Abandoned Luggage Detection

Size: px
Start display at page:

Download "Abandoned Luggage Detection"

Transcription

1 Abandoned Luggage Detection Using deep neural networks to detect and track abandoned luggage in video By Evan Miller and Eli Selkin For CS519 instructed by Dr. Hao Ji At California State Polytechnic University, Pomona

2 Presentation Outline Introduction to automated video surveillance Object detection and localization from video using SSD Object tracking Threat detection Issues and potential solutions Future work

3 History of Video Surveillance Originates with analog closed circuit television (CCTV) monitoring Analog video became more affordable through 1970s-80s Mid-late 80s - Charge-Coupled Device (CCD) cameras Nanny cams pushed cameras to be extremely small to be hidden anywhere Post 9/11 - Push for computer-enhanced surveillance Allowed for filming in low light and night, digital 90s - Digital multiplexing, digital storage, portability and affordability Video cameras installed on New York City Municipal Building near City Hall May U.S. Parks Service installs facial recognition at the Statue of Liberty and on Ellis Island Use of new and old technologies for computer-assisted surveillance Push for complete autonomy, neural networks, etc. Strong motivations for automated abandoned luggage detection Prevent bombings/other attacks in airports, subways, etc. [1]

4 Cornerstones of Automated Video Surveillance Object Detection and Localization Object Tracking Maintaining object movement over time and establishing object permanence between frames Threat Detection Identifying and locating persons and other objects of interest Identifying situations that are threats to security Perpetrator Identification

5 Object Detection and Localization What is it? Objects' features must be learned so that the components can be recognized. Past: detection using sliding windows, recognizing edges, pyramids. Limitations Present: detection using neural networks (NN). Learning weights. How do neural networks localize? VGG based (or any network really): 1. R-CNN -SVMs from CNN [2] 0.1 fps 2. Fast R-CNN - RoI [3] 5 fps 3. Faster R-CNN - RPN [4] 7 fps 4. SSD multibox [5] 46 fps "Non-classifier" based: 1. YOLO [6] 45 fps 2. YOLOv2 detects in each box 67 fps

6 Object Detection Has Been Done Hasn't it surpassed human ability? Yes, the error rates have surpassed human ability for general detection. But, the areas of localization, segmentation, are still open areas of study, especially for conducting this in real time. Why do you need real time? Real time is needed for analysis of time-sensitive data, such as in surveillance video, detection of defects in a large number of parts in a moving production line, etc.

7 Why SSD? Positive aspects of SSD vs Faster R-CNN Stability Built on trusted components Peer reviewed Speed Why not YOLOv2? Near real time Lower computational complexity Implementation: C only from darknet (no complete official python wrapper) Lack of peer-reviewed source. Several authors give much lower map (mean average precision) for YOLOv2 than the authors of YOLOv2 suggest.

8 SSD - VGG base + New Convolutional Layers Modified VGG-16 + SSD K:3, S:1, P:0 Filters: 256 K:1, S:1, P:0 Filters: 128 K:3, S:1, P:0 Filters: 256 K:1, S:1, P:0 Filters: 128 K:3, S:2, P:1 Filters: 256 K:1, S:1, P:0 Filters: 128 K:3, S:2, P:1 Filters: 512 K:1 Filters: 256 K:1 P:0 Filters: 1024 K:3 P:6 Filters: 1024 MAX POOL k:3 s:1 K:3 Filters: 512 MAX POOL k:2 s:2 4_3 K:3 Filters: 512 MAX POOL k:2 s:2 K:3 Filters: 256 MAX POOL k:2 s:2 K:3 Filters: 128 MAX POOL k:2 s:2 K:3 Filters: 64 INPUT 300x300 P P P P P P 3x 3x 3x 2x 2x

9 What do you do with all those "predictions", well they aren't probabilities yet...? SOFTMAX ON CONFIDENCES Now they are probabilities CONCATENATE FLAT CONFIDENCES 4_3, fc7, conv6_2, conv7_2, conv8_2, conv9_2 CONCATENATE PriorBoxes 4_3, fc7, conv6_2, conv7_2, conv8_2, conv9_2 CONCATENATE FLAT MUTLIBOX PriorBox with variances to boxes FLATTEN CONV CONF + PERMUTE FLATTEN MULTIBOX + PERMUTE K:3, S:1, P:0 Filters: 256 F F F P NMS based on confidences SSD 4_3, fc7, conv6_2, conv7_2, conv8_2, conv9_2 [4]

10 Training a Model for Detection and Localization Data Data Data Data Just like in training a detection model, you need a lot of data for the model to be able to learn good weights. But in addition to images with a single one-hot vector, the labels for localization are a little more complex. They contain a label tag as well as potentially two other sets of data: 1) The coordinates of a bounding box, 2) The coordinates for segmentation. Data Sources For the current demonstration we are using a model trained on the MS-COCO dataset. However it was trained on 2014 data with 30,000 fewer images than the current set. We're working on training on a smaller subsample of the 2017 COCO dataset, but we'll discuss that in the work to come.

