OpenVSP: Parametric Geometry for Conceptual Aircraft Design. Rob McDonald, Ph.D. Associate Professor, Cal Poly

Size: px
Start display at page:

Download "OpenVSP: Parametric Geometry for Conceptual Aircraft Design. Rob McDonald, Ph.D. Associate Professor, Cal Poly"

Transcription

1 OpenVSP: Parametric Geometry for Conceptual Aircraft Design Rob McDonald, Ph.D. Associate Professor, Cal Poly 1

2 Vehicle Sketch Pad (VSP) Rapid parametric geometry for design NASA developed & trusted tool JR Gloudemans Primary developer 2010 NASA Software of the Year Honorable Mention Released as open source software in January ARMD Contribution to NASA Open Government Plan Guidelines for improvement Enable improved physics-based analysis Support design and optimization Maintain simplicity & The VSP Way 2

3 The VSP Way Intuitive, Quick, Easy First time users instantly productive Parametric geometry for design Familiar to Aerospace & Designers Wings, Fuselage, Nacelle AR, Sweep, b, t/c, etc. Real-time interactive response Sliders vary parameters Geometry updates interactively Geometry represented by cartoon Not actual wetted surface Actual wetted surface generated on command 3

4 NASA open source parametric geometry get it innovate analyze join us 4

5 Geometry as Origin of Analysis (Design) Shape is fundamental starting point for physics-based analysis Aerodynamics Structures Aeroelasticity Aerothermal / Heating Mass Properties Acoustics RCS / Signatures Packaging / Layout Manufacturing Across disciplines and fidelity, shape is the common denominator Unfortunately, there is little to no commonality in practice 5

6 What is Geometry? What is a circle (sphere)? 6

7 What is Geometry? What is a circle (sphere)? The locus of points equidistant from a given point (x 0, y 0, r). A circle is an idea. Many approximate representations exist 7

8 What is Geometry? What is a circle? What is a parameter? A labeled quantity that is familiar to deal with: Aspect Ratio Taper Ratio Thickness to Chord Ratio Some parameters are dimensions with special names. Sweep Angle Wing Span Familiar parameters correspond to canonical shapes. Circle Airfoil Wing 8

9 What is Geometry? What is a circle? What is a parameter? Is geometry a dimensioned drawing? Dimensions are parameters for arbitrary shapes. 9

10 What is Geometry? What is a circle? What is a parameter? Is geometry a dimensioned drawing? Is geometry a CAD model? CAD models arbitrary shapes. 10

11 Geometry Modeling Gap Three approaches have evolved to geometry modeling for physics-based analysis: Analysis Integrated Each code generates geometry based on its own inputs. Parametric Geometry CAD-Based General-purpose CAD is used to model geometry. Prepared for analysis through grid generation and pre-processing tools. 11

12 Geometry (Mis)Representation True geometry does not correspond to analysis representation. Manufacturing CAD models can be built with varying (single) intent. Represent manufacturing process, target CAM Integration & Maintenance Packaging, accessibility, etc. Structures Represent loads & load paths, target FEA Many elements do not correspond to CAD model Beam, rod, shell, plate, etc. Aerodynamics Represent OML, propulsion, control surfaces 12

13 Modeling Approach Same question exists for wing structure Structural Features Frame & Stringer Windows & Doublers Resolve Discretize into primitive elements Specify material properties Model Discretize into beam elements Specify material & beam properties Smear Ignore feature in discretization Specify equivalent material properties Hybrid Model frames & smear stringers Resolve web & model caps 13

14 Analysis Fidelity Holes Single model-to-analysis work flow typically developed. Fidelity selected (at least limited) by geometry model. Very little choice in analysis fidelity. Sparsely populated fidelity / discipline matrix. 14

15 Many Models Possible Shape Concept and Parameters are Geometry AR, S, Λ, λ, t/c 15

16 Representation Relates to Fidelity Vortex Lattice Panel Code CFD 16

17 Often Mistaken for Design Stage Vortex Lattice Panel Code CFD Conceptual Preliminary Detail 17

18 TRL Output Results Known Phases of Aircraft Design Design phase is about what decisions are being made, not how they are made.* Phase I Conceptual Design Phase II Preliminary Design Phase III Detail Design Vs. Vs. Vs. 3 O 5 O Basic Mission Requirements Aeroelastic Requirements Local Strength Requirements Range, Altitude, Speed Fatigue Requirements Producibility Basic Material Properties Flutter Requirements Functional Requirements s/r E/r $.lb Overall Strength Requirements Geometry Air Foil Type R t/c l D Design Objectives Drag Level Weight Goals Cost Goals Basic Internal Arrangement Complete External Configuration Camber, Twist Distributions Local Flow Problems Solved Major Loads, Stresses, Deflections Detail Design Mechanisms Joints, Fittings & Attachments Design Refinements as Results of Test Feasible Design Mature Design Shop Drawings Leland Nicolai, Fundamentals of Aircraft and Airship Design, AIAA, *Except where certain decisions require more advanced techniques. 18

19 Parameters Evolve Through Design Shape Concept and Parameters are Geometry True through entire design process. Conceptual Preliminary Detail AR, S, Λ, λ, t/c General Concept twist = f(η), t/c = f(η), Complex Planform, High-lift geometry, Control surfaces High-Level Finesse Detailed part designs Every Aspect Determined Design phase is about what decisions are being made, not how they are made. 19

20 Fidelity Separate from Design Stage Conceptual Preliminary Detail Vortex Lattice Panel Code CFD Using Higher-Fidelity Tools Earlier in Design Parameters, model, and fidelity reflect decision being made at each stage. Provide designer with independent choice of fidelity. 20

