTIONS Instructor: Section: 1. Do not open this exam until you are told to do so. 2. This exam has 8 pages including this cover AND IS DOUBLE SIDED.

More information

UNIT #2 TRANSFORMATIONS OF FUNCTIONS

UNIT #2 TRANSFORMATIONS OF FUNCTIONS Name: Date: UNIT # TRANSFORMATIONS OF FUNCTIONS Part I Questions. The quadratic unction ollowing does,, () has a turning point at have a turning point? 7, 3, 5 5, 8. I g 7 3, then at which o the The structure

More information

Parametric Curves, Polar Plots and 2D Graphics

Parametric Curves, Polar Plots and 2D Graphics Parametric Curves, Polar Plots and 2D Graphics Fall 2016 In[213]:= Clear "Global`*" 2 2450notes2_fall2016.nb Parametric Equations In chapter 9, we introduced parametric equations so that we could easily

More information

Tangent Planes/Critical Points

Tangent Planes/Critical Points Tangent Planes/Critical Points Christopher Croke University of Pennsylvania Math 115 UPenn, Fall 2011 Problem: Find the tangent line to the curve of intersection of the surfaces xyz = 1 and x 2 + 2y 2

More information

5.2 Graphing Polynomial Functions

5.2 Graphing Polynomial Functions Locker LESSON 5. Graphing Polnomial Functions Common Core Math Standards The student is epected to: F.IF.7c Graph polnomial functions, identifing zeros when suitable factorizations are available, and showing

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES A coordinate system represents a point in the plane by an ordered pair of numbers called coordinates. PARAMETRIC EQUATIONS

More information

Section 9.3: Functions and their Graphs

Section 9.3: Functions and their Graphs Section 9.: Functions and their Graphs Graphs provide a wa of displaing, interpreting, and analzing data in a visual format. In man problems, we will consider two variables. Therefore, we will need to

More information

ES 240: Scientific and Engineering Computation. a function f(x) that can be written as a finite series of power functions like

ES 240: Scientific and Engineering Computation. a function f(x) that can be written as a finite series of power functions like Polynomial Deinition a unction () that can be written as a inite series o power unctions like n is a polynomial o order n n ( ) = A polynomial is represented by coeicient vector rom highest power. p=[3-5

More information

Parametric Surfaces and Surface Area

Parametric Surfaces and Surface Area Parametric Surfaces and Surface Area What to know: 1. Be able to parametrize standard surfaces, like the ones in the handout.. Be able to understand what a parametrized surface looks like (for this class,

More information