김태희, 권형일 1, 최성임 2* T.H. Kim, H.I. Kwon, and S.I. Choi

Size: px
Start display at page:

Download "김태희, 권형일 1, 최성임 2* T.H. Kim, H.I. Kwon, and S.I. Choi"

Transcription

1 김태희, 권형일 1, 최성임 2* A STUDY ON INVERSE DESIGN OF AIRFOIL USING e-science BASED AERODYNAMICS DESIGN OPTIMIZATION FRAMEWORK T.H. Kim, H.I. Kwon, and S.I. Choi Recently, with advanced computational performance, numerical design optimization including CFD has been developed in aerospace engineering. However it could hardly find the design optimization softwares and contents of which educational purposes in aerospace engineering. In this study, inverse shape design is developed for steady, two dimensional inviscid and compressible flow over airfoils using aerodynamic design optimization framework for an airfoil based on EDISON_CFD(Education-research through Simulation On the Net for Computational Fluid Dynamics). Design optimization is performed for drag minimization in transonic flow. Two target pressure distributions are RAE2822 known as transonic airfoil and previously designed airfoil for drag minimized from NACA0012 airfoil. Both result showed that shape, lift coefficient, and drag coefficient of baseline airfoil got closer to those of target airfoil. From a result, contents of design optimization framework could be expected to help in the lecture..,.,. Corresponding author schoi1@kaist.ac.kr... EDISON e-science. e-science EDISON M & S. e-science,,

2 2..,.. Hicks-Henne. NACA RAE RAE2822 airfoil, 24%.. EDISON ,. (Finitie Difference), (Complex Derivative Method), (Automatic Differece), Adjoint (Adjoint Variable Method). (Steepest Descent), (Conjugate Gradient Method ; Fletcher-Reeves Method), (Quasi-Newton Method), (Modified Feasible Directions Algorithm), (SLP ; Sequential Linear Programing), (SQP ; Sequential Quadratic Programing)., Simplex,,.. S quasi-newton method a. n n+1 (1). (1) ( SW) Fig. 1 SW. SW, SW, (Geometric Kernel) SW. SW. SW / Fig.2 Fig.1 EDISON design framework

3 Fig.2 Data flow in EDISON design framework. EDISON_CFD. 3. Design results 3.1 Inverse design EDISON. RAE [2] Hicks-Henne curve Hicks-Henne Fig.3 Hicks-henne function.[5] Hicks-Henne 7 (2). 식 sin log log Fig. 3(2) 7., Hicks-Henne i

4 i. j Hicks-Henne,. 1.0E E-04.[2], Kunn-Tucker CFD. CFD.,,. (Viscous drag), (Form drag), (Wave drag), 3 (Induced drag) ,. RoeM LU-SGS. tolerance 1.0E-07 CFL 2.0. Fig.4 NACA2412 O-type mesh (129 80) O-type mesh i 129, j 80 stretching type sinh. Fig.4 NACA2412 O-type mesh. 3.3 RAE2822 airfoil 0.725, 2, RAE2822 NACA2412. Hicks-Henne bump.. -. negative volume.. -. Table , 8 14 Hicks-Henne Fig.3. Table.1.

5 Table.1 Bump range of design variable Lower Bound of Upper Bound of Design Variable Design Variable 1-3.0E E E E E E E E E E E E E E E E E E E E E E E E E E E E-02 Table.3 Final value of design variable Design Variable Design Variable E E E E E E E E E E E E E E-04 Fig.6 Shape of RAE2822 inverse design Fig.5 RAE2822 inverse design data Table.2 Result of RAE2822 inverse design Initial Target Final (NACA2412) (RAE2822) Result Objective function E E E E E E-02 Total call 599 Fig. 5 RAE2822 NACA NACA Table %. 6%. Table Fig. 6. NACA2412, RAE2822

6 Fig.7 Pressure contour of NACA2412 airfoil(left) and inverse design airfoil(right). RAE2822. Fig.7 NACA2412 RAE2822. NACA RAE2822 RAE Hicks-Hennen 3.2. Fig. 8. EDISON_DESIGN NACA0012 [2]. 10 Hicks-Henne,. NACA , 2,. Table 4 Hicks-Henne. 1 5, 6 10 Fig.8 Shape for design result of drag minimization using EDISON_DESIGN Table.4 bump range of design variable Lower Bound of Upper Bound of Design Variable Design Variable 1-3.0E E E E E E E E E E E E E E E E E E E E-01 Fig.9 Inverse design data of target pressure distribution. Fig. 9.. Fig. 10.

