Detection and Tracking of Moving Objects Using 2.5D Motion Grids

Size: px
Start display at page:

Download "Detection and Tracking of Moving Objects Using 2.5D Motion Grids"

Transcription

1 Detection and Tracking of Moving Objects Using 2.5D Motion Grids Alireza Asvadi, Paulo Peixoto and Urbano Nunes Institute of Systems and Robotics, University of Coimbra September

2 Outline: Introduction Proposed approach Experimental results Future works 2

3 Introduction 3

4 An intelligent vehicle's modules Sensor inputs Perception Planning Control Actuators o The perception module builds an internal model of the environment using sensor data. o The planning module performs reasoning and makes decisions for future actions based on the current environment's model. o The control module is responsible for translating actions into commands to the vehicle's actuators. 4

5 Some of different aspects of the environment perception for intelligent vehicles 5

6 Environment representation and identifying static and dynamic part of sensor data. o Modeling static part of the environment: Simultaneous Localization And Mapping (SLAM) o Modeling dynamic part of the environment: Detection And Tracking of Moving Objects (DATMO) 6

7 Some recent related work on the perception of dynamic environment surrounding a vehicle. o 2D methods: no volumetric information o 3D methods: high computational cost 7

8 Proposed Approach 8

9 Sensors Velodyne LIDAR INS (GPS/IMU) Perception and vehicle movement measurements To Perception Module Point cloud Localization Update 2.5D grid data Modeling the static part of the environment Local grid map Building local 2.5D grid 2.5D grid Motion detection Moving object detection module List of objects locations Perception Module Kalman tracking Data association Track management Tracking module List of moving objects and tracks To Planning Module o Local 2.5D grid representation o Modeling the static parts o 2.5D grid Motion detection o Moving object detection o Tracking of moving objects 9

10 GPS/IMU localization data Point cloud Update 2.5D grid Modeling the static part of the environment Building local 2.5D grid - 2.5D grid (average height in each cell) - Remove cells that contains points with low variance and height (ground cells). - Local grid mapping: - Keep last n grids (SCGrds). - Use last m (m < n) observations for each cell. - Only consider cells that have been observed for the minimum number of k times. Local grid map Moving object detection module 2.5D grid Motion detection - Generating 2.5D motion grid and spatial reasoning to suppress false detections. - Morphological operators (fill holes and compensate the Velodyne scan s gaps). List of objects locations 10

11 A 2.5D grid stores in each cell of a discrete grid the height of objects above the ground level at the corresponding point of the environment. Building a local 2.5D grid and removing ground points. Along time, the generated grids combined with localization data are integrated into an environment model called local 2.5D map. 11

12 12

13 In every frame, a 2.5D grid is compared with an updated 2.5D map to compute a 2.5D motion grid. Motion grids are grouped to provide an object-level representation of the environment. Some post-processing to unusual size regions and label connected components. The labeled connected components that correspond to moving objects are inputted to the tracking module. 13

14 List of objects and tracks Kalman tracking - 2D Kalman filters - Constant velocity model - One filter for each object Data association Track management - Initialize new tracks for new detected objects. - Remove exited tracks. - Prune tracks. The output is a list of: o Locations of the moving objects List of objects locations - Gating - Nearest neighbor object association Tracking module o 3D bounding boxes of moving objects o Objects tracks 14

15 Experimental Results 15

16 A 2.5D motion grid obtained by simple subtraction of the last grid from local map Result after false Detection suppression Result after grouping, post-processing, and labeling connected components. 16

17 Experimental results on KITTI dataset 17

18 Future Works 18

19 o Improvement of the current work: make the system more robust, less dependent on thresholds assigned empirically, and to assess its performance in real-time applications. o Classification of moving objects. o Static objects should be taken into account. Object detection and classification from static parts of the environment. 19

20 Thank you for your attention 20

21 21

22 22

Two-Stage Static/Dynamic Environment Modeling Using Voxel Representation

Two-Stage Static/Dynamic Environment Modeling Using Voxel Representation Robot 2015 - Second Iberian Conference on Robotics Autonomous Driving and Driver Assistance Systems Special Session Two-Stage Static/Dynamic Environment Modeling Using Voxel Representation Alireza Asvadi,

More information

W4. Perception & Situation Awareness & Decision making

W4. Perception & Situation Awareness & Decision making W4. Perception & Situation Awareness & Decision making Robot Perception for Dynamic environments: Outline & DP-Grids concept Dynamic Probabilistic Grids Bayesian Occupancy Filter concept Dynamic Probabilistic

More information

Fusion Framework for Moving-Object Classification. Omar Chavez, Trung-Dung Vu (UJF) Trung-Dung Vu (UJF) Olivier Aycard (UJF) Fabio Tango (CRF)

Fusion Framework for Moving-Object Classification. Omar Chavez, Trung-Dung Vu (UJF) Trung-Dung Vu (UJF) Olivier Aycard (UJF) Fabio Tango (CRF) Fusion Framework for Moving-Object Classification Omar Chavez, Trung-Dung Vu (UJF) Trung-Dung Vu (UJF) Olivier Aycard (UJF) Fabio Tango (CRF) Introduction Advance Driver Assistant Systems (ADAS) help drivers

