Chain Code Histogram based approach

Size: px
Start display at page:

Download "Chain Code Histogram based approach"

Transcription

1 An attempt at visualizing the Fourth Dimension Take a point, stretch it into a line, curl it into a circle, twist it into a sphere, and punch through the sphere Albert Einstein Chain Code Histogram based approach 4.1 Preamble The design of computationally simple and accurate signature classification is highly challenging due to the intrinsic complexity of any off-line signature Extensive works have been reported in literature ranging from global approaches to local approaches Inspite of abundant works we have seen, most of the works are developed to their native language, such as Arabic, Persian, Bangla, etc In this context, we have made an attempt to develop a simple and accurate off-line signature verification approach based on chain code histogram suitable for our native language In addition, the proposed approach also works well even to English signature dataset We propose a 4 directional chain code histogram based approach with a goal to efficiently locate local features contributing for the signature recognition The approach preserves the directional information extracted from the signature contour and enhances its robustness by the application of Laplacian of Gaussian filter For extraction of local invariant features, a 12 x 12 grid is traversed along the preprocessed signature contour and 4 directional chain code is extracted into 4 different

2 matrices Each matrix bundles the local features within it and is characterized \ by a histogram of visual features m 4 directions Two additional matrices are calculated from these 4 normalised 4 directional matrices Thus, all the six matrices are passed through Laplacian of Gaussian filter to enhance the representative features The remainder of the chapter is organized as follows A background to the proposed approach is addresed m section 4 2 In section 4 3, the proposed approach is presented Experimental results are given m sections 4 4 and 4 5 Conclusions of the chapter are drawn m section Background As we all know, chain codes are one of the shape descriptors which are used to represent a boundary by a connected sequence of straight line segments of specified length and direction This representation is based on 4-connectivity or 8-connectivity of the segments Cham codes are a linear structure that results from quantization of the trajectory traced by the centers of adjacent boundary elements m an image array A chain code can be generated by following a boundary of an object m a clockwise direction and assigning a direction to the segments connecting every pair of pixels The major merits are (1) Cham codes are a compact representation of a binary object, (2) the chain codes are a translation invariant representation of a binary object, (3) the chain code is a complete representation of an object or curve, i,e we can compute any shape feature from the chain codes, (4) chain codes provide a lossless compression and preserving all topological and morphological information which bring out another benefit m terms of speed and effectiveness for the analysis of patterns On the other hand, the Laplacian is a 2D isotropic measure of the 2nd spatial derivative of an image and highlights the regions of rapid intensity change, henceforth used for edge detection Laplacian filter has the effect of emphasising edges m the image and magnifies the transition at edges The Laplacian filter applied 64

3 on Gaussian smoothed image is termed as Laplaeian of Gaussian (LOG), which removes both low and high frequencies from an image and operate as edge detectors, whilst managing to smooth out some of the noise too The LOG is an orientation independent filter that breaks down at comers, curves (where most of the signatures are visualised so) and at locations where image intensity function varies m a non-linear manner along an edge The two major benefits encountered from this approach are 1) As the grid bundles local features, the spatial contextual information enhances the discriminative matching, 2) Passing through LOG filter further enhances the features as it breaks down at corners, curves, and at locations where image intensity function varies m a non-lmear manner along an edge 4.3 Proposed approach \ The proposed chain code histogram based off-line signature verification approach involves three major phases In phase one, the signature sample image is preprocessed resulting in a contour In phase two, 4-directional chain code histogram is created using 12 x 12 grid passed through the signature contour, followed by the extraction of the enhanced features by applying the Laplaeian of Gaussian filter In phase three, the efficiency of the proposed approach is demonstrated using extensive experimentation on standard datasets with SVM and MLP classifiers The details are given m the following sub-sections Preprocessing Preprocessing is an essential phase to convert the acquired signature image to a form where easily intended features are extracted In our work, the preprocessing includes bmarization, noise elimination that might have intruded due to bmarization and contour extraction Contour is a set of edges linked m order to represent the region boundary Contours also occur when line fragments are linked together-for example, when line fragments are linked along a stroke in a drawing 65

4 or sample of handwriting As we all know, the signature is a set of strokes comprising of curves, lines and holes, constituting a complete shape Hence, contour of the signature helps m preserving the intrinsic shape of the signature with lesser number of pixels compared to the original image The mam idea of this approach is to extract the directional based information and the pixels on the contour are enough to fetch the desired features Figure 4 1 (a)imtial image (b)bmarized and noise removed image (c)image contour Chain code histogram based feature extraction The signature image contour (Figure 4 1(c)) is the input to the chain code histogram based feature extraction technique and the overall algorithm is as follows 1 Divide the input signature contour image into 12x12 grid blocks 2 The 4-directional chain-code histogram is generated by tracing the contour along each block as shown m Figure 4 2 Tracing m 4-directions results m four matrices of size 12x12 created for each of the directions Let us name these matrices as Hm, Vm, LmandRm created by horizontal, vertical, left and right directional tracing respectively 3 Apply the Laplacian of Gaussian filter on each of the directional 12x12 matrices obtained in step(2) with a = 0 5 and the mask of size 5x5 (4 1) 66