21 Multi-discipline Interaction Aero Structures Loads Deflections Multi-discipline interaction usually handled in one-off basis. Opportunity to assist and standardize this process. 21

22 SECTION BREAKER 22

Inaugural OpenVSP Workshop

Inaugural OpenVSP Workshop Inaugural OpenVSP Workshop Rob McDonald San Luis Obispo August 22, 2012 Geometry as Origin of Analysis (Design) Shape is fundamental starting point for physics-based analysis Aerodynamics Structures Aeroelasticity

More information

OpenVSP Workshop (6) Rob McDonald. Cliffs Resort, Pismo Beach CA August 30 Sept 1, 2017

OpenVSP Workshop (6) Rob McDonald. Cliffs Resort, Pismo Beach CA August 30 Sept 1, 2017 OpenVSP Workshop (6) Rob McDonald Cliffs Resort, Pismo Beach CA August 30 Sept 1, 2017 1 Geometry as Origin of Analysis (Design) Shape is fundamental starting point for physics-based analysis Aerodynamics

More information

OpenVSP Workshop. Rob McDonald. San Luis Obispo August 20, 2014

OpenVSP Workshop. Rob McDonald. San Luis Obispo August 20, 2014 OpenVSP Workshop Rob McDonald San Luis Obispo August 20, 2014 Geometry as Origin of Analysis (Design) Shape is fundamental starting point for physics-based analysis Aerodynamics Structures Aeroelasticity

More information

An Advanced Extensible Parametric Geometry Engine for Multi-Fidelity and Multi-Physics Analysis in Conceptual Design

An Advanced Extensible Parametric Geometry Engine for Multi-Fidelity and Multi-Physics Analysis in Conceptual Design An Advanced Extensible Parametric Geometry Engine for Multi-Fidelity and Multi-Physics Analysis in Conceptual Design Rob McDonald & David Marshall Cal Poly Andy Ko. JR Gloudemans NASA Glenn July 23, 2012

More information

The Role of Geometry in the Multidisciplinary Design of Aerospace Vehicles

The Role of Geometry in the Multidisciplinary Design of Aerospace Vehicles The Role of Geometry in the Multidisciplinary Design of Aerospace Vehicles SIAM Conference on Geometric Design Thomas A. Zang & Jamshid A. Samareh Multidisciplinary Optimization Branch NASA Langley Research

More information

Enabling Rapid Conceptual Design Using Geometry-Based Multi-Fidelity Models in VSP

Enabling Rapid Conceptual Design Using Geometry-Based Multi-Fidelity Models in VSP 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 07-10 January 2013, Grapevine (Dallas/Ft. Worth Region), Texas AIAA 2013-0328 Enabling Rapid Conceptual Design

More information

CAD-BASED WORKFLOWS. VSP Workshop 2017

CAD-BASED WORKFLOWS. VSP Workshop 2017 CAD-BASED WORKFLOWS VSP Workshop 2017 RESEARCH IN FLIGHT COMPANY Established 2012 Primary functions are the development, marketing and support of FlightStream and the development of aerodynamic solutions

More information

STRUCTURAL MODELING AND OPENVSP

STRUCTURAL MODELING AND OPENVSP OpenVSP Workshop 2015 Hampton, Virginia August 11-13, 2015 STRUCTURAL MODELING AND OPENVSP Overview Presentation Trevor Laughlin trevor@laughlinresearch.com INTRODUCTION Professional Experience Managing

More information

Lift Superposition and Aerodynamic Twist Optimization for Achieving Desired Lift Distributions

Lift Superposition and Aerodynamic Twist Optimization for Achieving Desired Lift Distributions 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4-7 January 2010, Orlando, Florida AIAA 2010-1227 Lift Superposition and Aerodynamic Twist Optimization for

More information

Digital-X. Towards Virtual Aircraft Design and Testing based on High-Fidelity Methods - Recent Developments at DLR -

Digital-X. Towards Virtual Aircraft Design and Testing based on High-Fidelity Methods - Recent Developments at DLR - Digital-X Towards Virtual Aircraft Design and Testing based on High-Fidelity Methods - Recent Developments at DLR - O. Brodersen, C.-C. Rossow, N. Kroll DLR Institute of Aerodynamics and Flow Technology

More information

Aeroelasticity in MSC.Nastran

Aeroelasticity in MSC.Nastran Aeroelasticity in MSC.Nastran Hybrid Static Aeroelasticity new capabilities - CFD data management Presented By: Fausto Gill Di Vincenzo 04-06-2012 Hybrid Static Aeroelastic Solution with CFD data MSC.Nastran

More information

Development of a computational method for the topology optimization of an aircraft wing

Development of a computational method for the topology optimization of an aircraft wing Development of a computational method for the topology optimization of an aircraft wing Fabio Crescenti Ph.D. student 21 st November 2017 www.cranfield.ac.uk 1 Overview Introduction and objectives Theoretical

More information

A Cooperative Approach to Multi-Level Multi-Disciplinary Aircraft Optimization

A Cooperative Approach to Multi-Level Multi-Disciplinary Aircraft Optimization www.dlr.de Chart 1 ECCOMAS 2016, Greece, Crete, June 5-10, 2016 A Cooperative Approach to Multi-Level Multi-Disciplinary Aircraft Optimization Caslav Ilic, Mohammad Abu-Zurayk Martin Kruse, Stefan Keye,