More information

Qadeer Baig, Mathias Perrollaz, Jander Botelho Do Nascimento, Christian Laugier

Qadeer Baig, Mathias Perrollaz, Jander Botelho Do Nascimento, Christian Laugier Using Fast Classification of Static and Dynamic Environment for Improving Bayesian Occupancy Filter (BOF) and Tracking Qadeer Baig, Mathias Perrollaz, Jander Botelho Do Nascimento, Christian Laugier e-motion

More information

COS Lecture 13 Autonomous Robot Navigation

COS Lecture 13 Autonomous Robot Navigation COS 495 - Lecture 13 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

Efficient L-Shape Fitting for Vehicle Detection Using Laser Scanners

Efficient L-Shape Fitting for Vehicle Detection Using Laser Scanners Efficient L-Shape Fitting for Vehicle Detection Using Laser Scanners Xiao Zhang, Wenda Xu, Chiyu Dong, John M. Dolan, Electrical and Computer Engineering, Carnegie Mellon University Robotics Institute,

More information

Pedestrian Detection Using Correlated Lidar and Image Data EECS442 Final Project Fall 2016

Pedestrian Detection Using Correlated Lidar and Image Data EECS442 Final Project Fall 2016 edestrian Detection Using Correlated Lidar and Image Data EECS442 Final roject Fall 2016 Samuel Rohrer University of Michigan rohrer@umich.edu Ian Lin University of Michigan tiannis@umich.edu Abstract

More information

Spatial Density Distribution

Spatial Density Distribution GeoCue Group Support Team 5/28/2015 Quality control and quality assurance checks for LIDAR data continue to evolve as the industry identifies new ways to help ensure that data collections meet desired

More information

Pedestrian Detection Using Multi-layer LIDAR

Pedestrian Detection Using Multi-layer LIDAR 1 st International Conference on Transportation Infrastructure and Materials (ICTIM 2016) ISBN: 978-1-60595-367-0 Pedestrian Detection Using Multi-layer LIDAR Mingfang Zhang 1, Yuping Lu 2 and Tong Liu

More information

3D Point Cloud Processing

3D Point Cloud Processing 3D Point Cloud Processing The image depicts how our robot Irma3D sees itself in a mirror. The laser looking into itself creates distortions as well as changes in intensity that give the robot a single

More information

Robot Autonomy Final Report : Team Husky

Robot Autonomy Final Report : Team Husky Robot Autonomy Final Report : Team Husky 1 Amit Bansal Master student in Robotics Institute, CMU ab1@andrew.cmu.edu Akshay Hinduja Master student in Mechanical Engineering, CMU ahinduja@andrew.cmu.edu

More information

Data Association for SLAM

Data Association for SLAM CALIFORNIA INSTITUTE OF TECHNOLOGY ME/CS 132a, Winter 2011 Lab #2 Due: Mar 10th, 2011 Part I Data Association for SLAM 1 Introduction For this part, you will experiment with a simulation of an EKF SLAM

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Introduction to Mobile Robotics Olivier Aycard Associate Professor University of Grenoble Laboratoire d Informatique de Grenoble http://membres-liglab.imag.fr/aycard 1/29 Some examples of mobile robots

More information

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas Big Data + Deep Representation Learning Robot Perception Augmented Reality

More information

INTELLIGENT AUTONOMOUS SYSTEMS LAB

INTELLIGENT AUTONOMOUS SYSTEMS LAB Matteo Munaro 1,3, Alex Horn 2, Randy Illum 2, Jeff Burke 2, and Radu Bogdan Rusu 3 1 IAS-Lab at Department of Information Engineering, University of Padova 2 Center for Research in Engineering, Media

More information

Spring 2016 :: :: Robot Autonomy :: Team 7 Motion Planning for Autonomous All-Terrain Vehicle

Spring 2016 :: :: Robot Autonomy :: Team 7 Motion Planning for Autonomous All-Terrain Vehicle Spring 2016 :: 16662 :: Robot Autonomy :: Team 7 Motion Planning for Autonomous All-Terrain Vehicle Guan-Horng Liu, Samuel Wang, Shu-Kai Lin, Chris Wang, Tiffany May Advisor : Mr. George Kantor OUTLINE

More information

Where s the Boss? : Monte Carlo Localization for an Autonomous Ground Vehicle using an Aerial Lidar Map

Where s the Boss? : Monte Carlo Localization for an Autonomous Ground Vehicle using an Aerial Lidar Map Where s the Boss? : Monte Carlo Localization for an Autonomous Ground Vehicle using an Aerial Lidar Map Sebastian Scherer, Young-Woo Seo, and Prasanna Velagapudi October 16, 2007 Robotics Institute Carnegie

More information

Grid-based Localization and Online Mapping with Moving Objects Detection and Tracking: new results

Grid-based Localization and Online Mapping with Moving Objects Detection and Tracking: new results Grid-based Localization and Online Mapping with Moving Objects Detection and Tracking: new results Trung-Dung Vu, Julien Burlet and Olivier Aycard Laboratoire d Informatique de Grenoble, France firstname.lastname@inrialpes.fr