5 {a) i (b> * (c) ) i t *» t» * t *» * 1 a 4 J» t (d) Figure 4 2 (a)direction number for 4-directional chain codes (b)a sample 4- connected object (c) Boundary of (b) (d) Obtaining the 4-connected chain code for the object m (b) and (c) 4 To normalize the elements m the matrix, each element of each matrix obtained by the step(3)is divided by the maximum value of the four matrices jl Tfl(lx(Hm, Vrnj Lmi Rm) (4 2) 5 Two additional matrices Sm and Pm are calculated using the existing 4 directional chain code matrices by pairing the Hm with Vm and Lm with Rm as the proportions between perpendicular directions are relatively stable features and leads to better verification accuracies [64] max(hm,vm) m%n{hm,vm) 0 if max(hmi Vm) ^ 0 otherwise (4 3) p 1 m mm(lm,rm) TTKIX(I*m: fim } 0 if max(lmi Rrri) -f- 0 otherwise (4 4) Thus, by appending all the above six matrices (HmVmLmRmSmPm) the feature vector of size 12 x 12x6 is created Hence, a total of 864 feature vector is generated for the effective representation of the signature sample Accumulating the feature vectors of all the samples in the dataset, including genuine and skilled forge results in generation of the knowledge base The experiments are conducted with 8x8, 67

6 10x10 grid configurations and extended to 12x12, which produced the acceptable performance For LOG, the parameter a is set to 0 5 with a mask of size 5x5 4.4 Classification using MLP classifier Two set of experimentations are carried out with varying number of samples for training the MLP classifier In set-1 experiment, say SI, MLP classifier is trained with first 10 genuine and first 10 skilled forge of each signer During second set of experiment, say S2, first 15 genuine sample features along with first 15 skilled forge samples are considered for training In both the experimental set up, testing is carried out against the trained network with the remaining genuine sample features along with all skilled forge sample features Experimentation on CEDAR dataset with MLP classifier: To start with the experimental configuration SI, first 10 genuine and first 10 skilled forgery samples are considered to tram the MLP classifier The trained network is tested against the remaining 14 genuine samples along with 24 skilled forgery of the respective class In experimental set up S2, MLP is trained with first 15 genuine samples along with first 15 skilled forgery of the respective class The trained MLP network is tested against remaining 9 genuine samples along with all 24 skilled forge samples In the above two experimental set up, while training the classifier, skilled forgeries are used as the negative samples Table 4 1 gives the experimental results Experimentation on GPDS-100 dataset with MLP classifier GPDS-100, a sub-corpus of GPDS-300, consists of samples from first 100 classes of GPDS-300 In SI test configuration, MLP is trained with first 10 genuine and 68

7 Table 4 1 Experimental results on CEDAR dataset with MLP classifier SI 10G + 10SF 14G + 24SF S2 15G + 15SF 9G + 24SF Table 4 2 Experimental results on GPDS-100 dataset with SYM classifier SI 6G + 99RF 19G + 30SF S2 12G + 198RF 12G + 30SF first 10 skilled forgery samples features The trained network is tested against the remaining 14 genmne samples along with 30 skilled forgery of the respective class In experimental set up S2, MLP is trained with first 15 genuine samples along with first 15 skilled forgery of the respective class The trained MLP network is tested against remaining 9 genmne samples along with all 30 skilled forge samples The experimental results on GPDS-100 is tablulated m Table Experimentation on MUKOS dataset with MLP classifier In set SI configuration first 10 genmne samples along with first 10 skilled forge sample features are considered to tram the MLP classifier The remaining 10 genuine and all the 20 skilled forge samples of respective classes are tested against the trained network Similarly, m set S2, first 15 genuine samples along with first 15 skilled forge sample features are chosen for training Testing is carried out 69

8 Table 4 3 Experimental results on MUKOS dataset with SVM classifier SI 10G + 10SF 10G + 20SF S2 15G + 10SF 5G + 20SF on the remaining 5 genuine and all the 20 skilled forgery samples of the class The experimental results on MUKOS dataset with MLP classifier is tabulated m Table Classification using SVM classifier Here, the practical applications of signature verification are considered to design the experimental set up using SVM classifier The SVM classifier is trained with genuine signature features as positive samples (class 1) and random forgeries as negative samples (class 0) Two set of experimentation is carried out with varying number of training and testing sample features In the first experimental set up say SI, 25% of genuine signatures from each class along with one random forge sample from the remaining classes are randomly chosen for training the classifiers In the second experimental set up, say S2, we have randomly chosen 50% genuine samples from each class as positive samples with two random forge samples from the remaining classes as negative samples to tram the classifiers In both the experimental setup, testing is carried against the trained network with the remaining genuine samples and all the skilled forge samples of the signer from the respective dataset The random forge samples are the genuine signatures of other signers of the dataset We have followed leave out one policy while choosing the random forge sample for training To overcome the effect of randomness, experimentation is repeated 5 times and the 70

9 Table 4 4 Experimental results on CEDAR dataset with SYM classifier SI 6G + 54RF 19G + 24SF S2 12G + 108RF 12G + 24SF average accuracy is tabulated To demonstrate the performance of the proposed approach, experimentations are carried on standard datasets CEDAR, GPDS- 100 and MUKOS Experimentation on CEDAR dataset with SVM classifier We started with SI experimental configuration with 6 genuine and 54 random forgery samples chosen randomly to tram the SVM classifier To tram the classifier with the negative samples, (random forgery) one genuine sample from other 54 class is considered (6 positive samples + 54 negative samples) The trained network is tested against the remaining 18 genuine samples along with 24 skilled forgery of the respective class In experimental set up S2, SVM is trained with randomly chosen 12 genuine samples along with 108 random forgery Here, two genuine samples from each class m the respective dataset is chosen randomly The trained SVM network is tested against remaining 12 genuine samples along with all 24 skilled forge The above two experimental set up is repeated five times in order to overcome the effect of randomness and the average accuracy is noted m Table