More information

AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING

AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING M. Figat Warsaw University of Technology Keywords: Aerodynamic design, CFD Abstract This paper presents an aerodynamic design process

More information

Optimum Design of a Flexible Wing Structure to Enhance Roll Maneuver in Supersonic Flow

Optimum Design of a Flexible Wing Structure to Enhance Roll Maneuver in Supersonic Flow Optimum Design of a Flexible Wing Structure to Enhance Roll Maneuver in Supersonic Flow Duane E. Veley, Narendra S. Khot, Jeffrey V. Zweber Structures Division, Air Vehicles Directorate, Air Force Research

More information

CFD Analysis of conceptual Aircraft body

CFD Analysis of conceptual Aircraft body CFD Analysis of conceptual Aircraft body Manikantissar 1, Dr.Ankur geete 2 1 M. Tech scholar in Mechanical Engineering, SD Bansal college of technology, Indore, M.P, India 2 Associate professor in Mechanical

More information

An efficient method for predicting zero-lift or boundary-layer drag including aeroelastic effects for the design environment

An efficient method for predicting zero-lift or boundary-layer drag including aeroelastic effects for the design environment The Aeronautical Journal November 2015 Volume 119 No 1221 1451 An efficient method for predicting zero-lift or boundary-layer drag including aeroelastic effects for the design environment J. A. Camberos

More information

2 Aircraft Design Sequence

2 Aircraft Design Sequence 2-1 2 Aircraft Design Sequence The sequence of activities during the project phase (see Fig. 1.3) can be divided in two steps: 1.) preliminary sizing 2.) conceptual design. Beyond this there is not much

More information

Conceptual design, Structural and Flow analysis of an UAV wing

Conceptual design, Structural and Flow analysis of an UAV wing IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 3 Ver. IV (May- Jun. 2016), PP 78-87 www.iosrjournals.org Conceptual design, Structural

More information

Re-engineering the design process through computation

Re-engineering the design process through computation Copyright 1997, American Institute of Aeronautics and Astronautics, Inc. AIAA Meeting Papers on Disc, January 1997 A9715671, F49620-95-1-0259, AIAA Paper 97-0641 Re-engineering the design process through

More information

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS March 18-20, 2013 THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS Authors: M.R. Chiarelli, M. Ciabattari, M. Cagnoni, G. Lombardi Speaker:

More information

Optimate CFD Evaluation Optimate Glider Optimization Case

Optimate CFD Evaluation Optimate Glider Optimization Case Optimate CFD Evaluation Optimate Glider Optimization Case Authors: Nathan Richardson LMMFC CFD Lead 1 Purpose For design optimization, the gold standard would be to put in requirements and have algorithm

More information

NAVAIR Use of OpenVSP

NAVAIR Use of OpenVSP NAVAIR 4.0M.1.5 NAVAIR Use of OpenVSP Presented to: OpenVSP Workshop 29 Aug 2017 Presented by: AJ Field AIR-4.0M Public Release Authorization 2017-611. 1 Agenda Agenda Role of NAVAIR Conceptual Aircraft

More information

458 JAXA Special Publication JAXA-SP E alleviation 8, 10). Rodriguez et al. conducted aeroelastic analysis of a wing of Generic Transport Model

458 JAXA Special Publication JAXA-SP E alleviation 8, 10). Rodriguez et al. conducted aeroelastic analysis of a wing of Generic Transport Model First International Symposium on Flutter and its Application, 2016 457 NUMERICAL STUDY ON ADAPTIVE WING STRUCTURE USING LEADING AND TRAILING EDGE FLAPS FOR REDUCTION OF BENDING MOMENT Kanata FUJII +1,

More information

PreSTo Wing Module Optimization for the Double Trapezoidal Wing

PreSTo Wing Module Optimization for the Double Trapezoidal Wing PreSTo Wing Module Optimization for the Double Trapezoidal Wing Karunanidhi Ramachandran and Dieter Scholz Abstract This paper explains the Aircraft Preliminary Sizing Tool (PreSTo) developed at the Hamburg

More information

A Sequential, Multi-Complexity Topology Optimization Process for Aeroelastic Wing Structure Design

A Sequential, Multi-Complexity Topology Optimization Process for Aeroelastic Wing Structure Design A Sequential, Multi-Complexity Topology Optimization Process for Aeroelastic Wing Structure Design Bill Crossley, crossley@purdue.edu Significant content from graduate student Mark Guiles and input from

More information

Aircraft Stability and Performance 2nd Year, Aerospace Engineering. Dr. M. Turner

Aircraft Stability and Performance 2nd Year, Aerospace Engineering. Dr. M. Turner Aircraft Stability and Performance 2nd Year, Aerospace Engineering Dr. M. Turner Basic Info Timetable 15.00-16.00 Monday ENG LT1 16.00-17.00 Monday ENG LT1 Typical structure of lectures Part 1 Theory Part

More information

A Rapid Geometry Engine for Preliminary Aircraft Design

A Rapid Geometry Engine for Preliminary Aircraft Design 44th AIAA Aerospace Sciences Meeting and Exhibit 9-12 January 2006, Reno, Nevada AIAA 2006-929 A Rapid Geometry Engine for Preliminary Aircraft Design David L. Rodriguez1* and Peter Sturdza2 Desktop Aeronautics,

More information

OpenVSP-Connect Visualize Your Aircraft Sizing Results with NASA s Vehicle Sketch Pad. Dieter Scholz Tahir Sousa