7 Table.5 Result of inverse design for arbitrary pressure distribution Initial Final Target (NACA2412) Result Objective function E E E E E E E-02 Total call 211 Table.6 Final value of design variable Fig.10 Shape for inverse design of target pressure distribution Design Variable E E E E E E E E E E-04 Fig.11 Pressure contour of NACA0012 airfoil(left) and inverse design airfoil(right)... Fig.11 NACA0012. NACA %. Table %,,. table e-science EDISON... RAE2822. EDISON. EDISON ( )

8 [1],,,,,, 2012 e-science EDISON_CFD, 2011, pp [2] Lee Sang wook, 2005, Adjoint [3],,,, 2012 e-science, 2012 [4],, 2012, e-science, 2012 [5] Hicks, R. M. and Henne, P. A., Wing Design by Numerical Optimization [6],,,, 91 [7] JASBIR S. ARORA, Introduction to Optimum design [8],, [9] Ashok D. Belegundu, Tirupathi R. Chandrupatla, Optimization Concepts and Applications in Engineering [10] ASDL

Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization

Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization Siva Nadarajah Antony Jameson Stanford University 15th AIAA Computational Fluid Dynamics Conference

More information

Airfoil shape optimization using adjoint method and automatic differentiation. Praveen. C

Airfoil shape optimization using adjoint method and automatic differentiation. Praveen. C 'th Annual AeSI CFD Symposium, -2 August 2009, Bangalore Airfoil shape optimization using adjoint method and automatic differentiation Praveen. C TIFR Center for Applicable Mathematics Post Bag No. 6503,

More information

Adjoint Solver Workshop

Adjoint Solver Workshop Adjoint Solver Workshop Why is an Adjoint Solver useful? Design and manufacture for better performance: e.g. airfoil, combustor, rotor blade, ducts, body shape, etc. by optimising a certain characteristic

More information

Development of a Consistent Discrete Adjoint Solver for the SU 2 Framework

Development of a Consistent Discrete Adjoint Solver for the SU 2 Framework Development of a Consistent Discrete Adjoint Solver for the SU 2 Framework Tim Albring, Max Sagebaum, Nicolas Gauger Chair for Scientific Computing TU Kaiserslautern 16th Euro-AD Workshop, Jena December

More information

Aerodynamic Inverse Design Framework using Discrete Adjoint Method

Aerodynamic Inverse Design Framework using Discrete Adjoint Method Aerodynamic Inverse Design Framework using Discrete Adjoint Method Joël Brezillon, Mohammad Abu-Zurayk DLR, Institute of Aerodynamics and Flow Technology Lilienthalplatz 7, D-38108 Braunschweig Joel.Brezillon@dlr.de,

More information

Single and multi-point aerodynamic optimizations of a supersonic transport aircraft using strategies involving adjoint equations and genetic algorithm

Single and multi-point aerodynamic optimizations of a supersonic transport aircraft using strategies involving adjoint equations and genetic algorithm Single and multi-point aerodynamic optimizations of a supersonic transport aircraft using strategies involving adjoint equations and genetic algorithm Prepared by : G. Carrier (ONERA, Applied Aerodynamics/Civil

More information

Application of Jetstream to a Suite of Aerodynamic Shape Optimization Problems. Karla Telidetzki

Application of Jetstream to a Suite of Aerodynamic Shape Optimization Problems. Karla Telidetzki Application of Jetstream to a Suite of Aerodynamic Shape Optimization Problems by Karla Telidetzki A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate

More information

Multi-Element High-Lift Configuration Design Optimization Using Viscous Continuous Adjoint Method

Multi-Element High-Lift Configuration Design Optimization Using Viscous Continuous Adjoint Method JOURNAL OF AIRCRAFT Vol. 41, No. 5, September October 2004 Multi-Element High-Lift Configuration Design Optimization Using Viscous Continuous Adjoint Method Sangho Kim, Juan J. Alonso, and Antony Jameson

More information

An Optimization Method Based On B-spline Shape Functions & the Knot Insertion Algorithm

An Optimization Method Based On B-spline Shape Functions & the Knot Insertion Algorithm An Optimization Method Based On B-spline Shape Functions & the Knot Insertion Algorithm P.A. Sherar, C.P. Thompson, B. Xu, B. Zhong Abstract A new method is presented to deal with shape optimization problems.

More information

Airfoil Design Optimization Using Reduced Order Models Based on Proper Orthogonal Decomposition

Airfoil Design Optimization Using Reduced Order Models Based on Proper Orthogonal Decomposition Airfoil Design Optimization Using Reduced Order Models Based on Proper Orthogonal Decomposition.5.5.5.5.5.5.5..5.95.9.85.8.75.7 Patrick A. LeGresley and Juan J. Alonso Dept. of Aeronautics & Astronautics

More information

THE use of computer algorithms for aerodynamic shape

THE use of computer algorithms for aerodynamic shape AIAA JOURNAL Vol. 51, No. 6, June 2013 Multimodality and Global Optimization in Aerodynamic Design Oleg Chernukhin and David W. ingg University of Toronto, Toronto, Ontario M3H 5T6, Canada DOI: 10.2514/1.J051835

More information

State of the art at DLR in solving aerodynamic shape optimization problems using the discrete viscous adjoint method

State of the art at DLR in solving aerodynamic shape optimization problems using the discrete viscous adjoint method DLR - German Aerospace Center State of the art at DLR in solving aerodynamic shape optimization problems using the discrete viscous adjoint method J. Brezillon, C. Ilic, M. Abu-Zurayk, F. Ma, M. Widhalm

More information

(c)2002 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

(c)2002 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization. VIIA Adaptive Aerodynamic Optimization of Regional Introduction The starting point of any detailed aircraft design is (c)2002 American Institute For example, some variations of the wing planform may become

More information

Analysis of the Adjoint Euler Equations as used for Gradient-based Aerodynamic Shape Optimization