10 Table 4 5 Experimental results on GPDS-100 dataset with SVM classifier SI 6G + 99 RF 19G + 30SF S2 12G + 198RF 12G + 30SF Experimentation on GPDS-100 dataset with SVM classifier GPDS-100, a sub-corpus of GPDS-300, consists of samples from first 100 classes of GPDS-300 In SI test configuration 6 genuine samples along with 99 random forgeries are randomly chosen to tram the SVM The 99 random forgeries are the samples taken from each class other than the one considered as positive sample to tram the SVM Testing was conducted against the remaining 18 genuine samples and all 30 skilled forge samples of the respective signer Experimentation set S2 is carried out by randomly choosing 12 genmne samples from each class along with 198 random forgeries Randomly selected two genuine samples from each class other than the training class considered as negative samples to tram the SVM Here, the trained network is tested against the remaining 12 genuine samples along with 30 skilled forge samples of respective class In order to overcome the effect of randomness, we repeated the above two experimentation for five times on all 100 classes and the average accuracies are noted and tabulated m Table Experimentation on MUKOS dataset with SVM classifier In set SI configuration 5 genuine samples along with 29 random forge are randomly chosen to tram the SVM classifier The remaining 15 genuine and all the 20 skilled forge samples of respective classes are tested against the trained network 72

11 Table 4 6 Experimental results on MUKOS dataset with SVM classifier SI 5G + 29RF 15G + 20SF S2 10G + 58RF 10G + 20SF In set S2, 10 genuine samples along with two random forgery samples are chosen randomly for training Testing is carried with the remaimng 10 genuine and all the 20 skilled forgery samples The best performances of both the experimentar tions are tabulated in Table 4 6 The metric values m the table are the average of five instances of the experimentation SI and S2 4.6 Conclusion In this chapter, we proposed to design a computationally simple and accurate off-line signature verification approach based on chain code histogram In the proposed approach, a 12 x 12 grid is passed through the signature contour to obtain 4 directional chain code histogram Thus, obtained features are enhanced through Laplacian of Gaussian filter, resulting m much effective and efficient representative features of the sample The performance of the proposed approach is exhibited using SVM and MLP classifiers Extensive experimentation on standard datasets reveals the accuracy and efficiency of the approach 73

NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] ISSN: VOLUME 2, ISSUE 1 JAN-2015

NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] ISSN: VOLUME 2, ISSUE 1 JAN-2015 Offline Handwritten Signature Verification using Neural Network Pallavi V. Hatkar Department of Electronics Engineering, TKIET Warana, India Prof.B.T.Salokhe Department of Electronics Engineering, TKIET

More information

CoE4TN4 Image Processing

CoE4TN4 Image Processing CoE4TN4 Image Processing Chapter 11 Image Representation & Description Image Representation & Description After an image is segmented into regions, the regions are represented and described in a form suitable

More information

Boundary descriptors. Representation REPRESENTATION & DESCRIPTION. Descriptors. Moore boundary tracking

Boundary descriptors. Representation REPRESENTATION & DESCRIPTION. Descriptors. Moore boundary tracking Representation REPRESENTATION & DESCRIPTION After image segmentation the resulting collection of regions is usually represented and described in a form suitable for higher level processing. Most important

More information

An Application of the 2D Gaussian Filter for Enhancing Feature Extraction in Off-line Signature Verification

An Application of the 2D Gaussian Filter for Enhancing Feature Extraction in Off-line Signature Verification 2011 International Conference on Document Analysis and Recognition An Application of the 2D Gaussian Filter for Enhancing Feature Extraction in Off-line Signature Verification Vu Nguyen and Michael Blumenstein

More information

Fine Classification of Unconstrained Handwritten Persian/Arabic Numerals by Removing Confusion amongst Similar Classes

Fine Classification of Unconstrained Handwritten Persian/Arabic Numerals by Removing Confusion amongst Similar Classes 2009 10th International Conference on Document Analysis and Recognition Fine Classification of Unconstrained Handwritten Persian/Arabic Numerals by Removing Confusion amongst Similar Classes Alireza Alaei

More information

Types of Edges. Why Edge Detection? Types of Edges. Edge Detection. Gradient. Edge Detection

Types of Edges. Why Edge Detection? Types of Edges. Edge Detection. Gradient. Edge Detection Why Edge Detection? How can an algorithm extract relevant information from an image that is enables the algorithm to recognize objects? The most important information for the interpretation of an image

More information

CHAPTER 6 DETECTION OF MASS USING NOVEL SEGMENTATION, GLCM AND NEURAL NETWORKS

CHAPTER 6 DETECTION OF MASS USING NOVEL SEGMENTATION, GLCM AND NEURAL NETWORKS 130 CHAPTER 6 DETECTION OF MASS USING NOVEL SEGMENTATION, GLCM AND NEURAL NETWORKS A mass is defined as a space-occupying lesion seen in more than one projection and it is described by its shapes and margin

More information

Chapter 11 Representation & Description

Chapter 11 Representation & Description Chain Codes Chain codes are used to represent a boundary by a connected sequence of straight-line segments of specified length and direction. The direction of each segment is coded by using a numbering

More information

A System for Joining and Recognition of Broken Bangla Numerals for Indian Postal Automation

A System for Joining and Recognition of Broken Bangla Numerals for Indian Postal Automation A System for Joining and Recognition of Broken Bangla Numerals for Indian Postal Automation K. Roy, U. Pal and B. B. Chaudhuri CVPR Unit; Indian Statistical Institute, Kolkata-108; India umapada@isical.ac.in

More information

Short Survey on Static Hand Gesture Recognition

Short Survey on Static Hand Gesture Recognition Short Survey on Static Hand Gesture Recognition Huu-Hung Huynh University of Science and Technology The University of Danang, Vietnam Duc-Hoang Vo University of Science and Technology The University of