11 Example ImageNet image and annotation (target) <annotation> <folder>n </folder> <filename>n _123688</filename> <source> <database>imagenet database</database> </source> <size> <width>500</width> <height>333</height> <depth>3</depth> </size> <segmented>0</segmented> <object> <name>n </name> <pose>unspecified</pose> <truncated>0</truncated> <difficult>0</difficult> <bndbox> <xmin>87</xmin> <ymin>0</ymin> <xmax>499</xmax> <ymax>332</ymax> </bndbox> </object> </annotation>

12 Example COCO image and annotation (target) [{"bbox": [0.0, , 76.57, ], "category_id": 1, "segmentation": [[5.32, , 0.0, , 17.67, , 11.97, , 10.07, , 17.67, , 17.67, , 19.57, , 21.47, , 33.82, , 36.67, , 46.17, , 47.12, , 52.82, , 43.32, , 46.17, , 53.77, , 68.02, , 71.82, , 76.57, , 69.92, , 67.07, , 65.17, , 64.22, , 59.47, , 54.72, , 52.82, , 49.02, , 48.07, , 42.37, , 40.9, , 41.97, , 40.9, , 35.52, 381.7, 29.06, 381.7, 26.91, , 23.68, , 21.52, , 13.99, , 10.76, , 8.61, 381.7, 4.3, 359.1, 0.0, , 2.15, 182.6]]}, {"bbox": [72.65, , 47.04, ], "category_id": 1, "segmentation": [[93.1, , 95.15, , 95.15, , 101.8, , , , 111.0, , , , , , , , , , , , 89.52, , 86.97, 209.5, 80.83, 204.9, 72.65, , 74.18, , 78.78, , 83.39, , 87.99, , 86.97, , 81.85, , 84.92, , 86.46, 308.2, 83.9, , 81.34, , 82.88, , 81.85, , 79.81, ]]}, {"bbox": [123.24, , 40.0, ], "category_id": 1, "segmentation": [[136.22, 322.7, , , , , , , , , , , 137.3, , 137.3, , , , , , , , , 242.7, , , , , 160.0, , , , , ]]}, {"bbox": [193.56, , 67.9, ], "category_id": 1, "segmentation": [[209.76, 340.9, , , , 294.6, , , , , , , , , , , , , , 207.4, , , , , , , , , , , , , , , , , , , , , , , , , , , , , 236.0, , , , , , , , , , , , , , , , , , , , , ]]}, {"bbox": [195.58, , 13.63, 13.94], "category_id": 1, "segmentation": [[206.11, , , , , , , , 196.2, , , , , , , 206.3, , 203.2, , 200.1]]}, {"bbox": [268.36, , 26.14, 32.54], "category_id": 1, "segmentation": [[275.13, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 294.5, , , , , , 291.3, , , , , 218.8, , ]]}, {"bbox": [66.81, , 59.67, ], "category_id": 1, "segmentation": [[66.81, , 76.45, , 75.71, , 67.55, , 69.03, , 69.78, , 73.49, , 78.68, , 83.87, , 90.55, , 98.71, , 95.0, , 94.26, , , 190.1, , , , , , , , , , , , , , , , , , , 93.09, , 89.11, , 83.54, , 82.75, , 72.81, , 70.43, ]]}, {"bbox": [346.63, , , ], "category_id": 1, "segmentation": [[346.63, , , 241.5, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 458.6, , , , , , , , , , , , , , , , , , , 241.5, , , , , , , , 265.9, , ]]}...

13 How Training Works Loss In order to train, you need a measurement of loss. Loss is a weighted sum of two calculated loss values. One for loss over confidences on the image Another for the losses of the localizations between the ground truth and the detected boxes. N is the number of matches (xij which are a pair of detection and truth) [4]

14 Computing loss over localizations: Summing for each positive match where a ma the difference between the predicted box's (difference from default bounding box) and the true box's (difference from the default bounding box). smoothl1 is a piecewise function that gives a smaller positive value from the difference (Girschick) [4] [2] [4]

15 Test Data

16 How Our Tracking System Works Neural network detects objects (people, baggage) on scene Each frame, detected bag bounding boxes are assigned to persistent bag instances based on their previous location histories Bags are deemed immobile if after X amount of frames they haven t moved Y mean distance Once immobile, the nearest person is marked as the owner Owner is tracked with its own instance with its own location history for tracking him/her Once the owner has moved some distance away from the bag, the bag is marked abandoned

17 Results

18 Issues - Object Permanence Computers can t tell that a person (or other object) from a previous frame is the same person from before Humans are great at identifying uniqueness for object permanence: Colors Size Position/trajectory Clothing Body structure Face Movement patterns (stride, posture) (Thanks short-term memory!) Some of this is difficult to implement or impossible to execute in real time Our solution: Pick the most significant measure - position/trajectory

19 Issues - Perspective Only one perspective has many limitations Occlusion Size and absolute position of objects in scene are hard to estimate Varying movement paths (down a hallway vs. across a room) Don t know internal camera parameters, no calibration Certain camera positions make object detection difficult Complete - lose track of objects Partial - misidentification of objects, inaccurate bounding boxes High angles, far distances give low detection rates Neural network likely trained with images that are side-on As a result, our implementation relies on many hard-coded thresholds Thresholds work well with some camera angles but not with others

20 Ideal Solution Stereoscopic vision solves many of these issues Allows for more accurate reconstruction of the scene Absolute positions easier to identify Occlusion is reduced, especially with remote camera placements in the same scene Accurate distances from abandoned bags Object permanence more consistently tracked Calibration and knowing internal camera parameters helps accuracy significantly Object detection can be more accurate More angles = more opportunities for the neural network to detect objects Can consistently improve detection model by training specifically on images from established camera angles

21 Future Work for Improving Detection Training a new model Training on COCO '17 with limited categories (6: person, cat, dog, backpack, handbag, suitcase) Augmenting data: Although SSD takes data and provides some internal augmentation, it does not do full augmentation with rotation and mirroring. Modifying thresholds, NMS, and other hyperparameters There are many hyperparameters. We feel that some of hyperparameters used in training the pre-trained models were expecting large numbers of categories so they limited the total number of suggestions. Since we are going to have 6 categories instead of 80, we can increase the number of proposals kept.