OpenVSP-Connect Visualize Your Aircraft Sizing Results with NASA s Vehicle Sketch Pad. Dieter Scholz Tahir Sousa AIRCRAFT DESIGN AND SYSTEMS GROUP (AERO) Visualize Your Aircraft Sizing Results with NASA s Vehicle Sketch Pad Tahir Sousa Hamburg University of Applied Sciences Hamburg University of Applied Sciences

More information

Multidisciplinary design optimization (MDO) of a typical low aspect ratio wing using Isight

Multidisciplinary design optimization (MDO) of a typical low aspect ratio wing using Isight Multidisciplinary design optimization (MDO) of a typical low aspect ratio wing using Isight Mahadesh Kumar A 1 and Ravishankar Mariayyah 2 1 Aeronautical Development Agency and 2 Dassault Systemes India

More information

MSC Software Aeroelastic Tools. Mike Coleman and Fausto Gill di Vincenzo

MSC Software Aeroelastic Tools. Mike Coleman and Fausto Gill di Vincenzo MSC Software Aeroelastic Tools Mike Coleman and Fausto Gill di Vincenzo MSC Software Confidential 2 MSC Software Confidential 3 MSC Software Confidential 4 MSC Software Confidential 5 MSC Flightloads An

More information

Parametric Geometry for Propulsion-Airframe Integration

Parametric Geometry for Propulsion-Airframe Integration Parametric Geometry for Propulsion-Airframe Integration NASA NRA NNX11AI70A Topic 2.2 Russell K. Denney Jimmy C. Tai Dimitri N. Mavris Georgia Institute of Technology Atlanta, GA 30332 Outline Objective

More information

Recent & Upcoming Features in STAR-CCM+ for Aerospace Applications Deryl Snyder, Ph.D.

Recent & Upcoming Features in STAR-CCM+ for Aerospace Applications Deryl Snyder, Ph.D. Recent & Upcoming Features in STAR-CCM+ for Aerospace Applications Deryl Snyder, Ph.D. Outline Introduction Aerospace Applications Summary New Capabilities for Aerospace Continuity Convergence Accelerator

More information

Introduction to Aerodynamic Shape Optimization

Introduction to Aerodynamic Shape Optimization Introduction to Aerodynamic Shape Optimization 1. Aircraft Process 2. Aircraft Methods a. Inverse Surface Methods b. Inverse Field Methods c. Numerical Optimization Methods Aircraft Process Conceptual

More information

INVESTIGATION ON STRUCTURAL ASPECTS OF UNMANNED COMBAT AIR VEHICLE FOR AEROELASTIC ANALYSIS P N Vinay *, P V Srihari *, A Mahadesh Kumar

INVESTIGATION ON STRUCTURAL ASPECTS OF UNMANNED COMBAT AIR VEHICLE FOR AEROELASTIC ANALYSIS P N Vinay *, P V Srihari *, A Mahadesh Kumar Research Article INVESTIGATION ON STRUCTURAL ASPECTS OF UNMANNED COMBAT AIR VEHICLE FOR AEROELASTIC ANALYSIS P N Vinay *, P V Srihari *, A Mahadesh Kumar Address for Correspondence * Dept. of Mechanical

More information

Keisuke Sawada. Department of Aerospace Engineering Tohoku University

Keisuke Sawada. Department of Aerospace Engineering Tohoku University March 29th, 213 : Next Generation Aircraft Workshop at Washington University Numerical Study of Wing Deformation Effect in Wind-Tunnel Testing Keisuke Sawada Department of Aerospace Engineering Tohoku

More information

Status of Gradient-based Airframe MDO at DLR The VicToria Project

Status of Gradient-based Airframe MDO at DLR The VicToria Project DLR.de Chart 1 Status of Gradient-based Airframe MDO at DLR The VicToria Project M. Abu-Zurayk, C. Ilic, A. Merle, A. Stück, S. Keye, A. Rempke (Institute of Aerodynamics and Flow Technology) T. Klimmek,

More information

The Use of Computational Fluid Dynamics In the Aerospace Industry Past Present - Future

The Use of Computational Fluid Dynamics In the Aerospace Industry Past Present - Future The Use of Computational Fluid Dynamics In the Aerospace Industry Past Present - Future Douglas N. Ball Aerospace Consultant 1 The Early Days Not much CFD in these old birds! Great airplanes none the less.

More information

University of Texas VSP Structural Analysis Module Update - Demonstration

University of Texas VSP Structural Analysis Module Update - Demonstration University of Texas VSP Structural Analysis Module Update - Demonstration http://vspsam.ae.utexas.edu/ VSP Workshop, San Luis Obispo, CA Hersh Amin Armand J. Chaput Department of Aerospace Engineering

More information

ANALYSIS OF AIRCRAFT WING WITH DIFFERENT MATERIALS USING ANSYS SOFTWARE

ANALYSIS OF AIRCRAFT WING WITH DIFFERENT MATERIALS USING ANSYS SOFTWARE ANALYSIS OF AIRCRAFT WING WITH DIFFERENT MATERIALS USING ANSYS SOFTWARE K.Ravindra 1, P.V Divakar Raju 2 1 PG Scholar,Mechanical Engineering,Chadalawada Ramanamma Engineering College,Tirupati,Andhra Pradesh,India.