Analysis of the Adjoint Euler Equations as used for Gradient-based Aerodynamic Shape Optimization Analysis of the Adjoint Euler Equations as used for Gradient-based Aerodynamic Shape Optimization Final Presentation Dylan Jude Graduate Research Assistant University of Maryland AMSC 663/664 May 4, 2017

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

APPLIED OPTIMIZATION WITH MATLAB PROGRAMMING

APPLIED OPTIMIZATION WITH MATLAB PROGRAMMING APPLIED OPTIMIZATION WITH MATLAB PROGRAMMING Second Edition P. Venkataraman Rochester Institute of Technology WILEY JOHN WILEY & SONS, INC. CONTENTS PREFACE xiii 1 Introduction 1 1.1. Optimization Fundamentals

More information

Aerofoil Optimisation Using CST Parameterisation in SU2

Aerofoil Optimisation Using CST Parameterisation in SU2 Aerofoil Optimisation Using CST Parameterisation in SU2 Marques, S., & Hewitt, P. (2014). Aerofoil Optimisation Using CST Parameterisation in SU2. Paper presented at Royal Aeronautical Society Applied

More information

Shape optimisation using breakthrough technologies

Shape optimisation using breakthrough technologies Shape optimisation using breakthrough technologies Compiled by Mike Slack Ansys Technical Services 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Introduction Shape optimisation technologies

More information

Improvements to a Newton-Krylov Adjoint Algorithm for Aerodynamic Optimization

Improvements to a Newton-Krylov Adjoint Algorithm for Aerodynamic Optimization Improvements to a Newton-Krylov Adjoint Algorithm for Aerodynamic Optimization David W. Zingg, Timothy M. Leung, Laslo Diosady, Anh H. Truong, and Samy Elias Institute for Aerospace Studies, University

More information

Aerodynamic optimization using Adjoint methods and parametric CAD models

Aerodynamic optimization using Adjoint methods and parametric CAD models Aerodynamic optimization using Adjoint methods and parametric CAD models ECCOMAS Congress 2016 P. Hewitt S. Marques T. Robinson D. Agarwal @qub.ac.uk School of Mechanical and Aerospace Engineering Queen

More information

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS March 18-20, 2013 THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS Authors: M.R. Chiarelli, M. Ciabattari, M. Cagnoni, G. Lombardi Speaker:

More information

Estimation of Flow Field & Drag for Aerofoil Wing

Estimation of Flow Field & Drag for Aerofoil Wing Estimation of Flow Field & Drag for Aerofoil Wing Mahantesh. HM 1, Prof. Anand. SN 2 P.G. Student, Dept. of Mechanical Engineering, East Point College of Engineering, Bangalore, Karnataka, India 1 Associate

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 2 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University

More information

Verification of Moving Mesh Discretizations

Verification of Moving Mesh Discretizations Verification of Moving Mesh Discretizations Krzysztof J. Fidkowski High Order CFD Workshop Kissimmee, Florida January 6, 2018 How can we verify moving mesh results? Goal: Demonstrate accuracy of flow solutions

More information

How to Enter and Analyze a Wing

How to Enter and Analyze a Wing How to Enter and Analyze a Wing Entering the Wing The Stallion 3-D built-in geometry creation tool can be used to model wings and bodies of revolution. In this example, a simple rectangular wing is modeled

More information

INVERSE METHODS FOR AERODYNAMIC DESIGN USING THE NAVIER-STOKES EQUATIONS

INVERSE METHODS FOR AERODYNAMIC DESIGN USING THE NAVIER-STOKES EQUATIONS INVERSE METHODS FOR AERODYNAMIC DESIGN USING THE NAVIER-STOKES EQUATIONS I.A. Gubanova, M.A. Gubanova Central Aerohydrodynamic Institute (TsAGI) Keywords: inverse method, Navier Stokes equations, ANSYS

More information

32nd Aerospace Sciences Meeting & Exhibit. For pormisslon to copy or republish, contut tho Amorlean Institute of Amnauties and Astronautics

32nd Aerospace Sciences Meeting & Exhibit. For pormisslon to copy or republish, contut tho Amorlean Institute of Amnauties and Astronautics I AI AA-94-0499 Control Theory Based Airfoil Design for Potential Flow and a Finite Volume Discretization J. Reuther and A. Jameson Princeton University Princeton, NJ \- 32nd Aerospace Sciences Meeting

More information

Automatic design procedures that use Computational Fluid Dynamics(CFD) combined with gradientbased

Automatic design procedures that use Computational Fluid Dynamics(CFD) combined with gradientbased 43rd AIAA Aerospace Sciences Meeting and Exhibit, January 10-13, 2005, Reno, NV Enhancement of Adjoint Design Methods via Optimization of Adjoint Parameters Sangho Kim Kaveh Hosseini Kasidit Leoviriyakit

More information

Constrained Aero-elastic Multi-Point Optimization Using the Coupled Adjoint Approach

Constrained Aero-elastic Multi-Point Optimization Using the Coupled Adjoint Approach www.dlr.de Chart 1 Aero-elastic Multi-point Optimization, M.Abu-Zurayk, MUSAF II, 20.09.2013 Constrained Aero-elastic Multi-Point Optimization Using the Coupled Adjoint Approach M. Abu-Zurayk MUSAF II