22 Future Verification of Video Testing There is no automated verification process that is openly available to train a system to improve its ability to detect objects over time on a video. ImageNet has a video object detection challenge, but the website is unresponsive and the related Kaggle challenge under ImageNet is empty. As a result, verification is painstakingly done by hand, to determine if an object that needs to be identified was in fact identified at a certain time. One might imagine that adding some sort of memory like an LSTM to the model and training on images that were taken in sequence would improve the ability for a system to repeatedly classify an object in a scene.

23 Future Work for Improving Tracking Assign bag owners immediately on scene by matching up similar trajectories Calculate distance from the bag based on the closest edges of their bounding boxes, or by finding the intersection of previous bounding boxes Solves the issue of mis-identifying owners once the bag stops moving if there are many people near the bag Solves issues with partial occlusion making bounding box center points inaccurate Allow for owners to return to their bags within some distance without marking the bag as abandoned Identify owners based on histogram or face recognition Allows for owners to leave the scene and be re-identified when they return May help maintain tracking when the scene is very busy or is prone to occlusion

24 References 1. History of Video Surveillance and CCTV. [Online]. Available: [Accessed: 15-Nov-2017]. 2. R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, arxiv: [cs], Nov R. Girshick, Fast R-CNN, arxiv: [cs], Apr S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp , Jun W. Liu et al., SSD: Single Shot MultiBox Detector, arxiv: [cs], vol. 9905, pp , J. Redmon and A. Farhadi, YOLO9000: Better, Faster, Stronger, arxiv: [cs], Dec

25 Discussion & Link to Code Any questions?

Lecture 5: Object Detection

Lecture 5: Object Detection Object Detection CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 5: Object Detection Bohyung Han Computer Vision Lab. bhhan@postech.ac.kr 2 Traditional Object Detection Algorithms Region-based

More information

Object detection with CNNs

Object detection with CNNs Object detection with CNNs 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before CNNs After CNNs 0% 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 year Region proposals

More information

Object Detection Based on Deep Learning

Object Detection Based on Deep Learning Object Detection Based on Deep Learning Yurii Pashchenko AI Ukraine 2016, Kharkiv, 2016 Image classification (mostly what you ve seen) http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf

More information

YOLO9000: Better, Faster, Stronger

YOLO9000: Better, Faster, Stronger YOLO9000: Better, Faster, Stronger Date: January 24, 2018 Prepared by Haris Khan (University of Toronto) Haris Khan CSC2548: Machine Learning in Computer Vision 1 Overview 1. Motivation for one-shot object

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

Real-time Object Detection CS 229 Course Project

Real-time Object Detection CS 229 Course Project Real-time Object Detection CS 229 Course Project Zibo Gong 1, Tianchang He 1, and Ziyi Yang 1 1 Department of Electrical Engineering, Stanford University December 17, 2016 Abstract Objection detection

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

Efficient Segmentation-Aided Text Detection For Intelligent Robots

Efficient Segmentation-Aided Text Detection For Intelligent Robots Efficient Segmentation-Aided Text Detection For Intelligent Robots Junting Zhang, Yuewei Na, Siyang Li, C.-C. Jay Kuo University of Southern California Outline Problem Definition and Motivation Related

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Presented by Tushar Bansal Objective 1. Get bounding box for all objects

More information

CS6501: Deep Learning for Visual Recognition. Object Detection I: RCNN, Fast-RCNN, Faster-RCNN

CS6501: Deep Learning for Visual Recognition. Object Detection I: RCNN, Fast-RCNN, Faster-RCNN CS6501: Deep Learning for Visual Recognition Object Detection I: RCNN, Fast-RCNN, Faster-RCNN Today s Class Object Detection The RCNN Object Detector (2014) The Fast RCNN Object Detector (2015) The Faster

More information

Unified, real-time object detection

Unified, real-time object detection Unified, real-time object detection Final Project Report, Group 02, 8 Nov 2016 Akshat Agarwal (13068), Siddharth Tanwar (13699) CS698N: Recent Advances in Computer Vision, Jul Nov 2016 Instructor: Gaurav

More information

Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network

Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network Liwen Zheng, Canmiao Fu, Yong Zhao * School of Electronic and Computer Engineering, Shenzhen Graduate School of

More information

Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab.

Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab. [ICIP 2017] Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab., POSTECH Pedestrian Detection Goal To draw bounding boxes that

More information

Yiqi Yan. May 10, 2017

Yiqi Yan. May 10, 2017 Yiqi Yan May 10, 2017 P a r t I F u n d a m e n t a l B a c k g r o u n d s Convolution Single Filter Multiple Filters 3 Convolution: case study, 2 filters 4 Convolution: receptive field receptive field

More information

Pedestrian Detection based on Deep Fusion Network using Feature Correlation

Pedestrian Detection based on Deep Fusion Network using Feature Correlation Pedestrian Detection based on Deep Fusion Network using Feature Correlation Yongwoo Lee, Toan Duc Bui and Jitae Shin School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren Kaiming He Ross Girshick Jian Sun Present by: Yixin Yang Mingdong Wang 1 Object Detection 2 1 Applications Basic