More information

3D LIDAR Point Cloud based Intersection Recognition for Autonomous Driving

3D LIDAR Point Cloud based Intersection Recognition for Autonomous Driving 3D LIDAR Point Cloud based Intersection Recognition for Autonomous Driving Quanwen Zhu, Long Chen, Qingquan Li, Ming Li, Andreas Nüchter and Jian Wang Abstract Finding road intersections in advance is

More information

Mini Survey Paper (Robotic Mapping) Ryan Hamor CPRE 583 September 2011

Mini Survey Paper (Robotic Mapping) Ryan Hamor CPRE 583 September 2011 Mini Survey Paper (Robotic Mapping) Ryan Hamor CPRE 583 September 2011 Introduction The goal of this survey paper is to examine the field of robotic mapping and the use of FPGAs in various implementations.

More information

Introduction to Mobile Robotics Techniques for 3D Mapping

Introduction to Mobile Robotics Techniques for 3D Mapping Introduction to Mobile Robotics Techniques for 3D Mapping Wolfram Burgard, Michael Ruhnke, Bastian Steder 1 Why 3D Representations Robots live in the 3D world. 2D maps have been applied successfully for

More information

Collapsible Cubes: Removing Overhangs from 3D Point Clouds to Build Local Navigable Elevation Maps

Collapsible Cubes: Removing Overhangs from 3D Point Clouds to Build Local Navigable Elevation Maps Collapsible Cubes: Removing Overhangs from 3D Point Clouds to Build Local Navigable Elevation Maps Antonio J. Reina, Jorge L. Martínez, Anthony Mandow, Jesús Morales, and Alfonso García-Cerezo Dpto. Ingeniería

More information

Automated Extraction of Buildings from Aerial LiDAR Point Cloud and Digital Imaging Datasets for 3D Cadastre - Preliminary Results

Automated Extraction of Buildings from Aerial LiDAR Point Cloud and Digital Imaging Datasets for 3D Cadastre - Preliminary Results Automated Extraction of Buildings from Aerial LiDAR Point Cloud and Digital Imaging Datasets for 3D Pankaj Kumar 1*, Alias Abdul Rahman 1 and Gurcan Buyuksalih 2 ¹Department of Geoinformation Universiti

More information

Developing Algorithms for Robotics and Autonomous Systems

Developing Algorithms for Robotics and Autonomous Systems Developing Algorithms for Robotics and Autonomous Systems Jorik Caljouw 2015 The MathWorks, Inc. 1 Key Takeaway of this Talk Success in developing an autonomous robotics system requires: 1. Multi-domain

More information

Spring Localization II. Roland Siegwart, Margarita Chli, Juan Nieto, Nick Lawrance. ASL Autonomous Systems Lab. Autonomous Mobile Robots

Spring Localization II. Roland Siegwart, Margarita Chli, Juan Nieto, Nick Lawrance. ASL Autonomous Systems Lab. Autonomous Mobile Robots Spring 2018 Localization II Localization I 16.04.2018 1 knowledge, data base mission commands Localization Map Building environment model local map position global map Cognition Path Planning path Perception

More information

Detecting the Unexpected: The Path to Road Obstacles Prevention in Autonomous Driving

Detecting the Unexpected: The Path to Road Obstacles Prevention in Autonomous Driving Detecting the Unexpected: The Path to Road Obstacles Prevention in Autonomous Driving Shmoolik Mangan, PhD Algorithms Development Manager, VAYAVISION AutonomousTech TLV Israel 2018 VAYAVISION s approach

More information

5. Tests and results Scan Matching Optimization Parameters Influence

5. Tests and results Scan Matching Optimization Parameters Influence 126 5. Tests and results This chapter presents results obtained using the proposed method on simulated and real data. First, it is analyzed the scan matching optimization; after that, the Scan Matching

More information

USAGE OF MULTIPLE LIDAR SENSORS ON A MOBILE SYSTEM FOR THE DETECTION OF PERSONS WITH IMPLICIT SHAPE MODELS

USAGE OF MULTIPLE LIDAR SENSORS ON A MOBILE SYSTEM FOR THE DETECTION OF PERSONS WITH IMPLICIT SHAPE MODELS USAGE OF MULTIPLE LIDAR SENSORS ON A MOBILE SYSTEM FOR THE DETECTION OF PERSONS WITH IMPLICIT SHAPE MODELS Björn Borgmann a,b, Marcus Hebel a, Michael Arens a, Uwe Stilla b a Fraunhofer Institute of Optronics,

More information

Sensory Augmentation for Increased Awareness of Driving Environment

Sensory Augmentation for Increased Awareness of Driving Environment Sensory Augmentation for Increased Awareness of Driving Environment Pranay Agrawal John M. Dolan Dec. 12, 2014 Technologies for Safe and Efficient Transportation (T-SET) UTC The Robotics Institute Carnegie

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics FastSLAM Sebastian Thrun (abridged and adapted by Rodrigo Ventura in Oct-2008) The SLAM Problem SLAM stands for simultaneous localization and mapping The task of building a map while