More information

Optimization with Gradient and Hessian Information Calculated Using Hyper-Dual Numbers

Optimization with Gradient and Hessian Information Calculated Using Hyper-Dual Numbers Optimization with Gradient and Hessian Information Calculated Using Hyper-Dual Numbers Jeffrey A. Fike and Juan J. Alonso Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305,

More information

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids Proceedings of the International MultiConference of Engineers and Computer Scientists 213 Vol II, IMECS 213, March 13-15, 213, Hong Kong The Development of a Navier-Stokes Flow Solver with Preconditioning

More information

An efficient method for predicting zero-lift or boundary-layer drag including aeroelastic effects for the design environment

An efficient method for predicting zero-lift or boundary-layer drag including aeroelastic effects for the design environment The Aeronautical Journal November 2015 Volume 119 No 1221 1451 An efficient method for predicting zero-lift or boundary-layer drag including aeroelastic effects for the design environment J. A. Camberos

More information

Ail implicit finite volume nodal point scheme for the solution of two-dimensional compressible Navier-Stokes equations

Ail implicit finite volume nodal point scheme for the solution of two-dimensional compressible Navier-Stokes equations Ail implicit finite volume nodal point scheme for the solution of two-dimensional compressible Navier-Stokes equations Vimala Dutta Computational and Theoretical Fluid Dynamics Division National Aerospace

More information

Geometry Parameterization Using Control Grids

Geometry Parameterization Using Control Grids Geometry Parameterization Using Control Grids A Technical Report by Kyle Anderson Chad Burdyshaw and Steve Karman UTC-CECS-SimCenter-2008-02 May 2008 GRADUATE SCHOOL OF COMPUTATIONAL ENGINEERING 7 0 1

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

Modeling External Compressible Flow

Modeling External Compressible Flow Tutorial 3. Modeling External Compressible Flow Introduction The purpose of this tutorial is to compute the turbulent flow past a transonic airfoil at a nonzero angle of attack. You will use the Spalart-Allmaras

More information

Computational Fluid Dynamics for Engineers

Computational Fluid Dynamics for Engineers Tuncer Cebeci Jian P. Shao Fassi Kafyeke Eric Laurendeau Computational Fluid Dynamics for Engineers From Panel to Navier-Stokes Methods with Computer Programs With 152 Figures, 19 Tables, 84 Problems and

More information

A Study of the CST Parameterization Characteristics

A Study of the CST Parameterization Characteristics 27th AIAA Applied Aerodynamics Conference 22-25 June 29, San Antonio, Texas AIAA 29-3767 A Study of the CST Parameterization Characteristics Marco Ceze University of Michigan, Ann Arbor, MI, 485, United

More information

41st AIAA Aerospace Sciences Meeting and Exhibit Jan 6 9, 2003/Reno, Nevada

41st AIAA Aerospace Sciences Meeting and Exhibit Jan 6 9, 2003/Reno, Nevada AIAA 23 68 Aerodynamic Design of Cascades by Using an Adjoint Equation Method Shuchi Yang, Hsiao-Yuan Wu, and Feng Liu Department of Mechanical and Aerospace Engineering University of California, Irvine,

More information

Enhancement of wind turbine aerodynamic performance by a numerical optimization technique

Enhancement of wind turbine aerodynamic performance by a numerical optimization technique Journal of Mechanical Science and Technology 26 (2) (202) 455~462 www.springerlink.com/content/738-494x DOI 0.007/s2206-0-035-2 Enhancement of wind turbine aerodynamic performance by a numerical optimization

More information

DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING A VISCOUS ADJOINT-BASED METHOD

DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING A VISCOUS ADJOINT-BASED METHOD DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING A VISCOUS ADJOINT-BASED METHOD a dissertation submitted to the department of aeronautics and astronautics and the committee on graduate studies of

More information

Express Introductory Training in ANSYS Fluent Workshop 04 Fluid Flow Around the NACA0012 Airfoil

Express Introductory Training in ANSYS Fluent Workshop 04 Fluid Flow Around the NACA0012 Airfoil Express Introductory Training in ANSYS Fluent Workshop 04 Fluid Flow Around the NACA0012 Airfoil Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 -

More information

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved. Workshop 2 Transonic Flow Over a NACA 0012 Airfoil. Introduction to CFX WS2-1 Goals The purpose of this tutorial is to introduce the user to modelling flow in high speed external aerodynamic applications.

More information

SU 2 : Advanced Analysis Topics

SU 2 : Advanced Analysis Topics SU 2 : Advanced Analysis Topics OpenMDAO-SU 2 Joint Workshop Stanford University Tuesday, October 1, 2013 Thomas D. Economon Department of Aeronautics & Astronautics Stanford University 1 Three Main Topics

More information

Comparison of B-spline Surface and Free-form. Deformation Geometry Control for Aerodynamic. Optimization

Comparison of B-spline Surface and Free-form. Deformation Geometry Control for Aerodynamic. Optimization Comparison of B-spline Surface and Free-form Deformation Geometry Control for Aerodynamic Optimization Christopher Lee,DavidKoo and David W. Zingg Institute for Aerospace Studies, University of Toronto