More information

SSD: Single Shot MultiBox Detector. Author: Wei Liu et al. Presenter: Siyu Jiang

SSD: Single Shot MultiBox Detector. Author: Wei Liu et al. Presenter: Siyu Jiang SSD: Single Shot MultiBox Detector Author: Wei Liu et al. Presenter: Siyu Jiang Outline 1. Motivations 2. Contributions 3. Methodology 4. Experiments 5. Conclusions 6. Extensions Motivation Motivation

More information

Feature-Fused SSD: Fast Detection for Small Objects

Feature-Fused SSD: Fast Detection for Small Objects Feature-Fused SSD: Fast Detection for Small Objects Guimei Cao, Xuemei Xie, Wenzhe Yang, Quan Liao, Guangming Shi, Jinjian Wu School of Electronic Engineering, Xidian University, China xmxie@mail.xidian.edu.cn

More information

MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK. Wenjie Guan, YueXian Zou*, Xiaoqun Zhou

MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK. Wenjie Guan, YueXian Zou*, Xiaoqun Zhou MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK Wenjie Guan, YueXian Zou*, Xiaoqun Zhou ADSPLAB/Intelligent Lab, School of ECE, Peking University, Shenzhen,518055, China

More information

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Object Detection CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Problem Description Arguably the most important part of perception Long term goals for object recognition: Generalization

More information

Object Detection on Self-Driving Cars in China. Lingyun Li

Object Detection on Self-Driving Cars in China. Lingyun Li Object Detection on Self-Driving Cars in China Lingyun Li Introduction Motivation: Perception is the key of self-driving cars Data set: 10000 images with annotation 2000 images without annotation (not

More information

3 Object Detection. BVM 2018 Tutorial: Advanced Deep Learning Methods. Paul F. Jaeger, Division of Medical Image Computing

3 Object Detection. BVM 2018 Tutorial: Advanced Deep Learning Methods. Paul F. Jaeger, Division of Medical Image Computing 3 Object Detection BVM 2018 Tutorial: Advanced Deep Learning Methods Paul F. Jaeger, of Medical Image Computing What is object detection? classification segmentation obj. detection (1 label per pixel)

More information

Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs

Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs Raymond Ptucha, Rochester Institute of Technology, USA Tutorial-9 May 19, 218 www.nvidia.com/dli R. Ptucha 18 1 Fair Use Agreement

More information

R-FCN: Object Detection with Really - Friggin Convolutional Networks

R-FCN: Object Detection with Really - Friggin Convolutional Networks R-FCN: Object Detection with Really - Friggin Convolutional Networks Jifeng Dai Microsoft Research Li Yi Tsinghua Univ. Kaiming He FAIR Jian Sun Microsoft Research NIPS, 2016 Or Region-based Fully Convolutional

More information

MCMOT: Multi-Class Multi-Object Tracking using Changing Point Detection

MCMOT: Multi-Class Multi-Object Tracking using Changing Point Detection MCMOT: Multi-Class Multi-Object Tracking using Changing Point Detection ILSVRC 2016 Object Detection from Video Byungjae Lee¹, Songguo Jin¹, Enkhbayar Erdenee¹, Mi Young Nam², Young Gui Jung², Phill Kyu

More information

YOLO: You Only Look Once Unified Real-Time Object Detection. Presenter: Liyang Zhong Quan Zou

YOLO: You Only Look Once Unified Real-Time Object Detection. Presenter: Liyang Zhong Quan Zou YOLO: You Only Look Once Unified Real-Time Object Detection Presenter: Liyang Zhong Quan Zou Outline 1. Review: R-CNN 2. YOLO: -- Detection Procedure -- Network Design -- Training Part -- Experiments Rich

More information

Towards Real-Time Automatic Number Plate. Detection: Dots in the Search Space

Towards Real-Time Automatic Number Plate. Detection: Dots in the Search Space Towards Real-Time Automatic Number Plate Detection: Dots in the Search Space Chi Zhang Department of Computer Science and Technology, Zhejiang University wellyzhangc@zju.edu.cn Abstract Automatic Number

More information

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION Kingsley Kuan 1, Gaurav Manek 1, Jie Lin 1, Yuan Fang 1, Vijay Chandrasekhar 1,2 Institute for Infocomm Research, A*STAR, Singapore 1 Nanyang Technological

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation BY; ROSS GIRSHICK, JEFF DONAHUE, TREVOR DARRELL AND JITENDRA MALIK PRESENTER; MUHAMMAD OSAMA Object detection vs. classification

More information

Deformable Part Models

Deformable Part Models CS 1674: Intro to Computer Vision Deformable Part Models Prof. Adriana Kovashka University of Pittsburgh November 9, 2016 Today: Object category detection Window-based approaches: Last time: Viola-Jones

More information

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS Zhao Chen Machine Learning Intern, NVIDIA ABOUT ME 5th year PhD student in physics @ Stanford by day, deep learning computer vision scientist

More information

Object Detection in Sports Videos

Object Detection in Sports Videos Object Detection in Sports Videos M. Burić, M. Pobar, M. Ivašić-Kos University of Rijeka/Department of Informatics, Rijeka, Croatia matija.buric@hep.hr, marinai@inf.uniri.hr, mpobar@inf.uniri.hr Abstract

More information

Object Detection. TA : Young-geun Kim. Biostatistics Lab., Seoul National University. March-June, 2018