More information

Integrating multiple representations of spatial knowledge for mapping, navigation, and communication

Integrating multiple representations of spatial knowledge for mapping, navigation, and communication Integrating multiple representations of spatial knowledge for mapping, navigation, and communication Patrick Beeson Matt MacMahon Joseph Modayil Aniket Murarka Benjamin Kuipers Department of Computer Sciences

More information

Fusion Between Laser and Stereo Vision Data For Moving Objects Tracking In Intersection Like Scenario

Fusion Between Laser and Stereo Vision Data For Moving Objects Tracking In Intersection Like Scenario Fusion Between Laser and Stereo Vision Data For Moving Objects Tracking In Intersection Like Scenario Qadeer Baig, Olivier Aycard, Trung Dung Vu and Thierry Fraichard Abstract Using multiple sensors in

More information

PML-SLAM: a solution for localization in large-scale urban environments

PML-SLAM: a solution for localization in large-scale urban environments PML-SLAM: a solution for localization in large-scale urban environments Zayed Alsayed, Guillaume Bresson, Fawzi Nashashibi and Anne Verroust-Blondet Institut VEDECOM Versailles, France firstname.name@vedecom.fr

More information

Simultaneous Localization and Mapping

Simultaneous Localization and Mapping Sebastian Lembcke SLAM 1 / 29 MIN Faculty Department of Informatics Simultaneous Localization and Mapping Visual Loop-Closure Detection University of Hamburg Faculty of Mathematics, Informatics and Natural

More information

3D Convolutional Neural Networks for Landing Zone Detection from LiDAR

3D Convolutional Neural Networks for Landing Zone Detection from LiDAR 3D Convolutional Neural Networks for Landing Zone Detection from LiDAR Daniel Mataruna and Sebastian Scherer Presented by: Sabin Kafle Outline Introduction Preliminaries Approach Volumetric Density Mapping

More information

Calibration of a rotating multi-beam Lidar

Calibration of a rotating multi-beam Lidar The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-22, 2010, Taipei, Taiwan Calibration of a rotating multi-beam Lidar Naveed Muhammad 1,2 and Simon Lacroix 1,2 Abstract

More information

3D Simultaneous Localization and Mapping and Navigation Planning for Mobile Robots in Complex Environments

3D Simultaneous Localization and Mapping and Navigation Planning for Mobile Robots in Complex Environments 3D Simultaneous Localization and Mapping and Navigation Planning for Mobile Robots in Complex Environments Sven Behnke University of Bonn, Germany Computer Science Institute VI Autonomous Intelligent Systems

More information

Obstacle Detection From Roadside Laser Scans. Research Project

Obstacle Detection From Roadside Laser Scans. Research Project Obstacle Detection From Roadside Laser Scans by Jimmy Young Tang Research Project Submitted to the Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, in partial

More information

Human Motion Detection and Tracking for Video Surveillance

Human Motion Detection and Tracking for Video Surveillance Human Motion Detection and Tracking for Video Surveillance Prithviraj Banerjee and Somnath Sengupta Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur,

More information

Mapping with Dynamic-Object Probabilities Calculated from Single 3D Range Scans

Mapping with Dynamic-Object Probabilities Calculated from Single 3D Range Scans Mapping with Dynamic-Object Probabilities Calculated from Single 3D Range Scans Philipp Ruchti Wolfram Burgard Abstract Various autonomous robotic systems require maps for robust and safe navigation. Particularly

More information

Generate Digital Elevation Models Using Laser Altimetry (LIDAR) Data. Christopher Weed

Generate Digital Elevation Models Using Laser Altimetry (LIDAR) Data. Christopher Weed Generate Digital Elevation Models Using Laser Altimetry (LIDAR) Data Christopher Weed Final Report EE 381K Multidimensional Digital Signal Processing December 11, 2000 Abstract A Laser Altimetry (LIDAR)

More information

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu

More information

Semantic Place Classification and Mapping for Autonomous Agricultural Robots

Semantic Place Classification and Mapping for Autonomous Agricultural Robots Semantic Place Classification and Mapping for Autonomous Agricultural Robots Ulrich Weiss and Peter Biber Abstract Our work focuses on semantic place classification and on navigation of outdoor agricultural

More information

AN APPROACH TO EXTRACT MOVING OBJECTS FROM MLS DATA USING A VOLUMETRIC BACKGROUND REPRESENTATION

AN APPROACH TO EXTRACT MOVING OBJECTS FROM MLS DATA USING A VOLUMETRIC BACKGROUND REPRESENTATION AN APPROACH TO EXTRACT MOVING OBJECTS FROM MLS DATA USING A VOLUMETRIC BACKGROUND REPRESENTATION Joachim Gehrung ab, Marcus Hebel a, Michael Arens a, Uwe Stilla b a Fraunhofer Institute of Optronics, System

More information

Multiple Pedestrian Tracking using Viterbi Data Association

Multiple Pedestrian Tracking using Viterbi Data Association Multiple Pedestrian Tracking using Viterbi Data Association Asma Azim and Olivier Aycard Abstract To address perception problems we must be able to track dynamic objects of the environment. An important