More information

Parameterization of Airfoils and Its Application in Aerodynamic Optimization

Parameterization of Airfoils and Its Application in Aerodynamic Optimization WDS'07 Proceedings of Contributed Papers, Part I, 233 240, 2007. ISBN 978-80-7378-023-4 MATFYZPRESS Parameterization of Airfoils and Its Application in Aerodynamic Optimization J. Hájek Charles University,

More information

Energy Minimization -Non-Derivative Methods -First Derivative Methods. Background Image Courtesy: 3dciencia.com visual life sciences

Energy Minimization -Non-Derivative Methods -First Derivative Methods. Background Image Courtesy: 3dciencia.com visual life sciences Energy Minimization -Non-Derivative Methods -First Derivative Methods Background Image Courtesy: 3dciencia.com visual life sciences Introduction Contents Criteria to start minimization Energy Minimization

More information

CONFIGURATION TEST CASES FOR AIRCRAFT WING ROOT DESIGN AND OPTIMIZATION

CONFIGURATION TEST CASES FOR AIRCRAFT WING ROOT DESIGN AND OPTIMIZATION Proc. Int. Symp. on Inverse Problems in Engineering Mechanics (ISIP 98), 24-27 March 1998, Nagano, Japan Elsevier Science, (1998) CONFIGURATION TEST CASES FOR AIRCRAFT WING ROOT DESIGN AND OPTIMIZATION

More information

AERODYNAMIC DESIGN AND OPTIMIZATION TOOLS ACCELERATED BY PARAMETRIC GEOMETRY PREPROCESSING

AERODYNAMIC DESIGN AND OPTIMIZATION TOOLS ACCELERATED BY PARAMETRIC GEOMETRY PREPROCESSING 1 European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2000 Barcelona, 11-14 September 2000 ECCOMAS AERODYNAMIC DESIGN AND OPTIMIZATION TOOLS ACCELERATED BY PARAMETRIC

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /6.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /6. Poole, D., Allen, C., & Rendall, T. (217). Objective Function and Constraints for Robust Transonic Aerofoil Optimization. In 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and aterials Conference,

More information

30 Years of CFD: Its Evolution During the Career of Pierre Perrier

30 Years of CFD: Its Evolution During the Career of Pierre Perrier 30 Years of CFD: Its Evolution During the Career of Pierre Perrier Antony Jameson It is an honor to be invited to provide an article for the volume celebrating the contributions of Pierre Perrier to aeronautical

More information

Semi-automatic transition from simulation to one-shot optimization with equality constraints

Semi-automatic transition from simulation to one-shot optimization with equality constraints Semi-automatic transition from simulation to one-shot optimization with equality constraints Lisa Kusch, Tim Albring, Andrea Walther, Nicolas Gauger Chair for Scientific Computing, TU Kaiserslautern, www.scicomp.uni-kl.de

More information

RESPONSE SURFACE BASED OPTIMIZATION WITH A CARTESIAN CFD METHOD

RESPONSE SURFACE BASED OPTIMIZATION WITH A CARTESIAN CFD METHOD AIAA-23-465 RESPONSE SURFACE BASED OPTIMIZATION WITH A CARTESIAN CFD METHOD David L. Rodriguez * Stanford University Stanford, CA Abstract Cartesian-based CFD methods are quite powerful in preliminary

More information

Development and Implementation of a Novel Parametrization Technique for Multidisciplinary Design Initialization

Development and Implementation of a Novel Parametrization Technique for Multidisciplinary Design Initialization 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference18th 12-15 April 21, Orlando, Florida AIAA 21-34 Development and Implementation of a Novel Parametrization Technique

More information

SPC 307 Aerodynamics. Lecture 1. February 10, 2018

SPC 307 Aerodynamics. Lecture 1. February 10, 2018 SPC 307 Aerodynamics Lecture 1 February 10, 2018 Sep. 18, 2016 1 Course Materials drahmednagib.com 2 COURSE OUTLINE Introduction to Aerodynamics Review on the Fundamentals of Fluid Mechanics Euler and

More information

Adjoint-Based Sensitivity Analysis for Computational Fluid Dynamics

Adjoint-Based Sensitivity Analysis for Computational Fluid Dynamics Adjoint-Based Sensitivity Analysis for Computational Fluid Dynamics Dimitri J. Mavriplis Max Castagne Professor Department of Mechanical Engineering University of Wyoming Laramie, WY USA Motivation Computational

More information

Mesh Morphing and the Adjoint Solver in ANSYS R14.0. Simon Pereira Laz Foley

Mesh Morphing and the Adjoint Solver in ANSYS R14.0. Simon Pereira Laz Foley Mesh Morphing and the Adjoint Solver in ANSYS R14.0 Simon Pereira Laz Foley 1 Agenda Fluent Morphing-Optimization Feature RBF Morph with ANSYS DesignXplorer Adjoint Solver What does an adjoint solver do,

More information

Computation of Sensitivity Derivatives of Navier-Stokes Equations using Complex Variables

Computation of Sensitivity Derivatives of Navier-Stokes Equations using Complex Variables Computation of Sensitivity Derivatives of Navier-Stokes Equations using Complex Variables By Veer N. Vatsa NASA Langley Research Center, Hampton, VA 23681 Mail Stop 128, email: v.n.vatsa@larc.nasa.gov