More information

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong)

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) References: [1] http://homepages.inf.ed.ac.uk/rbf/hipr2/index.htm [2] http://www.cs.wisc.edu/~dyer/cs540/notes/vision.html

More information

Practical Image and Video Processing Using MATLAB

Practical Image and Video Processing Using MATLAB Practical Image and Video Processing Using MATLAB Chapter 18 Feature extraction and representation What will we learn? What is feature extraction and why is it a critical step in most computer vision and

More information

Image representation. 1. Introduction

Image representation. 1. Introduction Image representation Introduction Representation schemes Chain codes Polygonal approximations The skeleton of a region Boundary descriptors Some simple descriptors Shape numbers Fourier descriptors Moments

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 WRI C225 Lecture 04 130131 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Histogram Equalization Image Filtering Linear

More information

A Statistical approach to line segmentation in handwritten documents

A Statistical approach to line segmentation in handwritten documents A Statistical approach to line segmentation in handwritten documents Manivannan Arivazhagan, Harish Srinivasan and Sargur Srihari Center of Excellence for Document Analysis and Recognition (CEDAR) University

More information

A Feature based on Encoding the Relative Position of a Point in the Character for Online Handwritten Character Recognition

A Feature based on Encoding the Relative Position of a Point in the Character for Online Handwritten Character Recognition A Feature based on Encoding the Relative Position of a Point in the Character for Online Handwritten Character Recognition Dinesh Mandalapu, Sridhar Murali Krishna HP Laboratories India HPL-2007-109 July

More information

Recognizing Deformable Shapes. Salvador Ruiz Correa Ph.D. UW EE

Recognizing Deformable Shapes. Salvador Ruiz Correa Ph.D. UW EE Recognizing Deformable Shapes Salvador Ruiz Correa Ph.D. UW EE Input 3-D Object Goal We are interested in developing algorithms for recognizing and classifying deformable object shapes from range data.

More information

Local Image preprocessing (cont d)

Local Image preprocessing (cont d) Local Image preprocessing (cont d) 1 Outline - Edge detectors - Corner detectors - Reading: textbook 5.3.1-5.3.5 and 5.3.10 2 What are edges? Edges correspond to relevant features in the image. An edge

More information

Outline 7/2/201011/6/

Outline 7/2/201011/6/ Outline Pattern recognition in computer vision Background on the development of SIFT SIFT algorithm and some of its variations Computational considerations (SURF) Potential improvement Summary 01 2 Pattern

More information

Image Processing

Image Processing Image Processing 159.731 Canny Edge Detection Report Syed Irfanullah, Azeezullah 00297844 Danh Anh Huynh 02136047 1 Canny Edge Detection INTRODUCTION Edges Edges characterize boundaries and are therefore

More information

Digital Image Processing Fundamentals

Digital Image Processing Fundamentals Ioannis Pitas Digital Image Processing Fundamentals Chapter 7 Shape Description Answers to the Chapter Questions Thessaloniki 1998 Chapter 7: Shape description 7.1 Introduction 1. Why is invariance to

More information

Dietrich Paulus Joachim Hornegger. Pattern Recognition of Images and Speech in C++

Dietrich Paulus Joachim Hornegger. Pattern Recognition of Images and Speech in C++ Dietrich Paulus Joachim Hornegger Pattern Recognition of Images and Speech in C++ To Dorothea, Belinda, and Dominik In the text we use the following names which are protected, trademarks owned by a company

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Third Edition Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive PEARSON Prentice Hall Pearson Education International Contents Preface xv Acknowledgments

More information

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Introduction (1) Definition: Image Registration Input: 2 images of the same scene but taken from different perspectives Goal: Identify transformation

More information

SEVERAL METHODS OF FEATURE EXTRACTION TO HELP IN OPTICAL CHARACTER RECOGNITION

SEVERAL METHODS OF FEATURE EXTRACTION TO HELP IN OPTICAL CHARACTER RECOGNITION SEVERAL METHODS OF FEATURE EXTRACTION TO HELP IN OPTICAL CHARACTER RECOGNITION Binod Kumar Prasad * * Bengal College of Engineering and Technology, Durgapur, W.B., India. Rajdeep Kundu 2 2 Bengal College

More information

Building Multi Script OCR for Brahmi Scripts: Selection of Efficient Features

Building Multi Script OCR for Brahmi Scripts: Selection of Efficient Features Building Multi Script OCR for Brahmi Scripts: Selection of Efficient Features Md. Abul Hasnat Center for Research on Bangla Language Processing (CRBLP) Center for Research on Bangla Language Processing

More information

Texture. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors

Texture. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors Texture The most fundamental question is: How can we measure texture, i.e., how can we quantitatively distinguish between different textures? Of course it is not enough to look at the intensity of individual

More information

Adaptive Fingerprint Image Enhancement Techniques and Performance Evaluations

Adaptive Fingerprint Image Enhancement Techniques and Performance Evaluations Adaptive Fingerprint Image Enhancement Techniques and Performance Evaluations Kanpariya Nilam [1], Rahul Joshi [2] [1] PG Student, PIET, WAGHODIYA [2] Assistant Professor, PIET WAGHODIYA ABSTRACT: Image

More information

Detecting Printed and Handwritten Partial Copies of Line Drawings Embedded in Complex Backgrounds

Detecting Printed and Handwritten Partial Copies of Line Drawings Embedded in Complex Backgrounds 9 1th International Conference on Document Analysis and Recognition Detecting Printed and Handwritten Partial Copies of Line Drawings Embedded in Complex Backgrounds Weihan Sun, Koichi Kise Graduate School

