Aircraft Stability and Performance 2nd Year, Aerospace Engineering. Dr. M. Turner

Size: px
Start display at page:

Download "Aircraft Stability and Performance 2nd Year, Aerospace Engineering. Dr. M. Turner"

Transcription

1 Aircraft Stability and Performance 2nd Year, Aerospace Engineering Dr. M. Turner

2 Basic Info Timetable Monday ENG LT Monday ENG LT1 Typical structure of lectures Part 1 Theory Part 2 Examples class

3 What this module covers A brief introduction to various concepts of (winged) flight First aero module - some basics required Some coverage of appropriate notation, terminology and conventions The basic (approximate) principles and techniques used to calculate various aspects of an aircraft s performance Extensive use of point mass approximation Focus on steady flight conditions The basics of trimmed flight Longitudinal static stability Attention focused on conventional aircraft

4 What this module does not cover A comprehensive account of all aspects of aircraft performance (subject too big for a first course) Flight dynamics - covered in 3rd year Avionics - covered in 3rd year Aerodynamics - some covered already, more covered in other modules A comprehensive account account of aircraft stability Only static stability is covered Dynamic stability (and control) covered elsewhere This module does not teach you to be a pilot!

5 Teaching Lectures Lecture notes - available for download Pictures - used extensively for illustrating concepts Demonstrating - useful for demonstrating dynamic behaviour of aircraft Lectures split between theory and problem classes Attendence of lectures highly recommended Labs - no labs directly associated with module, but various 1st/2nd year labs relevant Private study - Very important. Aim to spend a couple of hours a week reading notes, attempting example questions etc.

6 Assessment EG2401 comprises two parts Semester 1 - Materials January Blackboard test 2 questions in June exam (Part A) Semester 2 - Aircraft Performance Exam questions in June exam (Part B) hour exam 6 questions Answer 4 questions Probably: 1 question, Part A; 2 questions, part B

7 Study Aids - Online lecture notes Online lecture notes: Those associated with this course: Lectures posted as course progresses Exercises and exam info Prof. Jonathan How, MIT. Look at Aircraft Stability and Control course First few lectures give a good summary.

8 Study Aids - Books Course roughly based on this book First four chapters very relevant Easy to read BUT a lot of typos Useful for reference esp. for trim/stability Really a flight dynamics book First three chapters useful and interesting Comprehensive Quite mathematical & difficult to read

9 Feedback The 2016 cohort of students liked: The lecture split between theory and examples Explanation good/well-paced/interesting The 2016 cohorts thought the following could be improved The Lecture Room Quantity of examples Availability of examples on the web This year: The lecture theatre is different (!) More examples will be posted on the website

10 Structure of typical aircraft PLAN VIEW WING FUSELAGE FIN SIDE VIEW TAILPLANE Control surfaces Ailerons Flaps Elevator Control surfaces Rudder FUSELAGE Wing Primary device for lift generation Fuselage Payload, guidance, control, communications Elevator primary device for altering aircraft pitch Ailerons Responsible for aircraft roll Rudder Responsible for aircraft yaw Flaps For increasing lift at low velocities Turbofan/jet/propeller Thrust generation

11 Notes Some aircraft have other (different/extra) control surfaces More manoeuvrability, better efficiency Larger flight envelope Control surfaces used differentially (roll) & collectively (pitch)

12 The wing A type of airfoil - device specially shaped to produce lift when it passes through the air Dominant device for producing lift on most aircraft (main rotor is equivalent for helicopter) Simplified principle behind winged flight 1. Coanda effect bends air around airfoil 2. Bending of air implies there is a force acting on it. 3. Displacement of air implies reaction force on wing 4. Net reaction force upwards gives lift

13 Geometry of the wing h maximum camber: maximum distance from chord-line to camber line c chord length: straightline connecting leading edge to trailing edge t maximum thickness α angle between chordline and airstream Useful quantities: τ = t/c thickness chord ratio γ = h/c camber ratio Large lift, low speed: thick leading edge Small drag, high speed: thin leading edge Design of appropriate wing geometry is a subject in its own right

14 Wing cross-section

15 Wing Planform leading edge Fuselage λ kc c t b trailing edge c = (c t +c 0)/2 b S = cb A = span b2 = = meanchord b c S mean chord span gross wing area Aspect ratio c 0 NB: Gross wing area includes more than the physical wing - fuselage and air! Wing sweep = Λ k : angle wing makes to fuselage at chord fraction k (normally k = 1/4). Wing sweep lower drag at higher velocities...lower lift at lower velocities (stall) Drag function of aspect ratio: C d = C d0 + C2 L πea (e efficiency factor = constant) But high aspect ratios not always possible...(why?)

16 Different aspect ratios High aspect ratio: long, thin wings Low aspect ratio: short, wide wings (low induced drag) (structural limits) (low parasitic drag, C d0 )

17 Coordinate Systems Aircraft motion can be studied in various different coordinates Body Axes X b u p Axes referenced to aircraft body u Y b p roll rate q pitch rate r yaw rate r q u velocity along X b axis v velocity along Y b axis w velocity along Z b axis w Z b

18 Coordinate Systems Earth Axes Axes referenced Earth φ X θ ϕ X b φ roll attitude θ pitch attitude ψ yaw attitude Y b Z b Z Y (X,Y,Z ) obtained from (X b,y b,z b ) through rotation sequence 1 Rotating around Z b axis by angle ψ 2 Rotation around Y b axis by angle θ 3 Rotation around X b axis by angle φ

19 Coordinate System - Wings level Useful expressions when wings are level: α angle of attack γ flight path angle θ pitch angle α γ V θ θ = α+γ β angle of side-slip ψ yaw angle ξ heading angle ξ = ψ +β PLAN VIEW ϕ β ξ V