More information

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING DAVID G. LUENBERGER Stanford University TT ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California London Don Mills, Ontario CONTENTS

More information

Application of Wray-Agarwal Turbulence Model for Accurate Numerical Simulation of Flow Past a Three-Dimensional Wing-body

Application of Wray-Agarwal Turbulence Model for Accurate Numerical Simulation of Flow Past a Three-Dimensional Wing-body Washington University in St. Louis Washington University Open Scholarship Mechanical Engineering and Materials Science Independent Study Mechanical Engineering & Materials Science 4-28-2016 Application

More information

A Systematic Study on the Impact of Dimensionality for a Two-Dimensional Aerodynamic Optimization Model Problem

A Systematic Study on the Impact of Dimensionality for a Two-Dimensional Aerodynamic Optimization Model Problem 29th AIAA Applied Aerodynamics Conference 27-30 June 2011, Honolulu, Hawaii AIAA 2011-3176 A Systematic Study on the Impact of Dimensionality for a Two-Dimensional Aerodynamic Optimization Model Problem

More information

Aerodynamic Shape Optimization Using Feature based CAD Systems and Adjoint Methods

Aerodynamic Shape Optimization Using Feature based CAD Systems and Adjoint Methods Aerodynamic Shape Optimization Using Feature based CAD Systems and Adjoint Methods Agarwal, D., Marques, S., Robinson, T., Armstrong, C., & Hewitt, P. (217). Aerodynamic Shape Optimization Using Feature

More information

AERODYNAMIC SHAPES DESIGN ON THE BASE OF DIRECT NEWTON TYPE OPTIMIZATION METHOD

AERODYNAMIC SHAPES DESIGN ON THE BASE OF DIRECT NEWTON TYPE OPTIMIZATION METHOD AERODYNAMIC SHAPES DESIGN ON THE BASE OF DIRECT NEWTON TYPE OPTIMIZATION METHOD A.V. Grachev*, A.N. Kraiko**, S.A. Takovitskii* *Central Aerohydrodynamic Institute (TsAGI), **Central Institute of Aviation

More information

Aerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition

Aerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition AIAA JOURNAL Vol. 42, No. 8, August 2004 Aerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition T. Bui-Thanh and M. Damodaran Nanyang Technological University, Singapore

More information

A STUDY ON THE UNSTEADY AERODYNAMICS OF PROJECTILES IN OVERTAKING BLAST FLOWFIELDS

A STUDY ON THE UNSTEADY AERODYNAMICS OF PROJECTILES IN OVERTAKING BLAST FLOWFIELDS HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta A STUDY ON THE UNSTEADY AERODYNAMICS OF PROJECTILES IN OVERTAKING BLAST FLOWFIELDS Muthukumaran.C.K.

More information

CFD Analysis of conceptual Aircraft body

CFD Analysis of conceptual Aircraft body CFD Analysis of conceptual Aircraft body Manikantissar 1, Dr.Ankur geete 2 1 M. Tech scholar in Mechanical Engineering, SD Bansal college of technology, Indore, M.P, India 2 Associate professor in Mechanical

More information

Supersonic Wing Design Method Using an Inverse Problem for Practical Application

Supersonic Wing Design Method Using an Inverse Problem for Practical Application 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 29, Orlando, Florida AIAA 29-1465 Supersonic Wing Design Method Using an Inverse Problem for Practical

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Conjugate Direction Methods Barnabás Póczos & Ryan Tibshirani Conjugate Direction Methods 2 Books to Read David G. Luenberger, Yinyu Ye: Linear and Nonlinear Programming Nesterov:

More information

HPC Usage for Aerodynamic Flow Computation with Different Levels of Detail

HPC Usage for Aerodynamic Flow Computation with Different Levels of Detail DLR.de Folie 1 HPCN-Workshop 14./15. Mai 2018 HPC Usage for Aerodynamic Flow Computation with Different Levels of Detail Cornelia Grabe, Marco Burnazzi, Axel Probst, Silvia Probst DLR, Institute of Aerodynamics

More information

Sensitivity Analysis for the Compressible Navier-Stokes Equations Using a Discontinuous Galerkin Method

Sensitivity Analysis for the Compressible Navier-Stokes Equations Using a Discontinuous Galerkin Method 2th AIAA Computational Fluid Dynamics Conference 27-3 June 2, Honolulu, Hawaii AIAA 2-348 Sensitivity Analysis for the Compressible Navier-Stokes Equations Using a Discontinuous Galerkin Method Li Wang

More information

Modeling & Simulation of Supersonic Flow Using McCormack s Technique

Modeling & Simulation of Supersonic Flow Using McCormack s Technique Modeling & Simulation of Supersonic Flow Using McCormack s Technique M. Saif Ullah Khalid*, Afzaal M. Malik** Abstract In this work, two-dimensional inviscid supersonic flow around a wedge has been investigated

More information

Grid Dependence Study of Transonic/Supersonic Flow Past NACA Air-foil using CFD Hemanth Kotaru, B.Tech (Civil Engineering)

Grid Dependence Study of Transonic/Supersonic Flow Past NACA Air-foil using CFD Hemanth Kotaru, B.Tech (Civil Engineering) Grid Dependence Study of Transonic/Supersonic Flow Past NACA Air-foil using CFD Hemanth Kotaru, B.Tech (Civil Engineering) Abstract Computational fluid dynamics is a relatively young field in engineering.