Object Detection. TA : Young-geun Kim. Biostatistics Lab., Seoul National University. March-June, 2018 Object Detection TA : Young-geun Kim Biostatistics Lab., Seoul National University March-June, 2018 Seoul National University Deep Learning March-June, 2018 1 / 57 Index 1 Introduction 2 R-CNN 3 YOLO 4

More information

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs Zhipeng Yan, Moyuan Huang, Hao Jiang 5/1/2017 1 Outline Background semantic segmentation Objective,

More information

Martian lava field, NASA, Wikipedia

Martian lava field, NASA, Wikipedia Martian lava field, NASA, Wikipedia Old Man of the Mountain, Franconia, New Hampshire Pareidolia http://smrt.ccel.ca/203/2/6/pareidolia/ Reddit for more : ) https://www.reddit.com/r/pareidolia/top/ Pareidolia

More information

Cascade Region Regression for Robust Object Detection

Cascade Region Regression for Robust Object Detection Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Cascade Region Regression for Robust Object Detection Jiankang Deng, Shaoli Huang, Jing Yang, Hui Shuai, Zhengbo Yu, Zongguang Lu, Qiang Ma, Yali

More information

Object Detection. Part1. Presenter: Dae-Yong

Object Detection. Part1. Presenter: Dae-Yong Object Part1 Presenter: Dae-Yong Contents 1. What is an Object? 2. Traditional Object Detector 3. Deep Learning-based Object Detector What is an Object? Subset of Object Recognition What is an Object?

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik Presented by Pandian Raju and Jialin Wu Last class SGD for Document

More information

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation Object detection using Region Proposals (RCNN) Ernest Cheung COMP790-125 Presentation 1 2 Problem to solve Object detection Input: Image Output: Bounding box of the object 3 Object detection using CNN

More information

Volume 6, Issue 12, December 2018 International Journal of Advance Research in Computer Science and Management Studies

Volume 6, Issue 12, December 2018 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) e-isjn: A4372-3114 Impact Factor: 7.327 Volume 6, Issue 12, December 2018 International Journal of Advance Research in Computer Science and Management Studies Research Article

More information

arxiv: v1 [cs.cv] 18 Jun 2017

arxiv: v1 [cs.cv] 18 Jun 2017 Using Deep Networks for Drone Detection arxiv:1706.05726v1 [cs.cv] 18 Jun 2017 Cemal Aker, Sinan Kalkan KOVAN Research Lab. Computer Engineering, Middle East Technical University Ankara, Turkey Abstract

More information

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta Encoder-Decoder Networks for Semantic Segmentation Sachin Mehta Outline > Overview of Semantic Segmentation > Encoder-Decoder Networks > Results What is Semantic Segmentation? Input: RGB Image Output:

More information

arxiv: v1 [cs.cv] 30 Apr 2018

arxiv: v1 [cs.cv] 30 Apr 2018 An Anti-fraud System for Car Insurance Claim Based on Visual Evidence Pei Li Univeristy of Notre Dame BingYu Shen University of Notre dame Weishan Dong IBM Research China arxiv:184.1127v1 [cs.cv] 3 Apr

More information

Deep Learning for Object detection & localization

Deep Learning for Object detection & localization Deep Learning for Object detection & localization RCNN, Fast RCNN, Faster RCNN, YOLO, GAP, CAM, MSROI Aaditya Prakash Sep 25, 2018 Image classification Image classification Whole of image is classified

More information

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon Deep Learning For Video Classification Presented by Natalie Carlebach & Gil Sharon Overview Of Presentation Motivation Challenges of video classification Common datasets 4 different methods presented in

More information

YOLO 9000 TAEWAN KIM

YOLO 9000 TAEWAN KIM YOLO 9000 TAEWAN KIM DNN-based Object Detection R-CNN MultiBox SPP-Net DeepID-Net NoC Fast R-CNN DeepBox MR-CNN 2013.11 Faster R-CNN YOLO AttentionNet DenseBox SSD Inside-OutsideNet(ION) G-CNN NIPS 15

More information

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN Background Related Work Architecture Experiment Mask R-CNN Background Related Work Architecture Experiment Background From left

More information

Content-Based Image Recovery

Content-Based Image Recovery Content-Based Image Recovery Hong-Yu Zhou and Jianxin Wu National Key Laboratory for Novel Software Technology Nanjing University, China zhouhy@lamda.nju.edu.cn wujx2001@nju.edu.cn Abstract. We propose

More information

CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm

CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm Instructions This is an individual assignment. Individual means each student must hand in their

More information

CS 1674: Intro to Computer Vision. Object Recognition. Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018

CS 1674: Intro to Computer Vision. Object Recognition. Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018 CS 1674: Intro to Computer Vision Object Recognition Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018 Different Flavors of Object Recognition Semantic Segmentation Classification + Localization

More information

Fully Convolutional Networks for Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation Fully Convolutional Networks for Semantic Segmentation Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley Chaim Ginzburg for Deep Learning seminar 1 Semantic Segmentation Define a pixel-wise labeling

More information

Detection Method of Insulator Based on Single Shot MultiBox Detector

Detection Method of Insulator Based on Single Shot MultiBox Detector Journal of Physics: Conference Series PAPER OPEN ACCESS Detection Method of Insulator Based on Single Shot MultiBox Detector To cite this article: Changfu Xu et al 2018 J. Phys.: Conf. Ser. 1069 012183

More information

Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task

Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task Kyunghee Kim Stanford University 353 Serra Mall Stanford, CA 94305 kyunghee.kim@stanford.edu Abstract We use a