More information

A Non-Rigid Feature Extraction Method for Shape Recognition

A Non-Rigid Feature Extraction Method for Shape Recognition A Non-Rigid Feature Extraction Method for Shape Recognition Jon Almazán, Alicia Fornés, Ernest Valveny Computer Vision Center Dept. Ciències de la Computació Universitat Autònoma de Barcelona Bellaterra,

More information

Human Motion Detection and Tracking for Video Surveillance

Human Motion Detection and Tracking for Video Surveillance Human Motion Detection and Tracking for Video Surveillance Prithviraj Banerjee and Somnath Sengupta Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur,

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part 9: Representation and Description AASS Learning Systems Lab, Dep. Teknik Room T1209 (Fr, 11-12 o'clock) achim.lilienthal@oru.se Course Book Chapter 11 2011-05-17 Contents

More information

Ulrik Söderström 21 Feb Representation and description

Ulrik Söderström 21 Feb Representation and description Ulrik Söderström ulrik.soderstrom@tfe.umu.se 2 Feb 207 Representation and description Representation and description Representation involves making object definitions more suitable for computer interpretations

More information

9 length of contour = no. of horizontal and vertical components + ( 2 no. of diagonal components) diameter of boundary B

9 length of contour = no. of horizontal and vertical components + ( 2 no. of diagonal components) diameter of boundary B 8. Boundary Descriptor 8.. Some Simple Descriptors length of contour : simplest descriptor - chain-coded curve 9 length of contour no. of horiontal and vertical components ( no. of diagonal components

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Introduction Pattern recognition is a set of mathematical, statistical and heuristic techniques used in executing `man-like' tasks on computers. Pattern recognition plays an

More information

Lecture 7: Most Common Edge Detectors

Lecture 7: Most Common Edge Detectors #1 Lecture 7: Most Common Edge Detectors Saad Bedros sbedros@umn.edu Edge Detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the

More information

MORPHOLOGICAL EDGE DETECTION AND CORNER DETECTION ALGORITHM USING CHAIN-ENCODING

MORPHOLOGICAL EDGE DETECTION AND CORNER DETECTION ALGORITHM USING CHAIN-ENCODING MORPHOLOGICAL EDGE DETECTION AND CORNER DETECTION ALGORITHM USING CHAIN-ENCODING Neeta Nain, Vijay Laxmi, Ankur Kumar Jain & Rakesh Agarwal Department of Computer Engineering Malaviya National Institute

More information

Off-line Signature Verification Using Neural Network

Off-line Signature Verification Using Neural Network International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February-2012 1 Off-line Signature Verification Using Neural Network Ashwini Pansare, Shalini Bhatia Abstract a number of

More information

Offline Signature verification and recognition using ART 1

Offline Signature verification and recognition using ART 1 Offline Signature verification and recognition using ART 1 R. Sukanya K.Malathy M.E Infant Jesus College of Engineering And Technology Abstract: The main objective of this project is signature verification

More information

Image Processing, Analysis and Machine Vision

Image Processing, Analysis and Machine Vision Image Processing, Analysis and Machine Vision Milan Sonka PhD University of Iowa Iowa City, USA Vaclav Hlavac PhD Czech Technical University Prague, Czech Republic and Roger Boyle DPhil, MBCS, CEng University

More information

Schedule for Rest of Semester

Schedule for Rest of Semester Schedule for Rest of Semester Date Lecture Topic 11/20 24 Texture 11/27 25 Review of Statistics & Linear Algebra, Eigenvectors 11/29 26 Eigenvector expansions, Pattern Recognition 12/4 27 Cameras & calibration

More information

Digital Image Processing (CS/ECE 545) Lecture 5: Edge Detection (Part 2) & Corner Detection

Digital Image Processing (CS/ECE 545) Lecture 5: Edge Detection (Part 2) & Corner Detection Digital Image Processing (CS/ECE 545) Lecture 5: Edge Detection (Part 2) & Corner Detection Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Recall: Edge Detection Image processing

More information

Mobile Human Detection Systems based on Sliding Windows Approach-A Review

Mobile Human Detection Systems based on Sliding Windows Approach-A Review Mobile Human Detection Systems based on Sliding Windows Approach-A Review Seminar: Mobile Human detection systems Njieutcheu Tassi cedrique Rovile Department of Computer Engineering University of Heidelberg

More information

Topic 6 Representation and Description

Topic 6 Representation and Description Topic 6 Representation and Description Background Segmentation divides the image into regions Each region should be represented and described in a form suitable for further processing/decision-making Representation

More information

RULE BASED SIGNATURE VERIFICATION AND FORGERY DETECTION

RULE BASED SIGNATURE VERIFICATION AND FORGERY DETECTION RULE BASED SIGNATURE VERIFICATION AND FORGERY DETECTION M. Hanmandlu Multimedia University Jalan Multimedia 63100, Cyberjaya Selangor, Malaysia E-mail:madasu.hanmandlu@mmu.edu.my M. Vamsi Krishna Dept.

More information

Lecture 6: Edge Detection

Lecture 6: Edge Detection #1 Lecture 6: Edge Detection Saad J Bedros sbedros@umn.edu Review From Last Lecture Options for Image Representation Introduced the concept of different representation or transformation Fourier Transform

More information

Babu Madhav Institute of Information Technology Years Integrated M.Sc.(IT)(Semester - 7)

Babu Madhav Institute of Information Technology Years Integrated M.Sc.(IT)(Semester - 7) 5 Years Integrated M.Sc.(IT)(Semester - 7) 060010707 Digital Image Processing UNIT 1 Introduction to Image Processing Q: 1 Answer in short. 1. What is digital image? 1. Define pixel or picture element?