More information

Daedalus - A Software Package for the Design and Analysis of Airfoils

Daedalus - A Software Package for the Design and Analysis of Airfoils First South-East European Conference on Computational Mechanics, SEECCM-06, (M. Kojic, M. Papadrakakis (Eds.)) June 28-30, 2006, Kragujevac, Serbia and Montenegro University of Kragujevac Daedalus - A

More information

Computational shock and Mach waves visualization aiding the development of aerodynamic design techniques

Computational shock and Mach waves visualization aiding the development of aerodynamic design techniques Computational shock and Mach waves visualization aiding the development of aerodynamic design techniques H. Sobieczky, M. Hannemann Inst. of Fluid Mechanics, DLR German Aerospace Research Establishment,

More information

A Data-based Approach for Fast Airfoil Analysis and Optimization

A Data-based Approach for Fast Airfoil Analysis and Optimization A Data-based Approach for Fast Airfoil Analysis and Optimization Jichao Li *, Mohamed Amine Bouhlel, and Joaquim R. R. A. Martins University of Michigan, Ann Arbor, MI, 48109, USA Airfoils are of great

More information

Helicopter Rotor Design Using a Time-Spectral and Adjoint-Based Method

Helicopter Rotor Design Using a Time-Spectral and Adjoint-Based Method 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference 1-12 September 28, Victoria, British Columbia Canada AIAA 28-581 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference

More information

OpenFOAM GUIDE FOR BEGINNERS

OpenFOAM GUIDE FOR BEGINNERS OpenFOAM GUIDE FOR BEGINNERS Authors This guide has been developed by: In association with: Pedro Javier Gamez and Gustavo Raush The Foam House Barcelona ETSEIAT-UPC June 2014 2 OPENFOAM GUIDE FOR BEGINNERS

More information

Introduction to Aerodynamic Shape Optimization

Introduction to Aerodynamic Shape Optimization Introduction to Aerodynamic Shape Optimization 1. Aircraft Process 2. Aircraft Methods a. Inverse Surface Methods b. Inverse Field Methods c. Numerical Optimization Methods Aircraft Process Conceptual

More information

Aerodynamic Analysis of Forward Swept Wing Using Prandtl-D Wing Concept

Aerodynamic Analysis of Forward Swept Wing Using Prandtl-D Wing Concept Aerodynamic Analysis of Forward Swept Wing Using Prandtl-D Wing Concept Srinath R 1, Sahana D S 2 1 Assistant Professor, Mangalore Institute of Technology and Engineering, Moodabidri-574225, India 2 Assistant

More information

Grid. Apr 09, 1998 FLUENT 5.0 (2d, segregated, lam) Grid. Jul 31, 1998 FLUENT 5.0 (2d, segregated, lam)

Grid. Apr 09, 1998 FLUENT 5.0 (2d, segregated, lam) Grid. Jul 31, 1998 FLUENT 5.0 (2d, segregated, lam) Tutorial 2. Around an Airfoil Transonic Turbulent Flow Introduction: The purpose of this tutorial is to compute the turbulent flow past a transonic airfoil at a non-zero angle of attack. You will use the

More information

THE EFFECT OF REPLACING THE JOUKOWSKI MAP WITH THE GENERALIZED KARMAN-TREFFTZ MAP IN THE METHOD OF ZEDAN

THE EFFECT OF REPLACING THE JOUKOWSKI MAP WITH THE GENERALIZED KARMAN-TREFFTZ MAP IN THE METHOD OF ZEDAN GSJ: VOLUME 6, ISSUE 2, FEBRUARY 2018 1 GSJ: Volume 6, Issue 2, February 2018, Online: ISSN 2320-9186 THE EFFECT OF REPLACING THE JOUKOWSKI MAP WITH THE GENERALIZED KARMAN-TREFFTZ MAP IN THE METHOD OF

More information

AIRFOIL SHAPE OPTIMIZATION USING IMPROVED SIMPLE GENETIC ALGORITHM (ISGA)

AIRFOIL SHAPE OPTIMIZATION USING IMPROVED SIMPLE GENETIC ALGORITHM (ISGA) HEFAT007 5 th International onference on Heat Transfer, Fluid Mechanics and Thermodynamics Sun ity, South Africa MK1 AIRFOIL SHAPE OPTIMIZATION USING IMPROVED SIMPLE GENETI ALGORITHM (ISGA) Karim Mazaheri

More information

Optimum Aerodynamic Design Using CFD and Control Theory

Optimum Aerodynamic Design Using CFD and Control Theory Optimum Aerodynamic Design Using CFD and Control Theory Antony Jameson Department of Mechanical and Aerospace Engineering Princeton University Princeton, New Jersey, 08544 U.S.A. Abstract This paper describes

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

AERODYNAMIC DESIGN FOR WING-BODY BLENDED AND INLET

AERODYNAMIC DESIGN FOR WING-BODY BLENDED AND INLET 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AERODYNAMIC DESIGN FOR WING-BODY BLENDED AND INLET Qingzhen YANG*,Yong ZHENG* & Thomas Streit** *Northwestern Polytechincal University, 772,Xi