More information

Dynamic Sensor-based Path Planning and Hostile Target Detection with Mobile Ground Robots. Matt Epperson Dr. Timothy Chung

Dynamic Sensor-based Path Planning and Hostile Target Detection with Mobile Ground Robots. Matt Epperson Dr. Timothy Chung Dynamic Sensor-based Path Planning and Hostile Target Detection with Mobile Ground Robots Matt Epperson Dr. Timothy Chung Brief Bio Matt Epperson Cal Poly, San Luis Obispo Sophmore Computer Engineer NREIP

More information

Multibody reconstruction of the dynamic scene surrounding a vehicle using a wide baseline and multifocal stereo system

Multibody reconstruction of the dynamic scene surrounding a vehicle using a wide baseline and multifocal stereo system Multibody reconstruction of the dynamic scene surrounding a vehicle using a wide baseline and multifocal stereo system Laurent Mennillo 1,2, Éric Royer1, Frédéric Mondot 2, Johann Mousain 2, Michel Dhome

More information

Spring Localization II. Roland Siegwart, Margarita Chli, Martin Rufli. ASL Autonomous Systems Lab. Autonomous Mobile Robots

Spring Localization II. Roland Siegwart, Margarita Chli, Martin Rufli. ASL Autonomous Systems Lab. Autonomous Mobile Robots Spring 2016 Localization II Localization I 25.04.2016 1 knowledge, data base mission commands Localization Map Building environment model local map position global map Cognition Path Planning path Perception

More information

Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning

Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning Allan Zelener Dissertation Proposal December 12 th 2016 Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning Overview 1. Introduction to 3D Object Identification

More information

Construction and Calibration of a Low-Cost 3D Laser Scanner with 360º Field of View for Mobile Robots

Construction and Calibration of a Low-Cost 3D Laser Scanner with 360º Field of View for Mobile Robots Construction and Calibration of a Low-Cost 3D Laser Scanner with 360º Field of View for Mobile Robots Jorge L. Martínez, Jesús Morales, Antonio, J. Reina, Anthony Mandow, Alejandro Pequeño-Boter*, and

More information

Simultaneous Localization and Mapping with Moving Object Tracking in 3D Range Data

Simultaneous Localization and Mapping with Moving Object Tracking in 3D Range Data Simultaneous Localization and Mapping with Moving Object Tracking in 3D Range Data Peng Mun Siew and Richard Linares Department of Aerospace Engineering and Mechanics, University of Minnesota, MN, 55455

More information

Chapters 1 7: Overview

Chapters 1 7: Overview Chapters 1 7: Overview Photogrammetric mapping: introduction, applications, and tools GNSS/INS-assisted photogrammetric and LiDAR mapping LiDAR mapping: principles, applications, mathematical model, and

More information

Turning an Automated System into an Autonomous system using Model-Based Design Autonomous Tech Conference 2018

Turning an Automated System into an Autonomous system using Model-Based Design Autonomous Tech Conference 2018 Turning an Automated System into an Autonomous system using Model-Based Design Autonomous Tech Conference 2018 Asaf Moses Systematics Ltd., Technical Product Manager aviasafm@systematics.co.il 1 Autonomous

More information

DepthCN: Vehicle Detection Using 3D-LIDAR and ConvNet

DepthCN: Vehicle Detection Using 3D-LIDAR and ConvNet DepthCN: Vehicle Detection Using 3D-LIDAR and ConvNet Alireza Asvadi, Luis Garrote, Cristiano Premebida, Paulo Peixoto and Urbano J. Nunes Abstract This paper addresses the problem of vehicle detection

More information

Bonemapping: A LiDAR Processing and Visualization Approach and Its Applications

Bonemapping: A LiDAR Processing and Visualization Approach and Its Applications Bonemapping: A LiDAR Processing and Visualization Approach and Its Applications Thomas J. Pingel Northern Illinois University National Geography Awareness Week Lecture Department of Geology and Geography

More information

A Longitudinal Control Algorithm for Smart Cruise Control with Virtual Parameters

A Longitudinal Control Algorithm for Smart Cruise Control with Virtual Parameters ISSN (e): 2250 3005 Volume, 06 Issue, 12 December 2016 International Journal of Computational Engineering Research (IJCER) A Longitudinal Control Algorithm for Smart Cruise Control with Virtual Parameters

More information

F1/10 th Autonomous Racing. Localization. Nischal K N

F1/10 th Autonomous Racing. Localization. Nischal K N F1/10 th Autonomous Racing Localization Nischal K N System Overview Mapping Hector Mapping Localization Path Planning Control System Overview Mapping Hector Mapping Localization Adaptive Monte Carlo Localization

More information

LOAM: LiDAR Odometry and Mapping in Real Time

LOAM: LiDAR Odometry and Mapping in Real Time LOAM: LiDAR Odometry and Mapping in Real Time Aayush Dwivedi (14006), Akshay Sharma (14062), Mandeep Singh (14363) Indian Institute of Technology Kanpur 1 Abstract This project deals with online simultaneous