2 Aircraft Design Sequence

2 Aircraft Design Sequence 2-1 2 Aircraft Design Sequence The sequence of activities during the project phase (see Fig. 1.3) can be divided in two steps: 1.) preliminary sizing 2.) conceptual design. Beyond this there is not much

More information

Aerodynamic Design of a Tailless Aeroplan J. Friedl

Aerodynamic Design of a Tailless Aeroplan J. Friedl Acta Polytechnica Vol. 4 No. 4 5/2 Aerodynamic Design of a Tailless Aeroplan J. Friedl The paper presents an aerodynamic analysis of a one-seat ultralight (UL) tailless aeroplane named L2k, with a very

More information

Design and Development of Unmanned Tilt T-Tri Rotor Aerial Vehicle

Design and Development of Unmanned Tilt T-Tri Rotor Aerial Vehicle Design and Development of Unmanned Tilt T-Tri Rotor Aerial Vehicle K. Senthil Kumar, Mohammad Rasheed, and T.Anand Abstract Helicopter offers the capability of hover, slow forward movement, vertical take-off

More information

1. INTRODUCTION. Constrained Control Allocation for Systems with Redundant Control Effectors

1. INTRODUCTION. Constrained Control Allocation for Systems with Redundant Control Effectors 1. INTRODUCTION Control allocation algorithms determine how the controls of a system should be positioned so that they produce some desired effect. Constrained controls have limits on their maximum positions

More information

Critical Design Review. Almog Dov Assaf Aloush Bar Ovadia Dafna Lavi Orad Eldar. Supervisor: Dror Artzi

Critical Design Review. Almog Dov Assaf Aloush Bar Ovadia Dafna Lavi Orad Eldar. Supervisor: Dror Artzi Critical Design Review Almog Dov Assaf Aloush Bar Ovadia Dafna Lavi Orad Eldar Supervisor: Dror Artzi Man-portable UAV Over the hill / Urban surveillance Fast field deployment Endurance: 3 min Simple to

More information

Integrated Computational and Experimental Studies of Flapping-wing Micro Air Vehicle Aerodynamics

Integrated Computational and Experimental Studies of Flapping-wing Micro Air Vehicle Aerodynamics Integrated Computational and Experimental Studies of Flapping-wing Micro Air Vehicle Aerodynamics Kevin Knowles, Peter Wilkins, Salman Ansari, Rafal Zbikowski Department of Aerospace, Power and Sensors

More information

STUDY ABOUT THE STABILITY AND CONTROL OF A ROTOR AIRPLANE

STUDY ABOUT THE STABILITY AND CONTROL OF A ROTOR AIRPLANE STUDY ABOUT THE STABILITY AND CONTROL OF A ROTOR AIRPLANE Victor Stafy Aristeu Silveira Neto victorstafy@aero.ufu.br aristeus@ufu.br Fluid Mechanics Laboratory- MFlab, Federal University of Uberlândia-

More information

Introduction. AirWizEd User Interface

Introduction. AirWizEd User Interface Introduction AirWizEd is a flight dynamics development system for Microsoft Flight Simulator (MSFS) that allows developers to edit flight dynamics files in detail, while simultaneously analyzing the performance

More information

MSC Software Aeroelastic Tools. Mike Coleman and Fausto Gill di Vincenzo

MSC Software Aeroelastic Tools. Mike Coleman and Fausto Gill di Vincenzo MSC Software Aeroelastic Tools Mike Coleman and Fausto Gill di Vincenzo MSC Software Confidential 2 MSC Software Confidential 3 MSC Software Confidential 4 MSC Software Confidential 5 MSC Flightloads An

More information

Make to Innovate Cardinal Flight Aerodynamics Team

Make to Innovate Cardinal Flight Aerodynamics Team Make to Innovate Cardinal Flight Aerodynamics Team Group Members: Alexander Scott Benjamin Vanduyne Brandon Ganey Joseph Cairo Lyle Sorensen 1 Abstract The purpose for this milestone was to construct an

More information

Fixed Wing Models 45

Fixed Wing Models 45 Fixed Wing Models 45 FLAP FLAPERON Flap Flaperon Mixer Aileron Rudder Mixer Aileron Differential Mixer The mixer "F-A" allows an adjustable portion of the flap control system to be fed to the aileron channels

More information

CFD ANALYSIS OF UAVs USING VORSTAB, FLUENT, AND ADVANCED AIRCRAFT ANALYSIS SOFTWARE. Benjamin Sweeten

CFD ANALYSIS OF UAVs USING VORSTAB, FLUENT, AND ADVANCED AIRCRAFT ANALYSIS SOFTWARE. Benjamin Sweeten CFD ANALYSIS OF UAVs USING VORSTAB, FLUENT, AND ADVANCED AIRCRAFT ANALYSIS SOFTWARE BY Benjamin Sweeten Submitted to the graduate degree program in Aerospace Engineering and the Graduate Faculty of the

More information

A Simplified Vehicle and Driver Model for Vehicle Systems Development

A Simplified Vehicle and Driver Model for Vehicle Systems Development A Simplified Vehicle and Driver Model for Vehicle Systems Development Martin Bayliss Cranfield University School of Engineering Bedfordshire MK43 0AL UK Abstract For the purposes of vehicle systems controller

More information

AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING

AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING M. Figat Warsaw University of Technology Keywords: Aerodynamic design, CFD Abstract This paper presents an aerodynamic design process

More information

Development of a CFD Capability for Full Helicopter Engineering Analysis

Development of a CFD Capability for Full Helicopter Engineering Analysis Development of a CFD Capability for Full Helicopter Engineering Analysis George Barakos Department of Engineering University of Liverpool 5/6 April 2006 Loughborough University Collective effort of more