More information

Aerodynamic Shape Optimization in Three-Dimensional Turbulent Flows Using a Newton-Krylov Approach

Aerodynamic Shape Optimization in Three-Dimensional Turbulent Flows Using a Newton-Krylov Approach Aerodynamic Shape Optimization in Three-Dimensional Turbulent Flows Using a Newton-Krylov Approach Lana M. Osusky and David W. Zingg University of Toronto Institute for Aerospace Studies, 4925 Dufferin

More information

Implicit/Multigrid Algorithms for Incompressible Turbulent Flows on Unstructured Grids

Implicit/Multigrid Algorithms for Incompressible Turbulent Flows on Unstructured Grids AIAA 95-1740 Implicit/Multigrid Algorithms for Incompressible Turbulent Flows on Unstructured Grids W. Kyle Anderson,* Russ D. Rausch, Daryl L. Bonhaus NASA Langley Research Center, Hampton, Virginia 23681

More information

ANSYS FLUENT. Airfoil Analysis and Tutorial

ANSYS FLUENT. Airfoil Analysis and Tutorial ANSYS FLUENT Airfoil Analysis and Tutorial ENGR083: Fluid Mechanics II Terry Yu 5/11/2017 Abstract The NACA 0012 airfoil was one of the earliest airfoils created. Its mathematically simple shape and age

More information

Subsonic Airfoils. W.H. Mason Configuration Aerodynamics Class

Subsonic Airfoils. W.H. Mason Configuration Aerodynamics Class Subsonic Airfoils W.H. Mason Configuration Aerodynamics Class Typical Subsonic Methods: Panel Methods For subsonic inviscid flow, the flowfield can be found by solving an integral equation for the potential

More information

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Review of the Air Force Academy No.3 (35)/2017 NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Cvetelina VELKOVA Department of Technical Mechanics, Naval Academy Nikola Vaptsarov,Varna, Bulgaria (cvetelina.velkova1985@gmail.com)

More information

Influence of Shape Parameterization on Aerodynamic Shape Optimization

Influence of Shape Parameterization on Aerodynamic Shape Optimization Influence of Shape Parameterization on Aerodynamic Shape Optimization John C. Vassberg Boeing Technical Fellow Advanced Concepts Design Center Boeing Commercial Airplanes Long Beach, CA 90846, USA Antony

More information

Case C1.3: Flow Over the NACA 0012 Airfoil: Subsonic Inviscid, Transonic Inviscid, and Subsonic Laminar Flows

Case C1.3: Flow Over the NACA 0012 Airfoil: Subsonic Inviscid, Transonic Inviscid, and Subsonic Laminar Flows Case C1.3: Flow Over the NACA 0012 Airfoil: Subsonic Inviscid, Transonic Inviscid, and Subsonic Laminar Flows Masayuki Yano and David L. Darmofal Aerospace Computational Design Laboratory, Massachusetts

More information

AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING

AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING M. Figat Warsaw University of Technology Keywords: Aerodynamic design, CFD Abstract This paper presents an aerodynamic design process

More information

A Surface Parameterization Method for Airfoil Optimization and High Lift 2D Geometries Utilizing the CST Methodology

A Surface Parameterization Method for Airfoil Optimization and High Lift 2D Geometries Utilizing the CST Methodology 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition AIAA 2009-1461 5-8 January 2009, Orlando, Florida A Surface Parameterization Method for Airfoil Optimization

More information

Multi-objective optimization of transonic airfoils using variable-fidelity models, co-kriging surrogates, and design space reduction

Multi-objective optimization of transonic airfoils using variable-fidelity models, co-kriging surrogates, and design space reduction Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2016 Multi-objective optimization of transonic airfoils using variable-fidelity models, co-kriging surrogates,

More information

STRUCTURAL & MULTIDISCIPLINARY OPTIMIZATION

STRUCTURAL & MULTIDISCIPLINARY OPTIMIZATION STRUCTURAL & MULTIDISCIPLINARY OPTIMIZATION Pierre DUYSINX Patricia TOSSINGS Department of Aerospace and Mechanical Engineering Academic year 2018-2019 1 Course objectives To become familiar with the introduction

More information

Analysis of an airfoil

Analysis of an airfoil UNDERGRADUATE RESEARCH FALL 2010 Analysis of an airfoil using Computational Fluid Dynamics Tanveer Chandok 12/17/2010 Independent research thesis at the Georgia Institute of Technology under the supervision

More information

Mesh refinement and modelling errors in flow simulation

Mesh refinement and modelling errors in flow simulation Copyright 1996, American Institute of Aeronautics and Astronautics, Inc. AIAA Meeting Papers on Disc, June 1996 A9636550, N00014-92-J-1796, N00014-93-I-0079, F49620-95-1-0259, AIAA Paper 96-2050 Mesh refinement

More information

Optimization of Laminar Wings for Pro-Green Aircrafts

Optimization of Laminar Wings for Pro-Green Aircrafts Optimization of Laminar Wings for Pro-Green Aircrafts André Rafael Ferreira Matos Abstract This work falls within the scope of aerodynamic design of pro-green aircraft, where the use of wings with higher

More information