More information

39th AIAA Aerospace Sciences Meeting and Exhibit January 8 11, 2001/Reno, NV

39th AIAA Aerospace Sciences Meeting and Exhibit January 8 11, 2001/Reno, NV AIAA 1 717 Static Aero-elastic Computation with a Coupled CFD and CSD Method J. Cai, F. Liu Department of Mechanical and Aerospace Engineering University of California, Irvine, CA 92697-3975 H.M. Tsai,

More information

Development of a Physics-Based Design Framework for Aircraft Design using Parametric Modeling

Development of a Physics-Based Design Framework for Aircraft Design using Parametric Modeling Paper Int l J. of Aeronautical & Space Sci. 16(3), 370 379 (2015) DOI: http://dx.doi.org/10.5139/ijass.2015.16.3.370 Development of a Physics-Based Design Framework for Aircraft Design using Parametric

More information

Optimization of Laminar Wings for Pro-Green Aircrafts

Optimization of Laminar Wings for Pro-Green Aircrafts Optimization of Laminar Wings for Pro-Green Aircrafts André Rafael Ferreira Matos Abstract This work falls within the scope of aerodynamic design of pro-green aircraft, where the use of wings with higher

More information

Computer Aided Design Analysis of Aircraft Wing Using Cad Software

Computer Aided Design Analysis of Aircraft Wing Using Cad Software Computer Aided Design Analysis of Aircraft Wing Using Cad Software Mohd Mansoor Ahmed M.Tech, Dept of Mechanical Engineering, Syed Hashim College of Science &Technology, Pregnapur, Medak District. Abstract:

More information

A Surface Parameterization Method for Airfoil Optimization and High Lift 2D Geometries Utilizing the CST Methodology

A Surface Parameterization Method for Airfoil Optimization and High Lift 2D Geometries Utilizing the CST Methodology 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition AIAA 2009-1461 5-8 January 2009, Orlando, Florida A Surface Parameterization Method for Airfoil Optimization

More information

Composites for JEC Conference. Zach Abraham ANSYS, Inc.

Composites for JEC Conference. Zach Abraham ANSYS, Inc. Composites for JEC Conference Zach Abraham ANSYS, Inc. 1 Our Strategy Simulation-Driven Product Development Fluid Dynamics Structural Mechanics Explicit Dynamics Low-Frequency Electromagnetics High-Frequency

More information

Exploration of distributed propeller regional aircraft design

Exploration of distributed propeller regional aircraft design Exploration of distributed propeller regional aircraft design Baizura Bohari 1,2, Emmanuel Benard 1, Murat Bronz 2 1 University of Toulouse - ISAE Supaero, Dept. of Aeronautic and Space Vehicles Design

More information

Aerodynamic Design of a Tailless Aeroplan J. Friedl

Aerodynamic Design of a Tailless Aeroplan J. Friedl Acta Polytechnica Vol. 4 No. 4 5/2 Aerodynamic Design of a Tailless Aeroplan J. Friedl The paper presents an aerodynamic analysis of a one-seat ultralight (UL) tailless aeroplane named L2k, with a very

More information

AERODYNAMIC DESIGN AND OPTIMIZATION TOOLS ACCELERATED BY PARAMETRIC GEOMETRY PREPROCESSING

AERODYNAMIC DESIGN AND OPTIMIZATION TOOLS ACCELERATED BY PARAMETRIC GEOMETRY PREPROCESSING 1 European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2000 Barcelona, 11-14 September 2000 ECCOMAS AERODYNAMIC DESIGN AND OPTIMIZATION TOOLS ACCELERATED BY PARAMETRIC

More information

Application of STAR-CCM+ to Helicopter Rotors in Hover

Application of STAR-CCM+ to Helicopter Rotors in Hover Application of STAR-CCM+ to Helicopter Rotors in Hover Lakshmi N. Sankar and Chong Zhou School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA Ritu Marpu Eschol CD-Adapco, Inc.,

More information

Application of MD0 to Large Subsonic Transport Aircraft

Application of MD0 to Large Subsonic Transport Aircraft I (c)2000 American Institute of Aeronautics & Astronautics or published with permission of author(s) and/or author(s) sponsoring organization. A0046683 AIAA 2000-0844 Application of MD0 to Large Subsonic

More information

MSC.Nastran Structural Optimization Applications for Aerospace Structures

MSC.Nastran Structural Optimization Applications for Aerospace Structures MSC.Nastran Structural Optimization Applications for Aerospace Structures Jack Castro Sr. Technical Representative/Boeing Technical manager Jack Castro Sr. Technical Representative/Boeing Technical manager

More information

Weight Estimation Using CAD In The Preliminary Rotorcraft Design

Weight Estimation Using CAD In The Preliminary Rotorcraft Design Weight Estimation Using CAD In The Preliminary Rotorcraft Design M. Emre Gündüz 1, Adeel Khalid 2, Daniel P. Schrage 3 1 Graduate Research Assistant, Daniel Guggenheim School of Aerospace Engineering,

More information

1 General description

1 General description 1 General description OAD OAD was set up to develop and sell ADS, which stands for Aircraft Design Software. This software is dedicated to take you through nearly the entire aircraft design process for

More information

Fluid-Structure Interaction Over an Aircraft Wing

Fluid-Structure Interaction Over an Aircraft Wing International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 13, Issue 4 (April 2017), PP.27-31 Fluid-Structure Interaction Over an Aircraft

More information

VSP Structural Analysis Module - Wing Design and Analysis. Users Guide

VSP Structural Analysis Module - Wing Design and Analysis. Users Guide VSP Structural Analysis Module - Wing Design and Analysis Users Guide Primary Authors: Sarah Brown, Undergraduate Research Assistant Armand Chaput, Principal Investigator Reviewed By: Jose Galvan, Undergraduate