More information

CS4758: Rovio Augmented Vision Mapping Project

CS4758: Rovio Augmented Vision Mapping Project CS4758: Rovio Augmented Vision Mapping Project Sam Fladung, James Mwaura Abstract The goal of this project is to use the Rovio to create a 2D map of its environment using a camera and a fixed laser pointer

More information

A physically motivated pixel-based model for background subtraction in 3D images

A physically motivated pixel-based model for background subtraction in 3D images A physically motivated pixel-based model for background subtraction in 3D images M. Braham, A. Lejeune and M. Van Droogenbroeck INTELSIG, Montefiore Institute, University of Liège, Belgium IC3D - December

More information

Multi-temporal LIDAR data for forestry an approach to investigate timber yield changes

Multi-temporal LIDAR data for forestry an approach to investigate timber yield changes Multi-temporal LIDAR data for forestry an approach to investigate timber yield changes UniSA Stefan Peters, Jixue Liu, David Bruce, Jiuyong Li ForestrySA Jim O Hehir, Mary-Anne Larkin, Anthony Hay 1 Why

More information

Robotics Programming Laboratory

Robotics Programming Laboratory Chair of Software Engineering Robotics Programming Laboratory Bertrand Meyer Jiwon Shin Lecture 8: Robot Perception Perception http://pascallin.ecs.soton.ac.uk/challenges/voc/databases.html#caltech car

More information

Vehicle Localization. Hannah Rae Kerner 21 April 2015

Vehicle Localization. Hannah Rae Kerner 21 April 2015 Vehicle Localization Hannah Rae Kerner 21 April 2015 Spotted in Mtn View: Google Car Why precision localization? in order for a robot to follow a road, it needs to know where the road is to stay in a particular

More information

Detection and Motion Planning for Roadside Parked Vehicles at Long Distance

Detection and Motion Planning for Roadside Parked Vehicles at Long Distance 2015 IEEE Intelligent Vehicles Symposium (IV) June 28 - July 1, 2015. COEX, Seoul, Korea Detection and Motion Planning for Roadside Parked Vehicles at Long Distance Xue Mei, Naoki Nagasaka, Bunyo Okumura,

More information

Simultaneous Localization

Simultaneous Localization Simultaneous Localization and Mapping (SLAM) RSS Technical Lecture 16 April 9, 2012 Prof. Teller Text: Siegwart and Nourbakhsh S. 5.8 Navigation Overview Where am I? Where am I going? Localization Assumed

More information

ECE 172A: Introduction to Intelligent Systems: Machine Vision, Fall Midterm Examination

ECE 172A: Introduction to Intelligent Systems: Machine Vision, Fall Midterm Examination ECE 172A: Introduction to Intelligent Systems: Machine Vision, Fall 2008 October 29, 2008 Notes: Midterm Examination This is a closed book and closed notes examination. Please be precise and to the point.

More information

MULTI-MODAL MAPPING. Robotics Day, 31 Mar Frank Mascarich, Shehryar Khattak, Tung Dang

MULTI-MODAL MAPPING. Robotics Day, 31 Mar Frank Mascarich, Shehryar Khattak, Tung Dang MULTI-MODAL MAPPING Robotics Day, 31 Mar 2017 Frank Mascarich, Shehryar Khattak, Tung Dang Application-Specific Sensors Cameras TOF Cameras PERCEPTION LiDAR IMU Localization Mapping Autonomy Robotic Perception

More information

Multi-View 3D Object Detection Network for Autonomous Driving

Multi-View 3D Object Detection Network for Autonomous Driving Multi-View 3D Object Detection Network for Autonomous Driving Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, Tian Xia CVPR 2017 (Spotlight) Presented By: Jason Ku Overview Motivation Dataset Network Architecture

More information

Zürich. Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza. ETH Master Course: L Autonomous Mobile Robots Summary

Zürich. Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza. ETH Master Course: L Autonomous Mobile Robots Summary Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza ETH Master Course: 151-0854-00L Autonomous Mobile Robots Summary 2 Lecture Overview Mobile Robot Control Scheme knowledge, data base mission

More information

다중센서기반자율시스템의모델설계및개발 이제훈차장 The MathWorks, Inc. 2

다중센서기반자율시스템의모델설계및개발 이제훈차장 The MathWorks, Inc. 2 1 다중센서기반자율시스템의모델설계및개발 이제훈차장 2017 The MathWorks, Inc. 2 What we will see today 3 Functional Segmentation of Autonomous System Aircraft/ Platform Sense Perceive Plan & Decide Control Connect/ Communicate

More information

Motion Detection Algorithm

Motion Detection Algorithm Volume 1, No. 12, February 2013 ISSN 2278-1080 The International Journal of Computer Science & Applications (TIJCSA) RESEARCH PAPER Available Online at http://www.journalofcomputerscience.com/ Motion Detection

More information

Context Aided Multilevel Pedestrian Detection

Context Aided Multilevel Pedestrian Detection Context Aided Multilevel Pedestrian Detection Fernando García, Arturo de la Escalera and José María Armingol Intelligent Systems Lab. Universidad Carlos III of Madrid fegarcia@ing.uc3m.es Abstract The