More information

MSC/NASTRAN FLUTTER ANALYSES OF T-TAILS INCLUDING HORIZONTAL STABILIZER STATIC LIFT EFFECTS AND T-TAIL TRANSONIC DIP

MSC/NASTRAN FLUTTER ANALYSES OF T-TAILS INCLUDING HORIZONTAL STABILIZER STATIC LIFT EFFECTS AND T-TAIL TRANSONIC DIP MSC/NASTRAN FLUTTER ANALYSES OF T-TAILS INCLUDING HORIZONTAL STABILIZER STATIC LIFT EFFECTS AND T-TAIL TRANSONIC DIP by Emil Suciu* Gulfstream Aerospace Corporation Savannah, Georgia U.S.A. Presented at

More information

863. Development of a finite element model of the sailplane fuselage

863. Development of a finite element model of the sailplane fuselage 863. Development of a finite element model of the sailplane fuselage M. Andrikaitis 1, A. Fedaravičius 2 Kaunas University of Technology, Kęstučio 27, 44312 Kaunas, Lithuania E-mail: 1 marius.andrikaitis@gmail.com,

More information

Foil Optimization with Geodesic Convolutional Neural Network

Foil Optimization with Geodesic Convolutional Neural Network Foil Optimization with Geodesic Convolutional Neural Network Thomas von Tschammer & Grégoire Chomette EPFL-Mechanical Engineering Department, HydroContest EPFL & Computer Vision Laboratory. Supervisors

More information

1 General description

1 General description 1 General description OAD OAD was set up to develop and sell ADS, which stands for Aircraft Design Software. This software is dedicated to take you through nearly the entire aircraft design process for

More information

Keywords: CFD, aerofoil, URANS modeling, flapping, reciprocating movement

Keywords: CFD, aerofoil, URANS modeling, flapping, reciprocating movement L.I. Garipova *, A.N. Kusyumov *, G. Barakos ** * Kazan National Research Technical University n.a. A.N.Tupolev, ** School of Engineering - The University of Liverpool Keywords: CFD, aerofoil, URANS modeling,

More information

OpenVSP: Parametric Geometry for Conceptual Aircraft Design. Rob McDonald, Ph.D. Associate Professor, Cal Poly

OpenVSP: Parametric Geometry for Conceptual Aircraft Design. Rob McDonald, Ph.D. Associate Professor, Cal Poly OpenVSP: Parametric Geometry for Conceptual Aircraft Design Rob McDonald, Ph.D. Associate Professor, Cal Poly 1 Vehicle Sketch Pad (VSP) Rapid parametric geometry for design NASA developed & trusted tool

More information

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS March 18-20, 2013 THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS Authors: M.R. Chiarelli, M. Ciabattari, M. Cagnoni, G. Lombardi Speaker:

More information

Computational Fluid Dynamics Study for a Deep Stall Air Vehicle

Computational Fluid Dynamics Study for a Deep Stall Air Vehicle Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6410--11-9339 Computational Fluid Dynamics Study for a Deep Stall Air Vehicle Ravi Ramamurti Center for Reactive Flow and Dynamical Systems Laboratory

More information

What s New in AAA? Design Analysis Research. Version 3.3. February 2011

What s New in AAA? Design Analysis Research. Version 3.3. February 2011 Design Analysis Research What s New in AAA? Version 3.3 February 2011 AAA 3.3 contains various enhancements and revisions to version 3.2 as well as bug fixes. This version has 287,000 lines of code and

More information

CFD Analysis of conceptual Aircraft body

CFD Analysis of conceptual Aircraft body CFD Analysis of conceptual Aircraft body Manikantissar 1, Dr.Ankur geete 2 1 M. Tech scholar in Mechanical Engineering, SD Bansal college of technology, Indore, M.P, India 2 Associate professor in Mechanical

More information

Subsonic Airfoils. W.H. Mason Configuration Aerodynamics Class

Subsonic Airfoils. W.H. Mason Configuration Aerodynamics Class Subsonic Airfoils W.H. Mason Configuration Aerodynamics Class Most people don t realize that mankind can be divided into two great classes: those who take airfoil selection seriously, and those who don

More information

Optimate CFD Evaluation Optimate Glider Optimization Case

Optimate CFD Evaluation Optimate Glider Optimization Case Optimate CFD Evaluation Optimate Glider Optimization Case Authors: Nathan Richardson LMMFC CFD Lead 1 Purpose For design optimization, the gold standard would be to put in requirements and have algorithm

More information

University of Texas VSP Structural Analysis Module Update - Demonstration

University of Texas VSP Structural Analysis Module Update - Demonstration University of Texas VSP Structural Analysis Module Update - Demonstration http://vspsam.ae.utexas.edu/ VSP Workshop, San Luis Obispo, CA Hersh Amin Armand J. Chaput Department of Aerospace Engineering

More information

LESSONS FROM WIND TUNNEL MODELS MADE BY RAPID PROTOTYPING

LESSONS FROM WIND TUNNEL MODELS MADE BY RAPID PROTOTYPING LESSONS FROM WIND TUNNEL MODELS MADE BY RAPID PROTOTYPING Ehud Kroll Faculty of Aerospace Engineering Technion Israel Institute of Technology Technion City, Haifa 32000, Israel Dror Artzi Faculty of Aerospace

More information

Optimum Design of a Flexible Wing Structure to Enhance Roll Maneuver in Supersonic Flow