More information

MATH 573 Advanced Scientific Computing

MATH 573 Advanced Scientific Computing MATH 573 Advanced Scientific Computing Analysis of an Airfoil using Cubic Splines Ashley Wood Brian Song Ravindra Asitha What is Airfoil? - The cross-section of the wing, blade, or sail. 1. Thrust 2. Weight

More information

VSP File Types & VSP Meshing

VSP File Types & VSP Meshing VSP File Types & VSP Meshing Rob McDonald Cal Poly VSP Workshop August 23, 2012 VSP Input Representations Input Parametric geometry (vsp) Background image (jpg) Surface textures (tga, jpg) Automation script

More information

Aerodynamic Analysis of Forward Swept Wing Using Prandtl-D Wing Concept

Aerodynamic Analysis of Forward Swept Wing Using Prandtl-D Wing Concept Aerodynamic Analysis of Forward Swept Wing Using Prandtl-D Wing Concept Srinath R 1, Sahana D S 2 1 Assistant Professor, Mangalore Institute of Technology and Engineering, Moodabidri-574225, India 2 Assistant

More information

HSCT WING DESIGN TROUGH MULTILEVEL DECOMPOSITION. School of Aerospace Engineering, Georgia Institute of Technology Atlanta, GA

HSCT WING DESIGN TROUGH MULTILEVEL DECOMPOSITION. School of Aerospace Engineering, Georgia Institute of Technology Atlanta, GA HSCT WING DESIGN TROUGH MULTILEVEL DECOMPOSITION Peter J. Röhl *, Dimitri N. Mavris **, Daniel P. Schrage School of Aerospace Engineering, Georgia Institute of Technology Atlanta, GA 30332-0150 Abstract

More information

COMBINED AERODYNAMIC AND STRUCTURAL OPTIMIZATION OF A HIGH-SPEED CIVIL TRANSPORT WING

COMBINED AERODYNAMIC AND STRUCTURAL OPTIMIZATION OF A HIGH-SPEED CIVIL TRANSPORT WING COMBINED AERODYNAMIC AND STRUCTURAL OPTIMIZATION OF A HIGH-SPEED CIVIL TRANSPORT WING Peter J. Röhl *, Dimitri N. Mavris **, Daniel P. Schrage School of Aerospace Engineering, Georgia Institute of Technology

More information

Incompressible Potential Flow. Panel Methods (3)

Incompressible Potential Flow. Panel Methods (3) Incompressible Potential Flow Panel Methods (3) Outline Some Potential Theory Derivation of the Integral Equation for the Potential Classic Panel Method Program PANEL Subsonic Airfoil Aerodynamics Issues

More information

Vehicle Sketch Pad Applied To Propulsion-Airframe Integration

Vehicle Sketch Pad Applied To Propulsion-Airframe Integration Vehicle Sketch Pad Applied To Propulsion-Airframe Integration Presented by Steven H. Berguin stevenberguin@gatech.edu 1. Introduction 2. Modeling & Simulation 3. Example: Isolated Nacelle (Powered) 4.

More information

Introduction to Solid Modeling Parametric Modeling. Mechanical Engineering Dept.

Introduction to Solid Modeling Parametric Modeling. Mechanical Engineering Dept. Introduction to Solid Modeling Parametric Modeling 1 Why draw 3D Models? 3D models are easier to interpret. Simulation under real-life conditions. Less expensive than building a physical model. 3D models

More information

Conceptual Design and CFD

Conceptual Design and CFD Conceptual Design and CFD W.H. Mason Department of and the Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles Virginia Tech Blacksburg, VA Update from AIAA 98-2513 1 Things to think

More information

Impact of Computational Aerodynamics on Aircraft Design

Impact of Computational Aerodynamics on Aircraft Design Impact of Computational Aerodynamics on Aircraft Design Outline Aircraft Design Process Aerodynamic Design Process Wind Tunnels &Computational Aero. Impact on Aircraft Design Process Revealing details

More information

Single and multi-point aerodynamic optimizations of a supersonic transport aircraft using strategies involving adjoint equations and genetic algorithm

Single and multi-point aerodynamic optimizations of a supersonic transport aircraft using strategies involving adjoint equations and genetic algorithm Single and multi-point aerodynamic optimizations of a supersonic transport aircraft using strategies involving adjoint equations and genetic algorithm Prepared by : G. Carrier (ONERA, Applied Aerodynamics/Civil

More information

How to Enter and Analyze a Wing

How to Enter and Analyze a Wing How to Enter and Analyze a Wing Entering the Wing The Stallion 3-D built-in geometry creation tool can be used to model wings and bodies of revolution. In this example, a simple rectangular wing is modeled

More information

COMPUTATIONAL tools have undoubtedly had a profound influence on the commercial aircraft design process,

COMPUTATIONAL tools have undoubtedly had a profound influence on the commercial aircraft design process, GeoMACH: Geometry-Centric MDAO of Aircraft Configurations with High Fidelity John T. Hwang and Joaquim R. R. A. Martins University of Michigan, Ann Arbor, Michigan, 48109, United States This paper presents

More information

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Review of the Air Force Academy No.3 (35)/2017 NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Cvetelina VELKOVA Department of Technical Mechanics, Naval Academy Nikola Vaptsarov,Varna, Bulgaria (cvetelina.velkova1985@gmail.com)

More information

Missile External Aerodynamics Using Star-CCM+ Star European Conference 03/22-23/2011

Missile External Aerodynamics Using Star-CCM+ Star European Conference 03/22-23/2011 Missile External Aerodynamics Using Star-CCM+ Star European Conference 03/22-23/2011 StarCCM_StarEurope_2011 4/6/11 1 Overview 2 Role of CFD in Aerodynamic Analyses Classical aerodynamics / Semi-Empirical