More information

Automatic detection of books based on Faster R-CNN

Automatic detection of books based on Faster R-CNN Automatic detection of books based on Faster R-CNN Beibei Zhu, Xiaoyu Wu, Lei Yang, Yinghua Shen School of Information Engineering, Communication University of China Beijing, China e-mail: zhubeibei@cuc.edu.cn,

More information

arxiv: v1 [cs.cv] 15 Oct 2018

arxiv: v1 [cs.cv] 15 Oct 2018 Instance Segmentation and Object Detection with Bounding Shape Masks Ha Young Kim 1,2,*, Ba Rom Kang 2 1 Department of Financial Engineering, Ajou University Worldcupro 206, Yeongtong-gu, Suwon, 16499,

More information

Andrei Polzounov (Universitat Politecnica de Catalunya, Barcelona, Spain), Artsiom Ablavatski (A*STAR Institute for Infocomm Research, Singapore),

Andrei Polzounov (Universitat Politecnica de Catalunya, Barcelona, Spain), Artsiom Ablavatski (A*STAR Institute for Infocomm Research, Singapore), WordFences: Text Localization and Recognition ICIP 2017 Andrei Polzounov (Universitat Politecnica de Catalunya, Barcelona, Spain), Artsiom Ablavatski (A*STAR Institute for Infocomm Research, Singapore),

More information

Final Report: Smart Trash Net: Waste Localization and Classification

Final Report: Smart Trash Net: Waste Localization and Classification Final Report: Smart Trash Net: Waste Localization and Classification Oluwasanya Awe oawe@stanford.edu Robel Mengistu robel@stanford.edu December 15, 2017 Vikram Sreedhar vsreed@stanford.edu Abstract Given

More information

Joint Object Detection and Viewpoint Estimation using CNN features

Joint Object Detection and Viewpoint Estimation using CNN features Joint Object Detection and Viewpoint Estimation using CNN features Carlos Guindel, David Martín and José M. Armingol cguindel@ing.uc3m.es Intelligent Systems Laboratory Universidad Carlos III de Madrid

More information

Know your data - many types of networks

Know your data - many types of networks Architectures Know your data - many types of networks Fixed length representation Variable length representation Online video sequences, or samples of different sizes Images Specific architectures for

More information

Visual features detection based on deep neural network in autonomous driving tasks

Visual features detection based on deep neural network in autonomous driving tasks 430 Fomin I., Gromoshinskii D., Stepanov D. Visual features detection based on deep neural network in autonomous driving tasks Ivan Fomin, Dmitrii Gromoshinskii, Dmitry Stepanov Computer vision lab Russian

More information

CS230: Lecture 3 Various Deep Learning Topics

CS230: Lecture 3 Various Deep Learning Topics CS230: Lecture 3 Various Deep Learning Topics Kian Katanforoosh, Andrew Ng Today s outline We will learn how to: - Analyse a problem from a deep learning approach - Choose an architecture - Choose a loss

More information

Using Machine Learning for Classification of Cancer Cells

Using Machine Learning for Classification of Cancer Cells Using Machine Learning for Classification of Cancer Cells Camille Biscarrat University of California, Berkeley I Introduction Cell screening is a commonly used technique in the development of new drugs.

More information

Problem Set 4. Danfei Xu CS 231A March 9th, (Courtesy of last year s slides)

Problem Set 4. Danfei Xu CS 231A March 9th, (Courtesy of last year s slides) Problem Set 4 Danfei Xu CS 231A March 9th, 2018 (Courtesy of last year s slides) Outline Part 1: Facial Detection via HoG Features + SVM Classifier Part 2: Image Segmentation with K-Means and Meanshift

More information

A Comparison of CNN-based Face and Head Detectors for Real-Time Video Surveillance Applications

A Comparison of CNN-based Face and Head Detectors for Real-Time Video Surveillance Applications A Comparison of CNN-based Face and Head Detectors for Real-Time Video Surveillance Applications Le Thanh Nguyen-Meidine 1, Eric Granger 1, Madhu Kiran 1 and Louis-Antoine Blais-Morin 2 1 École de technologie

More information

arxiv: v1 [cs.cv] 26 Jun 2017

arxiv: v1 [cs.cv] 26 Jun 2017 Detecting Small Signs from Large Images arxiv:1706.08574v1 [cs.cv] 26 Jun 2017 Zibo Meng, Xiaochuan Fan, Xin Chen, Min Chen and Yan Tong Computer Science and Engineering University of South Carolina, Columbia,

More information

R-FCN++: Towards Accurate Region-Based Fully Convolutional Networks for Object Detection

R-FCN++: Towards Accurate Region-Based Fully Convolutional Networks for Object Detection The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18) R-FCN++: Towards Accurate Region-Based Fully Convolutional Networks for Object Detection Zeming Li, 1 Yilun Chen, 2 Gang Yu, 2 Yangdong

More information

arxiv: v1 [cs.cv] 31 Mar 2016

arxiv: v1 [cs.cv] 31 Mar 2016 Object Boundary Guided Semantic Segmentation Qin Huang, Chunyang Xia, Wenchao Zheng, Yuhang Song, Hao Xu and C.-C. Jay Kuo arxiv:1603.09742v1 [cs.cv] 31 Mar 2016 University of Southern California Abstract.