Optimum Design of a Flexible Wing Structure to Enhance Roll Maneuver in Supersonic Flow Optimum Design of a Flexible Wing Structure to Enhance Roll Maneuver in Supersonic Flow Duane E. Veley, Narendra S. Khot, Jeffrey V. Zweber Structures Division, Air Vehicles Directorate, Air Force Research

More information

Physics of an Flow Over a Wing

Physics of an Flow Over a Wing Wings in Ideal Flow Physics of an Flow Over a Wing Werle, 1974, NACA 0012, 12.5 o, AR=4, Re=10000 Bippes, Clark Y, Rectangular Wing 9 o, AR=2.4, Re=100000 Head, 1982, Rectangular Wing, 24 o, Re=100000

More information

Aeroelasticity in MSC.Nastran

Aeroelasticity in MSC.Nastran Aeroelasticity in MSC.Nastran Hybrid Static Aeroelasticity new capabilities - CFD data management Presented By: Fausto Gill Di Vincenzo 04-06-2012 Hybrid Static Aeroelastic Solution with CFD data MSC.Nastran

More information

Design & Optimization Fuzzy Logic Controller for General Helicopter Model

Design & Optimization Fuzzy Logic Controller for General Helicopter Model Design & Optimization Fuzzy Logic Controller for General Helicopter Model Hasan A. AbuMeteir Graduated Student of Control Engineering IUG Gaza-Palestine hmeteir@gmail.com Abstract Helicopter aviation is

More information

Subsonic Airfoils. W.H. Mason Configuration Aerodynamics Class

Subsonic Airfoils. W.H. Mason Configuration Aerodynamics Class Subsonic Airfoils W.H. Mason Configuration Aerodynamics Class Typical Subsonic Methods: Panel Methods For subsonic inviscid flow, the flowfield can be found by solving an integral equation for the potential

More information

DESIGN OPTIMIZATION OF HELICOPTER BLADE USING CLASS SHAPE FUNCTION BASED GEOMETRY REPRESENTATION

DESIGN OPTIMIZATION OF HELICOPTER BLADE USING CLASS SHAPE FUNCTION BASED GEOMETRY REPRESENTATION DESIGN OPIMIZAION OF HELICOPER BLADE USING CLASS SHAPE FUNCION BASED GEOMERY REPRESENAION Atthaphon Ariyarit*, Masahiko Sugiura**, Yasutada anabe**, and Masahiro Kanazaki* *Department of Aerospace Engineering,

More information

AIR LOAD CALCULATION FOR ISTANBUL TECHNICAL UNIVERSITY (ITU), LIGHT COMMERCIAL HELICOPTER (LCH) DESIGN ABSTRACT

AIR LOAD CALCULATION FOR ISTANBUL TECHNICAL UNIVERSITY (ITU), LIGHT COMMERCIAL HELICOPTER (LCH) DESIGN ABSTRACT AIR LOAD CALCULATION FOR ISTANBUL TECHNICAL UNIVERSITY (ITU), LIGHT COMMERCIAL HELICOPTER (LCH) DESIGN Adeel Khalid *, Daniel P. Schrage + School of Aerospace Engineering, Georgia Institute of Technology

More information

TOPOLOGY OPTIMIZATION OF WING RIBS IN CESSNA CITATION

TOPOLOGY OPTIMIZATION OF WING RIBS IN CESSNA CITATION TOPOLOGY OPTIMIZATION OF WING RIBS IN CESSNA CITATION [1],Sathiyavani S [2], Arun K K [3] 1,2 student, 3 Assistant professor Kumaraguru College of technology, Coimbatore Abstract Structural design optimization

More information

Optimisation of the Sekwa Blended-Wing-Body Research UAV

Optimisation of the Sekwa Blended-Wing-Body Research UAV Optimisation of the Sekwa Blended-Wing-Body Research UAV B.A. Broughton and R. Heise Council for Scientific and Industrial Research Pretoria, South Africa ABSTRACT A variable stability, blended-wing-body

More information

Chapter 4 Dynamics. Part Constrained Kinematics and Dynamics. Mobile Robotics - Prof Alonzo Kelly, CMU RI

Chapter 4 Dynamics. Part Constrained Kinematics and Dynamics. Mobile Robotics - Prof Alonzo Kelly, CMU RI Chapter 4 Dynamics Part 2 4.3 Constrained Kinematics and Dynamics 1 Outline 4.3 Constrained Kinematics and Dynamics 4.3.1 Constraints of Disallowed Direction 4.3.2 Constraints of Rolling without Slipping

More information

MATH 573 Advanced Scientific Computing

MATH 573 Advanced Scientific Computing MATH 573 Advanced Scientific Computing Analysis of an Airfoil using Cubic Splines Ashley Wood Brian Song Ravindra Asitha What is Airfoil? - The cross-section of the wing, blade, or sail. 1. Thrust 2. Weight

More information

ME 435 Spring Project Design and Management II. Old Dominion University Department of Mechanical Engineering. Standard Dynamics Model

ME 435 Spring Project Design and Management II. Old Dominion University Department of Mechanical Engineering. Standard Dynamics Model ME 435 Spring 2011 Project Design and Management II Old Dominion University Department of Mechanical Engineering Standard Dynamics Model William Lawrence Andrew Snead TJ Wignall 15 March 2011 Abstract

More information

Identification of a UAV and Design of a Hardware-in-the-Loop System for Nonlinear Control Purposes

Identification of a UAV and Design of a Hardware-in-the-Loop System for Nonlinear Control Purposes Identification of a UAV and Design of a Hardware-in-the-Loop System for Nonlinear Control Purposes Myriam Manaï and André Desbiens LOOP, Université Laval, Quebec City, Quebec, G1K 7P4, Canada Eric Gagnon