More information

ECEN 447 Digital Image Processing

ECEN 447 Digital Image Processing ECEN 447 Digital Image Processing Lecture 8: Segmentation and Description Ulisses Braga-Neto ECE Department Texas A&M University Image Segmentation and Description Image segmentation and description are

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 21 Nov 16 th, 2017 Pranav Mantini Ack: Shah. M Image Processing Geometric Transformation Point Operations Filtering (spatial, Frequency) Input Restoration/

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

Other Linear Filters CS 211A

Other Linear Filters CS 211A Other Linear Filters CS 211A Slides from Cornelia Fermüller and Marc Pollefeys Edge detection Convert a 2D image into a set of curves Extracts salient features of the scene More compact than pixels Origin

More information

MULTI ORIENTATION PERFORMANCE OF FEATURE EXTRACTION FOR HUMAN HEAD RECOGNITION

MULTI ORIENTATION PERFORMANCE OF FEATURE EXTRACTION FOR HUMAN HEAD RECOGNITION MULTI ORIENTATION PERFORMANCE OF FEATURE EXTRACTION FOR HUMAN HEAD RECOGNITION Panca Mudjirahardjo, Rahmadwati, Nanang Sulistiyanto and R. Arief Setyawan Department of Electrical Engineering, Faculty of

More information

DATA EMBEDDING IN TEXT FOR A COPIER SYSTEM

DATA EMBEDDING IN TEXT FOR A COPIER SYSTEM DATA EMBEDDING IN TEXT FOR A COPIER SYSTEM Anoop K. Bhattacharjya and Hakan Ancin Epson Palo Alto Laboratory 3145 Porter Drive, Suite 104 Palo Alto, CA 94304 e-mail: {anoop, ancin}@erd.epson.com Abstract

More information

A Fast Personal Palm print Authentication based on 3D-Multi Wavelet Transformation

A Fast Personal Palm print Authentication based on 3D-Multi Wavelet Transformation A Fast Personal Palm print Authentication based on 3D-Multi Wavelet Transformation * A. H. M. Al-Helali, * W. A. Mahmmoud, and * H. A. Ali * Al- Isra Private University Email: adnan_hadi@yahoo.com Abstract:

More information

DESIGNING A REAL TIME SYSTEM FOR CAR NUMBER DETECTION USING DISCRETE HOPFIELD NETWORK

DESIGNING A REAL TIME SYSTEM FOR CAR NUMBER DETECTION USING DISCRETE HOPFIELD NETWORK DESIGNING A REAL TIME SYSTEM FOR CAR NUMBER DETECTION USING DISCRETE HOPFIELD NETWORK A.BANERJEE 1, K.BASU 2 and A.KONAR 3 COMPUTER VISION AND ROBOTICS LAB ELECTRONICS AND TELECOMMUNICATION ENGG JADAVPUR

More information

Topological Classification of Data Sets without an Explicit Metric

Topological Classification of Data Sets without an Explicit Metric Topological Classification of Data Sets without an Explicit Metric Tim Harrington, Andrew Tausz and Guillaume Troianowski December 10, 2008 A contemporary problem in data analysis is understanding the

More information

A Fast and Accurate Eyelids and Eyelashes Detection Approach for Iris Segmentation

A Fast and Accurate Eyelids and Eyelashes Detection Approach for Iris Segmentation A Fast and Accurate Eyelids and Eyelashes Detection Approach for Iris Segmentation Walid Aydi, Lotfi Kamoun, Nouri Masmoudi Department of Electrical National Engineering School of Sfax Sfax University

More information

EECS490: Digital Image Processing. Lecture #23

EECS490: Digital Image Processing. Lecture #23 Lecture #23 Motion segmentation & motion tracking Boundary tracking Chain codes Minimum perimeter polygons Signatures Motion Segmentation P k Accumulative Difference Image Positive ADI Negative ADI (ADI)

More information

Digital Image Processing Chapter 11: Image Description and Representation

Digital Image Processing Chapter 11: Image Description and Representation Digital Image Processing Chapter 11: Image Description and Representation Image Representation and Description? Objective: To represent and describe information embedded in an image in other forms that

More information

LECTURE 6 TEXT PROCESSING

LECTURE 6 TEXT PROCESSING SCIENTIFIC DATA COMPUTING 1 MTAT.08.042 LECTURE 6 TEXT PROCESSING Prepared by: Amnir Hadachi Institute of Computer Science, University of Tartu amnir.hadachi@ut.ee OUTLINE Aims Character Typology OCR systems

More information

CS443: Digital Imaging and Multimedia Binary Image Analysis. Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University

CS443: Digital Imaging and Multimedia Binary Image Analysis. Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University CS443: Digital Imaging and Multimedia Binary Image Analysis Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines A Simple Machine Vision System Image segmentation by thresholding

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING DS7201 ADVANCED DIGITAL IMAGE PROCESSING II M.E (C.S) QUESTION BANK UNIT I 1. Write the differences between photopic and scotopic vision? 2. What

More information

Edges and Lines Readings: Chapter 10: better edge detectors line finding circle finding

Edges and Lines Readings: Chapter 10: better edge detectors line finding circle finding Edges and Lines Readings: Chapter 10: 10.2.3-10.3 better edge detectors line finding circle finding 1 Lines and Arcs Segmentation In some image sets, lines, curves, and circular arcs are more useful than

More information

CS4733 Class Notes, Computer Vision

CS4733 Class Notes, Computer Vision CS4733 Class Notes, Computer Vision Sources for online computer vision tutorials and demos - http://www.dai.ed.ac.uk/hipr and Computer Vision resources online - http://www.dai.ed.ac.uk/cvonline Vision