More information

A Lightweight YOLOv2:

A Lightweight YOLOv2: FPGA2018 @Monterey A Lightweight YOLOv2: A Binarized CNN with a Parallel Support Vector Regression for an FPGA Hiroki Nakahara, Haruyoshi Yonekawa, Tomoya Fujii, Shimpei Sato Tokyo Institute of Technology,

More information

Hand Detection For Grab-and-Go Groceries

Hand Detection For Grab-and-Go Groceries Hand Detection For Grab-and-Go Groceries Xianlei Qiu Stanford University xianlei@stanford.edu Shuying Zhang Stanford University shuyingz@stanford.edu Abstract Hands detection system is a very critical

More information

Industrial Technology Research Institute, Hsinchu, Taiwan, R.O.C ǂ

Industrial Technology Research Institute, Hsinchu, Taiwan, R.O.C ǂ Stop Line Detection and Distance Measurement for Road Intersection based on Deep Learning Neural Network Guan-Ting Lin 1, Patrisia Sherryl Santoso *1, Che-Tsung Lin *ǂ, Chia-Chi Tsai and Jiun-In Guo National

More information

Inception and Residual Networks. Hantao Zhang. Deep Learning with Python.

Inception and Residual Networks. Hantao Zhang. Deep Learning with Python. Inception and Residual Networks Hantao Zhang Deep Learning with Python https://en.wikipedia.org/wiki/residual_neural_network Deep Neural Network Progress from Large Scale Visual Recognition Challenge (ILSVRC)

More information

[Supplementary Material] Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors

[Supplementary Material] Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors [Supplementary Material] Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors Junhyug Noh Soochan Lee Beomsu Kim Gunhee Kim Department of Computer Science and Engineering

More information

TRANSPARENT OBJECT DETECTION USING REGIONS WITH CONVOLUTIONAL NEURAL NETWORK

TRANSPARENT OBJECT DETECTION USING REGIONS WITH CONVOLUTIONAL NEURAL NETWORK TRANSPARENT OBJECT DETECTION USING REGIONS WITH CONVOLUTIONAL NEURAL NETWORK 1 Po-Jen Lai ( 賴柏任 ), 2 Chiou-Shann Fuh ( 傅楸善 ) 1 Dept. of Electrical Engineering, National Taiwan University, Taiwan 2 Dept.

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Announcements Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Seminar registration period starts on Friday We will offer a lab course in the summer semester Deep Robot Learning Topic:

More information

An algorithm for highway vehicle detection based on convolutional neural network

An algorithm for highway vehicle detection based on convolutional neural network Chen et al. EURASIP Journal on Image and Video Processing (2018) 2018:109 https://doi.org/10.1186/s13640-018-0350-2 EURASIP Journal on Image and Video Processing RESEARCH An algorithm for highway vehicle

More information

Classification of objects from Video Data (Group 30)

Classification of objects from Video Data (Group 30) Classification of objects from Video Data (Group 30) Sheallika Singh 12665 Vibhuti Mahajan 12792 Aahitagni Mukherjee 12001 M Arvind 12385 1 Motivation Video surveillance has been employed for a long time

More information

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 18: Deep learning and Vision: Convolutional neural networks Teacher: Gianni A. Di Caro DEEP, SHALLOW, CONNECTED, SPARSE? Fully connected multi-layer feed-forward perceptrons: More powerful

More information

International Journal of Computer Engineering and Applications, Volume XII, Special Issue, September 18,

International Journal of Computer Engineering and Applications, Volume XII, Special Issue, September 18, REAL-TIME OBJECT DETECTION WITH CONVOLUTION NEURAL NETWORK USING KERAS Asmita Goswami [1], Lokesh Soni [2 ] Department of Information Technology [1] Jaipur Engineering College and Research Center Jaipur[2]

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

Mask R-CNN. By Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick Presented By Aditya Sanghi

Mask R-CNN. By Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick Presented By Aditya Sanghi Mask R-CNN By Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick Presented By Aditya Sanghi Types of Computer Vision Tasks http://cs231n.stanford.edu/ Semantic vs Instance Segmentation Image

More information

R-FCN: OBJECT DETECTION VIA REGION-BASED FULLY CONVOLUTIONAL NETWORKS

R-FCN: OBJECT DETECTION VIA REGION-BASED FULLY CONVOLUTIONAL NETWORKS R-FCN: OBJECT DETECTION VIA REGION-BASED FULLY CONVOLUTIONAL NETWORKS JIFENG DAI YI LI KAIMING HE JIAN SUN MICROSOFT RESEARCH TSINGHUA UNIVERSITY MICROSOFT RESEARCH MICROSOFT RESEARCH SPEED/ACCURACY TRADE-OFFS

More information

arxiv: v1 [cs.cv] 26 May 2017

arxiv: v1 [cs.cv] 26 May 2017 arxiv:1705.09587v1 [cs.cv] 26 May 2017 J. JEONG, H. PARK AND N. KWAK: UNDER REVIEW IN BMVC 2017 1 Enhancement of SSD by concatenating feature maps for object detection Jisoo Jeong soo3553@snu.ac.kr Hyojin

More information

SSD: Single Shot MultiBox Detector

SSD: Single Shot MultiBox Detector SSD: Single Shot MultiBox Detector Wei Liu 1(B), Dragomir Anguelov 2, Dumitru Erhan 3, Christian Szegedy 3, Scott Reed 4, Cheng-Yang Fu 1, and Alexander C. Berg 1 1 UNC Chapel Hill, Chapel Hill, USA {wliu,cyfu,aberg}@cs.unc.edu

More information

2017 2nd International Conference on Software, Multimedia and Communication Engineering (SMCE 2017) ISBN:

2017 2nd International Conference on Software, Multimedia and Communication Engineering (SMCE 2017) ISBN: 2017 2nd International Conference on Software, Multimedia and Communication Engineering (SMCE 2017) ISBN: 978-1-60595-458-5 Aircraft Detection in Remote Sensing Images via CNN Multi-scale Feature Representation

More information

arxiv: v1 [cs.cv] 20 Dec 2016

arxiv: v1 [cs.cv] 20 Dec 2016 End-to-End Pedestrian Collision Warning System based on a Convolutional Neural Network with Semantic Segmentation arxiv:1612.06558v1 [cs.cv] 20 Dec 2016 Heechul Jung heechul@dgist.ac.kr Min-Kook Choi mkchoi@dgist.ac.kr

More information

Kaggle Data Science Bowl 2017 Technical Report

Kaggle Data Science Bowl 2017 Technical Report Kaggle Data Science Bowl 2017 Technical Report qfpxfd Team May 11, 2017 1 Team Members Table 1: Team members Name E-Mail University Jia Ding dingjia@pku.edu.cn Peking University, Beijing, China Aoxue Li

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period starts

More information

Scene Text Recognition for Augmented Reality. Sagar G V Adviser: Prof. Bharadwaj Amrutur Indian Institute Of Science

Scene Text Recognition for Augmented Reality. Sagar G V Adviser: Prof. Bharadwaj Amrutur Indian Institute Of Science Scene Text Recognition for Augmented Reality Sagar G V Adviser: Prof. Bharadwaj Amrutur Indian Institute Of Science Outline Research area and motivation Finding text in natural scenes Prior art Improving

More information

OBJECT DETECTION HYUNG IL KOO

OBJECT DETECTION HYUNG IL KOO OBJECT DETECTION HYUNG IL KOO INTRODUCTION Computer Vision Tasks Classification + Localization Classification: C-classes Input: image Output: class label Evaluation metric: accuracy Localization Input:

More information

Regionlet Object Detector with Hand-crafted and CNN Feature

Regionlet Object Detector with Hand-crafted and CNN Feature Regionlet Object Detector with Hand-crafted and CNN Feature Xiaoyu Wang Research Xiaoyu Wang Research Ming Yang Horizon Robotics Shenghuo Zhu Alibaba Group Yuanqing Lin Baidu Overview of this section Regionlet

More information

Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material

Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material Charles R. Qi Hao Su Matthias Nießner Angela Dai Mengyuan Yan Leonidas J. Guibas Stanford University 1. Details

More information

CEA LIST s participation to the Scalable Concept Image Annotation task of ImageCLEF 2015

CEA LIST s participation to the Scalable Concept Image Annotation task of ImageCLEF 2015 CEA LIST s participation to the Scalable Concept Image Annotation task of ImageCLEF 2015 Etienne Gadeski, Hervé Le Borgne, and Adrian Popescu CEA, LIST, Laboratory of Vision and Content Engineering, France

More information

arxiv: v1 [cs.ro] 28 Dec 2018

arxiv: v1 [cs.ro] 28 Dec 2018 Car Detection using Unmanned Aerial Vehicles: Comparison between Faster R-CNN and YOLOv3 Bilel Benjdira 1,5, Taha Khursheed 2, Anis Koubaa 3, Adel Ammar 4, Kais Ouni 5 arxiv:1812.10968v1 [cs.ro] 28 Dec

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning for Object Categorization 14.01.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period

More information

RON: Reverse Connection with Objectness Prior Networks for Object Detection

RON: Reverse Connection with Objectness Prior Networks for Object Detection RON: Reverse Connection with Objectness Prior Networks for Object Detection Tao Kong 1, Fuchun Sun 1, Anbang Yao 2, Huaping Liu 1, Ming Lu 3, Yurong Chen 2 1 Department of CST, Tsinghua University, 2 Intel

More information

Project 3 Q&A. Jonathan Krause

Project 3 Q&A. Jonathan Krause Project 3 Q&A Jonathan Krause 1 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations 2 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations

More information

Learning to Recognize Faces in Realistic Conditions

Learning to Recognize Faces in Realistic Conditions 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Weakly Supervised Object Recognition with Convolutional Neural Networks

Weakly Supervised Object Recognition with Convolutional Neural Networks GDR-ISIS, Paris March 20, 2015 Weakly Supervised Object Recognition with Convolutional Neural Networks Ivan Laptev ivan.laptev@inria.fr WILLOW, INRIA/ENS/CNRS, Paris Joint work with: Maxime Oquab Leon

More information

3D Object Recognition and Scene Understanding from RGB-D Videos. Yu Xiang Postdoctoral Researcher University of Washington

3D Object Recognition and Scene Understanding from RGB-D Videos. Yu Xiang Postdoctoral Researcher University of Washington 3D Object Recognition and Scene Understanding from RGB-D Videos Yu Xiang Postdoctoral Researcher University of Washington 1 2 Act in the 3D World Sensing & Understanding Acting Intelligent System 3D World

More information

arxiv: v2 [cs.cv] 23 Nov 2017

arxiv: v2 [cs.cv] 23 Nov 2017 Light-Head R-CNN: In Defense of Two-Stage Object Detector Zeming Li 1, Chao Peng 2, Gang Yu 2, Xiangyu Zhang 2, Yangdong Deng 1, Jian Sun 2 1 School of Software, Tsinghua University, {lizm15@mails.tsinghua.edu.cn,

More information