More information

Determination of Angle of Attack (AOA) for Rotating Blades

Determination of Angle of Attack (AOA) for Rotating Blades Downloaded from orbit.dtu.dk on: Sep 1, 218 Determination of Angle of Attack (AOA) for Rotating Blades Shen, Wen Zhong; Hansen, Martin Otto Laver; Sørensen, Jens Nørkær Published in: Wind Energy Publication

More information

Model and simulation of the AS350B1 helicopter

Model and simulation of the AS350B1 helicopter Degree Project in Aerospace engineering Naïs FARGETTE Model and simulation of the AS350B1 helicopter By Naïs FARGETTE nais@kth.se February 2016 July 2016 KTH supervisor: David ELLER drl@kth.se ONERA supervisor:

More information

Experimental study of UTM-LST generic half model transport aircraft

Experimental study of UTM-LST generic half model transport aircraft IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Experimental study of UTM-LST generic half model transport aircraft To cite this article: M I Ujang et al 2016 IOP Conf. Ser.:

More information

DYNAMICS OF A VORTEX RING AROUND A MAIN ROTOR HELICOPTER

DYNAMICS OF A VORTEX RING AROUND A MAIN ROTOR HELICOPTER DYNAMICS OF A VORTEX RING AROUND A MAIN ROTOR HELICOPTER Katarzyna Surmacz Instytut Lotnictwa Keywords: VORTEX RING STATE, HELICOPTER DESCENT, NUMERICAL ANALYSIS, FLOW VISUALIZATION Abstract The main goal

More information

Validation of Wake Vortex Encounter Simulation Models Using Flight Test Data

Validation of Wake Vortex Encounter Simulation Models Using Flight Test Data Validation of Wake Vortex Encounter Simulation Models Using Flight Test Data Assessment of Wake Vortex Safety Dietrich Fischenberg DLR Braunschweig Workshop WakeNet2-Europe, Working Group 5, Hamburg, -11

More information

Validation of a numerical simulation tool for aircraft formation flight.

Validation of a numerical simulation tool for aircraft formation flight. Validation of a numerical simulation tool for aircraft formation flight. T. Melin Fluid and Mechatronic Systems, Department of Management and Engineering, the Institute of Technology, Linköping University,

More information

ET312 GPS-UAV Development Platform. Part 2: Flight dynamics and control theory

ET312 GPS-UAV Development Platform. Part 2: Flight dynamics and control theory ET312 GPS-UAV Development Platform Part 2: Flight dynamics and control theory ET312 GPS-UAV Development Platform This is the second part of a three part series of manuals for the ET312 GPS-UAV. The first

More information

FREE-FLIGHT INVESTIGATION OF FOREBODY BLOWING FOR STABILITY AND CONTROL. Jay M. Brandon* NASA Langley Research Center Hampton, VA

FREE-FLIGHT INVESTIGATION OF FOREBODY BLOWING FOR STABILITY AND CONTROL. Jay M. Brandon* NASA Langley Research Center Hampton, VA FREE-FLIGHT INVESTIGATION OF FOREBODY BLOWING FOR STABILITY AND CONTROL Jay M. Brandon* NASA Langley Research Center Hampton, VA 23681-1 James M. Simon WL/FIGC WPAFB, OH 45433-7531 D. Bruce Owens National

More information

An efficient method for predicting zero-lift or boundary-layer drag including aeroelastic effects for the design environment

An efficient method for predicting zero-lift or boundary-layer drag including aeroelastic effects for the design environment The Aeronautical Journal November 2015 Volume 119 No 1221 1451 An efficient method for predicting zero-lift or boundary-layer drag including aeroelastic effects for the design environment J. A. Camberos

More information

QUANSER Flight Control Systems Design. 2DOF Helicopter 3DOF Helicopter 3DOF Hover 3DOF Gyroscope. Quanser Education Solutions Powered by

QUANSER Flight Control Systems Design. 2DOF Helicopter 3DOF Helicopter 3DOF Hover 3DOF Gyroscope. Quanser Education Solutions Powered by QUANSER Flight Control Systems Design 2DOF Helicopter 3DOF Helicopter 3DOF Hover 3DOF Gyroscope Quanser Education Solutions Powered by 2 DOF Helicopter What does it represent? Classic helicopter with main

More information

SPC 307 Aerodynamics. Lecture 1. February 10, 2018

SPC 307 Aerodynamics. Lecture 1. February 10, 2018 SPC 307 Aerodynamics Lecture 1 February 10, 2018 Sep. 18, 2016 1 Course Materials drahmednagib.com 2 COURSE OUTLINE Introduction to Aerodynamics Review on the Fundamentals of Fluid Mechanics Euler and

More information

NUMERICAL INVESTIGATION OF FLOW CONTROL OVER AN AIRFOIL USING SYNTHETIC JETS AND ITS OPTIMIZATION

NUMERICAL INVESTIGATION OF FLOW CONTROL OVER AN AIRFOIL USING SYNTHETIC JETS AND ITS OPTIMIZATION 5. ANKARA INTERNATIONAL AEROSPACE CONFERENCE AIAC-009-043 17-19 August, 009 - METU, Ankara - TURKEY NUMERICAL INVESTIGATION OF FLOW CONTROL OVER AN AIRFOIL USING SYNTHETIC JETS AND ITS OPTIMIZATION Eray

More information

Prediction of Helicopter Blade- Vortex Interaction Noise using Motion Data from Experiment

Prediction of Helicopter Blade- Vortex Interaction Noise using Motion Data from Experiment Prediction of Helicopter Blade- Vortex Interaction Noise using Motion Data from Experiment Yoshinobu Inada, Choongmo Yang, and Takashi Aoyama Computational Science Research Group (CSRG) Institute of Aerospace