More information

The Engineering Sketch Pad: A Solid-Modeling, Feature-Based, Web-Enabled System for Building Parametric Geometry

The Engineering Sketch Pad: A Solid-Modeling, Feature-Based, Web-Enabled System for Building Parametric Geometry The Engineering Sketch Pad: A Solid-Modeling, Feature-Based, Web-Enabled System for Building Parametric Geometry Robert Haimes haimes@mit.edu Aerospace Computational Design Lab Massachusetts Institute

More information

Generation of Multi-fidelity, Multi-discipline Air Vehicle Models with the Engineering Sketch Pad

Generation of Multi-fidelity, Multi-discipline Air Vehicle Models with the Engineering Sketch Pad Generation of Multi-fidelity, Multi-discipline Air Vehicle Models with the Engineering Sketch Pad John F. Dannenhoffer, III Aerospace Computational Methods Laboratory Syracuse University, Syracuse, New

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

midas FEA V320 Table of Contents

midas FEA V320 Table of Contents midas FEA V320 New Feature 01 CFD Moving Mesh Pre Process 01 File Open > File Preview 02 Extract Surface 03 Frame to Solid > Import 04 Tetra Auto mesh generation 05 Mesh options 06 Auto mesh Solid Function

More information

Multi-fidelity optimization of horizontal axis wind turbines

Multi-fidelity optimization of horizontal axis wind turbines Multi-fidelity optimization of horizontal axis wind turbines Michael McWilliam Danish Technical University Introduction Outline The Motivation The AMMF Algorithm Optimization of an Analytical Problems

More information

Software Requirements Specification

Software Requirements Specification NASA/TM-2001-210867 HSCT4.0 Application Software Requirements Specification A. O. Salas, J. L. Walsh, B. H. Mason, R. P. Weston, J. C. Townsend, J. A. Samareh, and L. L. Green Langley Research Center,

More information

TOPOLOGY OPTIMIZATION OF WING RIBS IN CESSNA CITATION

TOPOLOGY OPTIMIZATION OF WING RIBS IN CESSNA CITATION TOPOLOGY OPTIMIZATION OF WING RIBS IN CESSNA CITATION [1],Sathiyavani S [2], Arun K K [3] 1,2 student, 3 Assistant professor Kumaraguru College of technology, Coimbatore Abstract Structural design optimization

More information

Aerodynamic Optimization of Integrated Wing-Engine Geometry Using an Unstructured Vorticity Solver. Logan King

Aerodynamic Optimization of Integrated Wing-Engine Geometry Using an Unstructured Vorticity Solver. Logan King Aerodynamic Optimization of Integrated Wing-Engine Geometry Using an Unstructured Vorticity Solver by Logan King A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of

More information

Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges

Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges Ashok Gopalarathnam Department of Mechanical and Aerospace Engineering North Carolina State University

More information

Shock Wave Reduction via Wing-Strut Geometry Design

Shock Wave Reduction via Wing-Strut Geometry Design Shock Wave Reduction via Wing-Strut Geometry Design Runze LI, Wei NIU, Haixin CHEN School of Aerospace Engineering Beijing 84, China PADRI, Barcelona (Spain) 27..29 SHORT VERSION Shock Wave Reduction via

More information

Autodesk Inventor 2019 and Engineering Graphics

Autodesk Inventor 2019 and Engineering Graphics Autodesk Inventor 2019 and Engineering Graphics An Integrated Approach Randy H. Shih SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the

More information

LAMDES User s Manual VLMpc

LAMDES User s Manual VLMpc LAMDES User s Manual This is a modified version of John Lamar s design program (Ref. 1). It is based on the vortex lattice program VLMpc, but converted to do design and optimization. Basic capabilities

More information

Accurate and Efficient Turbomachinery Simulation. Chad Custer, PhD Turbomachinery Technical Specialist

Accurate and Efficient Turbomachinery Simulation. Chad Custer, PhD Turbomachinery Technical Specialist Accurate and Efficient Turbomachinery Simulation Chad Custer, PhD Turbomachinery Technical Specialist Outline Turbomachinery simulation advantages Axial fan optimization Description of design objectives

More information

FEM analysis of joinwing aircraft configuration

FEM analysis of joinwing aircraft configuration FEM analysis of joinwing aircraft configuration Jacek Mieloszyk PhD, Miłosz Kalinowski st. Nowowiejska 24, 00-665, Warsaw, Mazowian District, Poland jmieloszyk@meil.pw.edu.pl ABSTRACT Novel aircraft configuration

More information

Computational shock and Mach waves visualization aiding the development of aerodynamic design techniques

Computational shock and Mach waves visualization aiding the development of aerodynamic design techniques Computational shock and Mach waves visualization aiding the development of aerodynamic design techniques H. Sobieczky, M. Hannemann Inst. of Fluid Mechanics, DLR German Aerospace Research Establishment,

More information

MSC/NASTRAN FLUTTER ANALYSES OF T-TAILS INCLUDING HORIZONTAL STABILIZER STATIC LIFT EFFECTS AND T-TAIL TRANSONIC DIP

MSC/NASTRAN FLUTTER ANALYSES OF T-TAILS INCLUDING HORIZONTAL STABILIZER STATIC LIFT EFFECTS AND T-TAIL TRANSONIC DIP MSC/NASTRAN FLUTTER ANALYSES OF T-TAILS INCLUDING HORIZONTAL STABILIZER STATIC LIFT EFFECTS AND T-TAIL TRANSONIC DIP by Emil Suciu* Gulfstream Aerospace Corporation Savannah, Georgia U.S.A. Presented at