More information

Sonar-based FastSLAM in an Underwater Environment Using Walls as Features

Sonar-based FastSLAM in an Underwater Environment Using Walls as Features Sonar-based FastSLAM in an Underwater Environment Using Walls as Features Dariush Forouher, Jan Hartmann, Marek Litza, Erik Maehle Abstract A lot of research has been done in the area of Simultaneous Localization

More information

Advanced point cloud processing

Advanced point cloud processing Advanced point cloud processing George Vosselman ITC Enschede, the Netherlands INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION Laser scanning platforms Airborne systems mounted

More information

LADAR-based Pedestrian Detection and Tracking

LADAR-based Pedestrian Detection and Tracking LADAR-based Pedestrian Detection and Tracking Luis E. Navarro-Serment, Christoph Mertz, Nicolas Vandapel, and Martial Hebert, Member, IEEE Abstract The approach investigated in this work employs LADAR

More information

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models Introduction ti to Embedded dsystems EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping Gabe Hoffmann Ph.D. Candidate, Aero/Astro Engineering Stanford University Statistical Models

More information

APPENDIX E2. Vernal Pool Watershed Mapping

APPENDIX E2. Vernal Pool Watershed Mapping APPENDIX E2 Vernal Pool Watershed Mapping MEMORANDUM To: U.S. Fish and Wildlife Service From: Tyler Friesen, Dudek Subject: SSHCP Vernal Pool Watershed Analysis Using LIDAR Data Date: February 6, 2014

More information

RGBD Face Detection with Kinect Sensor. ZhongJie Bi

RGBD Face Detection with Kinect Sensor. ZhongJie Bi RGBD Face Detection with Kinect Sensor ZhongJie Bi Outline The Existing State-of-the-art Face Detector Problems with this Face Detector Proposed solution to the problems Result and ongoing tasks The Existing

More information

Introduction to Mobile Robotics SLAM Grid-based FastSLAM. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello

Introduction to Mobile Robotics SLAM Grid-based FastSLAM. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello Introduction to Mobile Robotics SLAM Grid-based FastSLAM Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello 1 The SLAM Problem SLAM stands for simultaneous localization

More information

Pedestrian Detection with Radar and Computer Vision

Pedestrian Detection with Radar and Computer Vision Pedestrian Detection with Radar and Computer Vision camera radar sensor Stefan Milch, Marc Behrens, Darmstadt, September 25 25 / 26, 2001 Pedestrian accidents and protection systems Impact zone: 10% opposite

More information

Probabilistic Robotics. FastSLAM

Probabilistic Robotics. FastSLAM Probabilistic Robotics FastSLAM The SLAM Problem SLAM stands for simultaneous localization and mapping The task of building a map while estimating the pose of the robot relative to this map Why is SLAM

More information

Dynamic Road Surface Detection Method based on 3D Lidar

Dynamic Road Surface Detection Method based on 3D Lidar Dynamic Road Surface Detection Method based on 3D Lidar Yi-Shueh Tsai Applied Sensor Technology Group, R&D department Automotive Research and Testing Center (ARTC) Changhua County, TAIWAN (R.O.C) jefftsai@artc.org.tw

More information

IROS 05 Tutorial. MCL: Global Localization (Sonar) Monte-Carlo Localization. Particle Filters. Rao-Blackwellized Particle Filters and Loop Closing

IROS 05 Tutorial. MCL: Global Localization (Sonar) Monte-Carlo Localization. Particle Filters. Rao-Blackwellized Particle Filters and Loop Closing IROS 05 Tutorial SLAM - Getting it Working in Real World Applications Rao-Blackwellized Particle Filters and Loop Closing Cyrill Stachniss and Wolfram Burgard University of Freiburg, Dept. of Computer

More information

Fast Denoising for Moving Object Detection by An Extended Structural Fitness Algorithm

Fast Denoising for Moving Object Detection by An Extended Structural Fitness Algorithm Fast Denoising for Moving Object Detection by An Extended Structural Fitness Algorithm ALBERTO FARO, DANIELA GIORDANO, CONCETTO SPAMPINATO Dipartimento di Ingegneria Informatica e Telecomunicazioni Facoltà

More information

No Blind Spots: Full-Surround Multi-Object Tracking for Autonomous Vehicles using Cameras & LiDARs

No Blind Spots: Full-Surround Multi-Object Tracking for Autonomous Vehicles using Cameras & LiDARs 1 No Blind Spots: Full-Surround Multi-Object Tracking for Autonomous Vehicles using Cameras & LiDARs arxiv:1802.08755v3 [cs.cv] 10 Sep 2018 Akshay Rangesh, Member, IEEE, and Mohan M. Trivedi, Fellow, IEEE

More information

Sphero Lightning Lab Cheat Sheet

Sphero Lightning Lab Cheat Sheet Actions Tool Description Variables Ranges Roll Combines heading, speed and time variables to make the robot roll. Duration Speed Heading (0 to 999999 seconds) (degrees 0-359) Set Speed Sets the speed of