More information

Why Airplanes Can t Fly

Why Airplanes Can t Fly body Z z body Y y body X x b dz dy dx k j i F U S V ds V s n d.. Why Airplanes an t Fly Physics of an Flow Over a Wing Werle, 974, NAA 00,.5 o, AR=4, Re=0000 Wake descends roughly on an extension of the

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

CFD-BASED SIMULATION AND EXPERIMENT IN HELICOPTER AEROMECHANICS. Richard E Brown and Stewart S Houston

CFD-BASED SIMULATION AND EXPERIMENT IN HELICOPTER AEROMECHANICS. Richard E Brown and Stewart S Houston CFD-BASED SIMULATION AND EXPERIMENT IN HELICOPTER AEROMECHANICS Richard E Brown and Stewart S Houston Helicopter Aeromechanics: A difficult simulation problem multiple rotors (with multiple blades) attached

More information

Introduction. AirWrench Operation

Introduction. AirWrench Operation Introduction AirWrench is a user-friendly software tool for creating flight dynamics for Microsoft Flight Simulator. AirWrench is not a traditional air file editor it compiles a complete air file, the

More information

Multi-core implementation of F-16 flight surface control system using GA based multiple model reference adaptive control algorithm

Multi-core implementation of F-16 flight surface control system using GA based multiple model reference adaptive control algorithm The University of Toledo The University of Toledo Digital Repository Theses and Dissertations 2011 Multi-core implementation of F-16 flight surface control system using GA based multiple model reference

More information

A novel fixed-azimuth blade-element real-time rotor simulation model: fabes

A novel fixed-azimuth blade-element real-time rotor simulation model: fabes A novel fixed-azimuth blade-element real-time rotor simulation model: fabes Miguel González Cuadrado The fabes model is a novel approach to blade-element real-time rotor simulation that, unlike traditional

More information

Yaw-Roll Coupled Oscillations of a Slender Delta Wing

Yaw-Roll Coupled Oscillations of a Slender Delta Wing Yaw-Roll Coupled Oscillations of a Slender Delta Wing John C. Worley * Auburn University Aerospace Engineering, Auburn, Alabama, 3683 Reported are the results of experiments conducted on a slender delta

More information

ON THE DEVELOPMENT OF COMPUTER CODE FOR AIRCRAFT FLIGHT DYNAMICS ANALYSIS

ON THE DEVELOPMENT OF COMPUTER CODE FOR AIRCRAFT FLIGHT DYNAMICS ANALYSIS ON THE DEVELOPMENT OF COMPUTER CODE FOR AIRCRAFT FLIGHT DYNAMICS ANALYSIS OUTMAN MOHAMED ALAZOMUI A thesis report submitted in partial fulfillment of the requirement for the award of the Degree of Master

More information

GRID PATTERN EFFECTS ON AERODYNAMIC CHARACTERISTICS OF GRID FINS

GRID PATTERN EFFECTS ON AERODYNAMIC CHARACTERISTICS OF GRID FINS 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES GRID PATTERN EFFECTS ON AERODYNAMIC CHARACTERISTICS OF GRID FINS Fumiya Hiroshima, Kaoru Tatsumi* *Mitsubishi Electric Corporation, Kamakura Works,

More information

COURSE: Advanced Aeroelasticity

COURSE: Advanced Aeroelasticity SESSION WEEK COURSE: Advanced Aeroelasticity MASTER: Aerospace Engineering YEAR: 1st TERM: 2nd La asignatura tiene 28 sesiones que se distribuyen a lo largo de 14 semanas. Los laboratorios pueden situarse

More information

Design and Optimization of SUAV Empennage

Design and Optimization of SUAV Empennage From the SelectedWorks of Innovative Research Publications IRP India Summer June 1, 2015 Design and Optimization of SUAV Empennage Innovative Research Publications, IRP India, Innovative Research Publications

More information

LAMDES User s Manual VLMpc

LAMDES User s Manual VLMpc LAMDES User s Manual This is a modified version of John Lamar s design program (Ref. 1). It is based on the vortex lattice program VLMpc, but converted to do design and optimization. Basic capabilities

More information

General model and control of an n rotor helicopter

General model and control of an n rotor helicopter Downloaded from orbit.dtu.dk on: Jun 29, 218 General model and control of an n rotor helicopter Zsurzsan, Adriana Gabriela; Brogaard, Rune Yding; Andersen, Nils Axel; Ravn, Ole Published in: Journal of

More information

Aerodynamic Analysis of Forward Swept Wing Using Prandtl-D Wing Concept

Aerodynamic Analysis of Forward Swept Wing Using Prandtl-D Wing Concept Aerodynamic Analysis of Forward Swept Wing Using Prandtl-D Wing Concept Srinath R 1, Sahana D S 2 1 Assistant Professor, Mangalore Institute of Technology and Engineering, Moodabidri-574225, India 2 Assistant

More information

First International Symposium on Flutter and its Application, STRUCTURAL DESIGN OF MORPHING CONTROL SURFACE USING CORRUGATED PANELS Sato Keig

First International Symposium on Flutter and its Application, STRUCTURAL DESIGN OF MORPHING CONTROL SURFACE USING CORRUGATED PANELS Sato Keig First International Symposium on Flutter and its Application, 2016 105 STRUCTURAL DESIGN OF MORPHING CONTROL SURFACE USING CORRUGATED PANELS Sato Keigo +1 and Yokozeki Tomohiro +2 +1, +2 University of

More information

Lift Superposition and Aerodynamic Twist Optimization for Achieving Desired Lift Distributions

Lift Superposition and Aerodynamic Twist Optimization for Achieving Desired Lift Distributions 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4-7 January 2010, Orlando, Florida AIAA 2010-1227 Lift Superposition and Aerodynamic Twist Optimization for