More information

NUMERICAL EVALUATION OF THE CONTRIBUTION OF THE STICK MODEL-INDUCED ELASTIC STREAMWISE CAMBER DEFORMATION TO THE FLUTTER SPEED OF A SWEPT WING

NUMERICAL EVALUATION OF THE CONTRIBUTION OF THE STICK MODEL-INDUCED ELASTIC STREAMWISE CAMBER DEFORMATION TO THE FLUTTER SPEED OF A SWEPT WING NUMERICAL EVALUATION OF THE CONTRIBUTION OF THE STICK MODEL-INDUCED ELASTIC STREAMWISE CAMBER DEFORMATION TO THE FLUTTER SPEED OF A SWEPT WING Paper No. 2004-23, Presented at the MSC.Software Virtual Product

More information

AeroPack User s Manual

AeroPack User s Manual AeroPack User s Manual Design Analysis Research AeroPack User s Manual for Shark & Shark FX The software described in this document is furnished under a license agreement. The software may be used or

More information

CEASIOM : An Open Source Multi Module Conceptual Aircraft Design Tool

CEASIOM : An Open Source Multi Module Conceptual Aircraft Design Tool CEASIOM : An Open Source Multi Module Conceptual Aircraft Design Tool Md. Rayhan Afsar, Md.Abu Horaira Banna, Md Jalal Uddin Rumi, Student, Department of Aeronautical Engineering, Military Institute of

More information

AERODYNAMIC DESIGN OF THE STRAKE FOR THE ROCKET PLANE IN TAILLESS CONFIGURATION.

AERODYNAMIC DESIGN OF THE STRAKE FOR THE ROCKET PLANE IN TAILLESS CONFIGURATION. AERODYNAMIC DESIGN OF THE STRAKE FOR THE ROCKET PLANE IN TAILLESS CONFIGURATION. M. Figat, A. Kwiek, K. Seneńko Warsaw University of Technology Keywords: Optimization, gradient method, strake, CFD Abstract

More information

State of the art at DLR in solving aerodynamic shape optimization problems using the discrete viscous adjoint method

State of the art at DLR in solving aerodynamic shape optimization problems using the discrete viscous adjoint method DLR - German Aerospace Center State of the art at DLR in solving aerodynamic shape optimization problems using the discrete viscous adjoint method J. Brezillon, C. Ilic, M. Abu-Zurayk, F. Ma, M. Widhalm

More information

Aeroelasticity Consideration in Aerodynamic Adaptation of Wing

Aeroelasticity Consideration in Aerodynamic Adaptation of Wing International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 www.ijesi.org ǁ PP.32-41 Aeroelasticity Consideration in Aerodynamic Adaptation of Wing

More information

Morphing high lift structures: Smart leading edge device and smart single slotted flap Hans Peter Monner, Johannes Riemenschneider Madrid, 30 th

Morphing high lift structures: Smart leading edge device and smart single slotted flap Hans Peter Monner, Johannes Riemenschneider Madrid, 30 th Morphing high lift structures: Smart leading edge device and smart single slotted flap Hans Peter Monner, Johannes Riemenschneider Madrid, 30 th March 2011 Outline Background Project overview Selected

More information

VSP File Types & VSP Meshing

VSP File Types & VSP Meshing VSP File Types & VSP Meshing Rob McDonald Cal Poly VSP Workshop August 21 & 22, 2014 VSP v2 Input Representations Input Parametric geometry (vsp) Background image (jpg) Surface textures (tga, jpg) Automation

More information

Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons

Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons Stores Separation Introduction Flight Test Expensive, high-risk, sometimes catastrophic

More information

Application of Multidisciplinary Design Optimization on Advanced Configuration Aircraft

Application of Multidisciplinary Design Optimization on Advanced Configuration Aircraft doi: 10.5028/jatm.v8i4.736 Application of Multidisciplinary Design Optimization on Advanced Configuration Aircraft Yalin Pan 1, Jun Huang 1, Feng Li 2, Chuxiong Yan 1 ABSTRACT: An optimization strategy

More information

Aerospace Applications of Optimization under Uncertainty

Aerospace Applications of Optimization under Uncertainty Aerospace Applications of Optimization under Uncertainty Sharon Padula, Clyde Gumbert, and Wu Li NASA Langley Research Center Abstract The Multidisciplinary Optimization (MDO) Branch at NASA Langley Research

More information

Your Home for Advanced Aerodynamic/ Aeroelastic/Aeroservoelastic/Computer Aided Engineering Software Products and Services

Your Home for Advanced Aerodynamic/ Aeroelastic/Aeroservoelastic/Computer Aided Engineering Software Products and Services Your Home for Advanced Aerodynamic/ Aeroelastic/Aeroservoelastic/Computer Aided Engineering Software Products and Services About ZONA ZONA Technology, Inc. (ZONA) is a privately held company that was founded

More information

SUAVE: An Open-Source Environment Enabling Multi-Fidelity Vehicle Optimization

SUAVE: An Open-Source Environment Enabling Multi-Fidelity Vehicle Optimization SUAVE: An Open-Source Environment Enabling Multi-Fidelity Vehicle Optimization Timothy MacDonald, Matthew Clarke, Emilio Botero, J. Michael Vegh Juan J. Alonso Stanford University, Stanford, CA 94305,

More information