More information

A Paper presentation on REAL TIME IMAGE PROCESSING APPLIED TO TRAFFIC QUEUE DETECTION ALGORITHM

A Paper presentation on REAL TIME IMAGE PROCESSING APPLIED TO TRAFFIC QUEUE DETECTION ALGORITHM A Paper presentation on REAL TIME IMAGE PROCESSING APPLIED TO TRAFFIC QUEUE DETECTION ALGORITHM ABSTRACT This paper primarily aims at the new technique of video image processing used to solve problems

More information

Research Article Sloped Terrain Segmentation for Autonomous Drive Using Sparse 3D Point Cloud

Research Article Sloped Terrain Segmentation for Autonomous Drive Using Sparse 3D Point Cloud e Scientific World Journal, Article ID 582753, 9 pages http://dx.doi.org/10.1155/2014/582753 Research Article Sloped Terrain Segmentation for Autonomous Drive Using Sparse 3D Point Cloud Seoungjae Cho,

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

OPEN SIMULATION INTERFACE. INTRODUCTION AND OVERVIEW.

OPEN SIMULATION INTERFACE. INTRODUCTION AND OVERVIEW. OPEN SIMULATION INTERFACE. INTRODUCTION AND OVERVIEW. DIFFERENTIATION OF SIMULATION DATA INTERFACES. Odometry / Dynamics Interface Open Interface (OSI) Map Interface Dynamics Model Map Model Vehicle Dynamics

More information

Binary Images Clustering with k-means

Binary Images Clustering with k-means Binary Images Clustering with k-means João Ferreira Nunes Instituto Politécnico de Viana do Castelo joao.nunes@estg.ipvc.pt Faculdade de Engenharia da Universidade do Porto pro09001@fe.up.pt Presentation

More information

Evaluating optical flow vectors through collision points of object trajectories in varying computergenerated snow intensities for autonomous vehicles

Evaluating optical flow vectors through collision points of object trajectories in varying computergenerated snow intensities for autonomous vehicles Eingebettete Systeme Evaluating optical flow vectors through collision points of object trajectories in varying computergenerated snow intensities for autonomous vehicles 25/6/2018, Vikas Agrawal, Marcel

More information

Improvements in Continuous Variable Simulation with Multiple Point Statistics

Improvements in Continuous Variable Simulation with Multiple Point Statistics Improvements in Continuous Variable Simulation with Multiple Point Statistics Jeff B. Boisvert A modified version of Mariethoz et al s (2010) algorithm for simulating continuous variables using multiple

More information

Korea Autonomous Vehicle Contest 2013

Korea Autonomous Vehicle Contest 2013 Korea Autonomous Vehicle Contest 2013 Smart Mobility Team (RTOS Lab. & Dyros Lab.) Graduate School of Convergence Science and Technology Seoul National University Page 1 Contents 1. Contest Information

More information

Airborne discrete return LiDAR data was collected on September 3-4, 2007 by

Airborne discrete return LiDAR data was collected on September 3-4, 2007 by SUPPLEMENTAL MATERIAL 2 LiDAR Specifications Airborne discrete return LiDAR data was collected on September 3-4, 2007 by Watershed Sciences, Inc. (Corvallis, Oregon USA). LiDAR was collected approximately

More information

FOR 474: Forest Inventory. Plot Level Metrics: Getting at Canopy Heights. Plot Level Metrics: What is the Point Cloud Anyway?

FOR 474: Forest Inventory. Plot Level Metrics: Getting at Canopy Heights. Plot Level Metrics: What is the Point Cloud Anyway? FOR 474: Forest Inventory Plot Level Metrics from Lidar Heights Other Plot Measures Sources of Error Readings: See Website Plot Level Metrics: Getting at Canopy Heights Heights are an Implicit Output of

More information

Strategies for simulating pedestrian navigation with multiple reinforcement learning agents

Strategies for simulating pedestrian navigation with multiple reinforcement learning agents Strategies for simulating pedestrian navigation with multiple reinforcement learning agents Francisco Martinez-Gil, Miguel Lozano, Fernando Ferna ndez Presented by: Daniel Geschwender 9/29/2016 1 Overview

More information

Schedule-Driven Coordination for Real-Time Traffic Control

Schedule-Driven Coordination for Real-Time Traffic Control Schedule-Driven Coordination for Real-Time Traffic Control Xiao-Feng Xie, Stephen F. Smith, Gregory J. Barlow The Robotics Institute Carnegie Mellon University International Conference on Automated Planning

More information

POINT-CLOUD PROCESSING USING HDL CODER. April 17th 2018

POINT-CLOUD PROCESSING USING HDL CODER. April 17th 2018 POINT-CLOUD PROCESSING USING HDL CODER AGENDA Introduction LiDAR Sensors in Automotive Industry Point Cloud Processing Classic processing pipeline HDL-Coder Workflow Hardware structure Examples on the

More information

Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) Simultaneous Localization and Mapping (SLAM) RSS Lecture 16 April 8, 2013 Prof. Teller Text: Siegwart and Nourbakhsh S. 5.8 SLAM Problem Statement Inputs: No external coordinate reference Time series of

More information