More information

Loads Analysis and Structural Optimization - A Parameterized and Integrated Process

Loads Analysis and Structural Optimization - A Parameterized and Integrated Process DLR.de Chart 1 Loads Analysis and Structural Optimization - A Parameterized and Integrated Process Thomas Klimmek (AE), Thiemo Kier (SR), Andreas Schuster (FA), Tobias Bach (FA), and Dieter Kohlgrüber

More information

NUMERICAL SIMULATION OF 3D FLAPPING WING BASED ON CHIMERA METHOD

NUMERICAL SIMULATION OF 3D FLAPPING WING BASED ON CHIMERA METHOD 26 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES NUMERICAL SIMULATION OF 3D FLAPPING WING Wenqing Yang, Bifeng Song, Wenping Song School of Aeronautics, Northwestern Polytechnical University,

More information

Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges

Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges Ashok Gopalarathnam Department of Mechanical and Aerospace Engineering North Carolina State University

More information

Estimating Vertical Drag on Helicopter Fuselage during Hovering

Estimating Vertical Drag on Helicopter Fuselage during Hovering Estimating Vertical Drag on Helicopter Fuselage during Hovering A. A. Wahab * and M.Hafiz Ismail ** Aeronautical & Automotive Dept., Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310

More information

Flight Test Research

Flight Test Research Flight Test Research Principal Investigator:Mike Bragg and Tom Ratvasky Post Doc s: Andy Broeren Sam Lee Graduate Students: James Melody Edward Whalen Core Technologies SMART ICING SYSTEMS Research Organization

More information

Personal Skunk Works: a Wind Tunnel in a PC

Personal Skunk Works: a Wind Tunnel in a PC TECHNICAL FEATURE Personal Skunk Works: a Wind Tunnel in a PC BY PETER GARRISON Anyone who's interested in designing airplanes wishes at one time or another for a wind tunnel. The wind tunnel has always

More information

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Review of the Air Force Academy No.3 (35)/2017 NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Cvetelina VELKOVA Department of Technical Mechanics, Naval Academy Nikola Vaptsarov,Varna, Bulgaria (cvetelina.velkova1985@gmail.com)

More information

DETERMINATION OF FLIGHT STABILITY COEFFICIENTS USING A FINITE ELEMENT CFD

DETERMINATION OF FLIGHT STABILITY COEFFICIENTS USING A FINITE ELEMENT CFD DETERMINATION OF FLIGHT STABILITY OEFFIIENTS USING A FINITE ELEMENT FD harles R. O Neill Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 7477 Abstract A 3D finite element

More information

Inaugural OpenVSP Workshop

Inaugural OpenVSP Workshop Inaugural OpenVSP Workshop Rob McDonald San Luis Obispo August 22, 2012 Geometry as Origin of Analysis (Design) Shape is fundamental starting point for physics-based analysis Aerodynamics Structures Aeroelasticity

More information

The Parameters Optimization of Fusion Winglet Based on Orthogonal Experiment Yue LUO 1, *, Qi WANG 1, Qi DU 1 and Hou-An DING 1

The Parameters Optimization of Fusion Winglet Based on Orthogonal Experiment Yue LUO 1, *, Qi WANG 1, Qi DU 1 and Hou-An DING 1 2016 International Conference on Control and Automation (ICCA 2016) ISBN: 978-1-60595-329-8 The Parameters Optimization of Fusion Winglet Based on Orthogonal Experiment Yue LUO 1, *, Qi WANG 1, Qi DU 1

More information

AERODYNAMIC DESIGN AND OPTIMIZATION TOOLS ACCELERATED BY PARAMETRIC GEOMETRY PREPROCESSING

AERODYNAMIC DESIGN AND OPTIMIZATION TOOLS ACCELERATED BY PARAMETRIC GEOMETRY PREPROCESSING 1 European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2000 Barcelona, 11-14 September 2000 ECCOMAS AERODYNAMIC DESIGN AND OPTIMIZATION TOOLS ACCELERATED BY PARAMETRIC

More information

Fluid Dynamics Software Lab. Flow past an airfoil

Fluid Dynamics Software Lab. Flow past an airfoil Second Summer School on Embodied Intelligence Simulation and Modelling within Embodied Intelligence 27 June - 1 July 2011, Zürich, Switzerland Dr Asimina Kazakidi Foundation for Research and Technology

More information

CAD-BASED WORKFLOWS. VSP Workshop 2017

CAD-BASED WORKFLOWS. VSP Workshop 2017 CAD-BASED WORKFLOWS VSP Workshop 2017 RESEARCH IN FLIGHT COMPANY Established 2012 Primary functions are the development, marketing and support of FlightStream and the development of aerodynamic solutions

More information

Aero-Structural Evaluation of Morphing Control Surface Using Corrugated Panels

Aero-Structural Evaluation of Morphing Control Surface Using Corrugated Panels Trans. JSASS Aerospace Tech. Japan Vol. 15, No. APISAT-2016, pp. a7-a15, 2017 Aero-Structural Evaluation of Morphing Control Surface Using Corrugated Panels By Keigo SATO and Tomohiro YOKOZEKI Department

More information

Design and Analysis of Control Bay Used in Guided Missile

Design and Analysis of Control Bay Used in Guided Missile Design and Analysis of Control Bay Used in Guided Missile Ragam Prashanth 1, D.Muppala 2, Nirmith Mishra 3 1PG Student, Department of Aerospace, MLR Inst of Tech and Management, Hyderabad, Telangana, India

More information

Fundamental problems in mobile robotics

Fundamental problems in mobile robotics ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Mobile & Service Robotics Kinematics Fundamental problems in mobile robotics Locomotion: how the robot moves in the environment Perception: how