More information

Image Segmentation Image Thresholds Edge-detection Edge-detection, the 1 st derivative Edge-detection, the 2 nd derivative Horizontal Edges Vertical

Image Segmentation Image Thresholds Edge-detection Edge-detection, the 1 st derivative Edge-detection, the 2 nd derivative Horizontal Edges Vertical Image Segmentation Image Thresholds Edge-detection Edge-detection, the 1 st derivative Edge-detection, the 2 nd derivative Horizontal Edges Vertical Edges Diagonal Edges Hough Transform 6.1 Image segmentation

More information

Model-based segmentation and recognition from range data

Model-based segmentation and recognition from range data Model-based segmentation and recognition from range data Jan Boehm Institute for Photogrammetry Universität Stuttgart Germany Keywords: range image, segmentation, object recognition, CAD ABSTRACT This

More information

Binary Image Processing. Introduction to Computer Vision CSE 152 Lecture 5

Binary Image Processing. Introduction to Computer Vision CSE 152 Lecture 5 Binary Image Processing CSE 152 Lecture 5 Announcements Homework 2 is due Apr 25, 11:59 PM Reading: Szeliski, Chapter 3 Image processing, Section 3.3 More neighborhood operators Binary System Summary 1.

More information

Introduction. Introduction. Related Research. SIFT method. SIFT method. Distinctive Image Features from Scale-Invariant. Scale.

Introduction. Introduction. Related Research. SIFT method. SIFT method. Distinctive Image Features from Scale-Invariant. Scale. Distinctive Image Features from Scale-Invariant Keypoints David G. Lowe presented by, Sudheendra Invariance Intensity Scale Rotation Affine View point Introduction Introduction SIFT (Scale Invariant Feature

More information

Symbol Detection Using Region Adjacency Graphs and Integer Linear Programming

Symbol Detection Using Region Adjacency Graphs and Integer Linear Programming 2009 10th International Conference on Document Analysis and Recognition Symbol Detection Using Region Adjacency Graphs and Integer Linear Programming Pierre Le Bodic LRI UMR 8623 Using Université Paris-Sud

More information

Vivekananda. Collegee of Engineering & Technology. Question and Answers on 10CS762 /10IS762 UNIT- 5 : IMAGE ENHANCEMENT.

Vivekananda. Collegee of Engineering & Technology. Question and Answers on 10CS762 /10IS762 UNIT- 5 : IMAGE ENHANCEMENT. Vivekananda Collegee of Engineering & Technology Question and Answers on 10CS762 /10IS762 UNIT- 5 : IMAGE ENHANCEMENT Dept. Prepared by Harivinod N Assistant Professor, of Computer Science and Engineering,

More information

Albert M. Vossepoel. Center for Image Processing

Albert M. Vossepoel.   Center for Image Processing Albert M. Vossepoel www.ph.tn.tudelft.nl/~albert scene image formation sensor pre-processing image enhancement image restoration texture filtering segmentation user analysis classification CBP course:

More information

Scale Invariant Feature Transform

Scale Invariant Feature Transform Scale Invariant Feature Transform Why do we care about matching features? Camera calibration Stereo Tracking/SFM Image moiaicing Object/activity Recognition Objection representation and recognition Image

More information

Video annotation based on adaptive annular spatial partition scheme

Video annotation based on adaptive annular spatial partition scheme Video annotation based on adaptive annular spatial partition scheme Guiguang Ding a), Lu Zhang, and Xiaoxu Li Key Laboratory for Information System Security, Ministry of Education, Tsinghua National Laboratory

More information

Computationally Efficient Serial Combination of Rotation-invariant and Rotation Compensating Iris Recognition Algorithms

Computationally Efficient Serial Combination of Rotation-invariant and Rotation Compensating Iris Recognition Algorithms Computationally Efficient Serial Combination of Rotation-invariant and Rotation Compensating Iris Recognition Algorithms Andreas Uhl Department of Computer Sciences University of Salzburg, Austria uhl@cosy.sbg.ac.at

More information

CHAPTER 4 SEMANTIC REGION-BASED IMAGE RETRIEVAL (SRBIR)

CHAPTER 4 SEMANTIC REGION-BASED IMAGE RETRIEVAL (SRBIR) 63 CHAPTER 4 SEMANTIC REGION-BASED IMAGE RETRIEVAL (SRBIR) 4.1 INTRODUCTION The Semantic Region Based Image Retrieval (SRBIR) system automatically segments the dominant foreground region and retrieves

More information

Face Detection using Hierarchical SVM

Face Detection using Hierarchical SVM Face Detection using Hierarchical SVM ECE 795 Pattern Recognition Christos Kyrkou Fall Semester 2010 1. Introduction Face detection in video is the process of detecting and classifying small images extracted

More information

Scale Space and PDE methods in image analysis and processing. Arjan Kuijper

Scale Space and PDE methods in image analysis and processing. Arjan Kuijper Scale Space and PDE methods in image analysis and processing Arjan Kuijper Fraunhofer Institute for Computer Graphics Research Interactive Graphics Systems Group, TU Darmstadt Fraunhoferstrasse 5, 64283

More information

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface , 2 nd Edition Preface ix 1 Introduction 1 1.1 Overview 1 1.2 Human and Computer Vision 1 1.3 The Human Vision System 3 1.3.1 The Eye 4 1.3.2 The Neural System 7 1.3.3 Processing 7 1.4 Computer Vision