More information

RESPONSE SURFACE APPROXIMATIONS FOR PITCHING MOMENT INCLUDING PITCH-UP IN THE MULTIDISCIPLINARY DESIGN OPTIMIZATION OF A HIGH-SPEED CIVIL TRANSPORT

RESPONSE SURFACE APPROXIMATIONS FOR PITCHING MOMENT INCLUDING PITCH-UP IN THE MULTIDISCIPLINARY DESIGN OPTIMIZATION OF A HIGH-SPEED CIVIL TRANSPORT RESPONSE SURFACE APPROXIMATIONS FOR PITCHING MOMENT INCLUDING PITCH-UP IN THE MULTIDISCIPLINARY DESIGN OPTIMIZATION OF A HIGH-SPEED CIVIL TRANSPORT by Paul J. Crisafulli Thesis submitted to the faculty

More information

Figure (2) The arrows show the directions of the hinge vectors and the hinge orientation angles (φ h )

Figure (2) The arrows show the directions of the hinge vectors and the hinge orientation angles (φ h ) In this example we will analyze a rocket vehicle during level flight. It is controlled by five aerosurfaces and a fixed engine, similar to the vehicle shown in Figure (1). The control surfaces are: two

More information

Modeling three-dimensional dynamic stall

Modeling three-dimensional dynamic stall Appl. Math. Mech. -Engl. Ed., 32(4), 393 400 (2011) DOI 10.1007/s10483-011-1424-6 c Shanghai University and Springer-Verlag Berlin Heidelberg 2011 Applied Mathematics and Mechanics (English Edition) Modeling

More information

OPTIMISATION OF THE HELICOPTER FUSELAGE WITH SIMULATION OF MAIN AND TAIL ROTOR INFLUENCE

OPTIMISATION OF THE HELICOPTER FUSELAGE WITH SIMULATION OF MAIN AND TAIL ROTOR INFLUENCE 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES OPTIMISATION OF THE HELICOPTER FUSELAGE WITH Wienczyslaw Stalewski*, Jerzy Zoltak* * Institute of Aviation, Poland stal@ilot.edu.pl;geor@ilotl.edu.pl

More information

OPTIMAL CONTROL SURFACE MIXING OF A RHOMBOID WING UAV

OPTIMAL CONTROL SURFACE MIXING OF A RHOMBOID WING UAV OPTIMAL CONTROL SURFACE MIXING OF A RHOMBOID WING UAV E Miles*, BA Broughton**, *Council for Scientific and Industrial Research, **Incomar Aeronautics emiles@csir.co.za, bbroughton@incoaero.com Keywords:

More information

OPTIMAL CONTROL SURFACE MIXING OF A RHOMBOID-WING UAV

OPTIMAL CONTROL SURFACE MIXING OF A RHOMBOID-WING UAV OPTIMAL CONTROL SURFACE MIXING OF A RHOMBOID-WING UAV by Elizna Miles Submitted in partial fulfilment of the requirements for the degree MASTER OF ENGINEERING In the Department of Mechanical and Aeronautical

More information

GAs for aerodynamic shape design II: multiobjective optimization and multi-criteria design

GAs for aerodynamic shape design II: multiobjective optimization and multi-criteria design GAs for aerodynamic shape design II: multiobjective optimization and multi-criteria design D. Quagliarella, A. Vicini C.I.R.A., Centro Italiano Ricerche Aerospaziali Via Maiorise 8143 Capua (Italy) Abstract

More information

AERODYNAMIC DESIGN FOR WING-BODY BLENDED AND INLET

AERODYNAMIC DESIGN FOR WING-BODY BLENDED AND INLET 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AERODYNAMIC DESIGN FOR WING-BODY BLENDED AND INLET Qingzhen YANG*,Yong ZHENG* & Thomas Streit** *Northwestern Polytechincal University, 772,Xi

More information

Trajectory Planning for Reentry Maneuverable Ballistic Missiles

Trajectory Planning for Reentry Maneuverable Ballistic Missiles International Conference on Manufacturing Science and Engineering (ICMSE 215) rajectory Planning for Reentry Maneuverable Ballistic Missiles XIE Yu1, a *, PAN Liang1,b and YUAN ianbao2,c 1 College of mechatronic

More information

Lecture «Robot Dynamics»: Introduction

Lecture «Robot Dynamics»: Introduction Lecture «Robot Dynamics»: Introduction 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG G1 Wednesday 8:15 10:00, according to schedule (about every 2nd week) office hour: LEE

More information

AUTONOMOUS PLANETARY ROVER CONTROL USING INVERSE SIMULATION

AUTONOMOUS PLANETARY ROVER CONTROL USING INVERSE SIMULATION AUTONOMOUS PLANETARY ROVER CONTROL USING INVERSE SIMULATION Kevin Worrall (1), Douglas Thomson (1), Euan McGookin (1), Thaleia Flessa (1) (1)University of Glasgow, Glasgow, G12 8QQ, UK, Email: kevin.worrall@glasgow.ac.uk

More information

Computational Fluid Dynamics Analysis of an Idealized Modern Wingsuit

Computational Fluid Dynamics Analysis of an Idealized Modern Wingsuit Washington University in St. Louis Washington University Open Scholarship Mechanical Engineering and Materials Science Independent Study Mechanical Engineering & Materials Science 12-21-2016 Computational

More information

2. REVIEW OF LITERATURE

2. REVIEW OF LITERATURE 2. REVIEW OF LITERATURE Early attempts to perform control allocation for aircraft with redundant control effectors involved various control mixing schemes and ad hoc solutions. As mentioned in the introduction,

More information