More information

Fundamentals of Digital Image Processing

Fundamentals of Digital Image Processing \L\.6 Gw.i Fundamentals of Digital Image Processing A Practical Approach with Examples in Matlab Chris Solomon School of Physical Sciences, University of Kent, Canterbury, UK Toby Breckon School of Engineering,

More information

Image Processing Fundamentals. Nicolas Vazquez Principal Software Engineer National Instruments

Image Processing Fundamentals. Nicolas Vazquez Principal Software Engineer National Instruments Image Processing Fundamentals Nicolas Vazquez Principal Software Engineer National Instruments Agenda Objectives and Motivations Enhancing Images Checking for Presence Locating Parts Measuring Features

More information

OFFLINE SIGNATURE VERIFICATION USING SUPPORT LOCAL BINARY PATTERN

OFFLINE SIGNATURE VERIFICATION USING SUPPORT LOCAL BINARY PATTERN OFFLINE SIGNATURE VERIFICATION USING SUPPORT LOCAL BINARY PATTERN P.Vickram, Dr. A. Sri Krishna and D.Swapna Department of Computer Science & Engineering, R.V. R & J.C College of Engineering, Guntur ABSTRACT

More information

Sharpening through spatial filtering

Sharpening through spatial filtering Sharpening through spatial filtering Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image Processing academic year 2017 2018 Sharpening The term sharpening is referred

More information

2. LITERATURE REVIEW

2. LITERATURE REVIEW 2. LITERATURE REVIEW CBIR has come long way before 1990 and very little papers have been published at that time, however the number of papers published since 1997 is increasing. There are many CBIR algorithms

More information

IRIS SEGMENTATION OF NON-IDEAL IMAGES

IRIS SEGMENTATION OF NON-IDEAL IMAGES IRIS SEGMENTATION OF NON-IDEAL IMAGES William S. Weld St. Lawrence University Computer Science Department Canton, NY 13617 Xiaojun Qi, Ph.D Utah State University Computer Science Department Logan, UT 84322

More information

CPSC 695. Geometric Algorithms in Biometrics. Dr. Marina L. Gavrilova

CPSC 695. Geometric Algorithms in Biometrics. Dr. Marina L. Gavrilova CPSC 695 Geometric Algorithms in Biometrics Dr. Marina L. Gavrilova Biometric goals Verify users Identify users Synthesis - recently Biometric identifiers Courtesy of Bromba GmbH Classification of identifiers

More information

Chain Coding Streamed Images through Crack Run-Length Encoding

Chain Coding Streamed Images through Crack Run-Length Encoding Chain Coding Streamed Images through Crack Run-Length Encoding D.G. Bailey School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand. Email: D.G.Bailey@massey.ac.nz

More information

CS 4495 Computer Vision A. Bobick. CS 4495 Computer Vision. Features 2 SIFT descriptor. Aaron Bobick School of Interactive Computing

CS 4495 Computer Vision A. Bobick. CS 4495 Computer Vision. Features 2 SIFT descriptor. Aaron Bobick School of Interactive Computing CS 4495 Computer Vision Features 2 SIFT descriptor Aaron Bobick School of Interactive Computing Administrivia PS 3: Out due Oct 6 th. Features recap: Goal is to find corresponding locations in two images.

More information

Graph Matching Iris Image Blocks with Local Binary Pattern

Graph Matching Iris Image Blocks with Local Binary Pattern Graph Matching Iris Image Blocs with Local Binary Pattern Zhenan Sun, Tieniu Tan, and Xianchao Qiu Center for Biometrics and Security Research, National Laboratory of Pattern Recognition, Institute of

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

Finger Vein Biometric Approach for Personal Identification Using IRT Feature and Gabor Filter Implementation

Finger Vein Biometric Approach for Personal Identification Using IRT Feature and Gabor Filter Implementation Finger Vein Biometric Approach for Personal Identification Using IRT Feature and Gabor Filter Implementation Sowmya. A (Digital Electronics (MTech), BITM Ballari), Shiva kumar k.s (Associate Professor,

More information

An Acceleration Scheme to The Local Directional Pattern

An Acceleration Scheme to The Local Directional Pattern An Acceleration Scheme to The Local Directional Pattern Y.M. Ayami Durban University of Technology Department of Information Technology, Ritson Campus, Durban, South Africa ayamlearning@gmail.com A. Shabat

More information

Scale Invariant Feature Transform

Scale Invariant Feature Transform Why do we care about matching features? Scale Invariant Feature Transform Camera calibration Stereo Tracking/SFM Image moiaicing Object/activity Recognition Objection representation and recognition Automatic

More information

13 Vectorizing. Overview

13 Vectorizing. Overview 13 Vectorizing Vectorizing tools are used to create vector data from scanned drawings or images. Combined with the display speed of Image Manager, these tools provide an efficient environment for data

More information

An Efficient Single Chord-based Accumulation Technique (SCA) to Detect More Reliable Corners

An Efficient Single Chord-based Accumulation Technique (SCA) to Detect More Reliable Corners An Efficient Single Chord-based Accumulation Technique (SCA) to Detect More Reliable Corners Mohammad Asiful Hossain, Abdul Kawsar Tushar, and Shofiullah Babor Computer Science and Engineering Department,

More information

Recognizing hand-drawn images using shape context

Recognizing hand-drawn images using shape context Recognizing hand-drawn images using shape context Gyozo Gidofalvi Department of Computer Science and Engineering University of California, San Diego La Jolla, CA 92037 gyozo@cs.ucsd.edu Abstract The objective

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY INTELLEGENT APPROACH FOR OFFLINE SIGNATURE VERIFICATION USING CHAINCODE AND ENERGY FEATURE EXTRACTION ON MULTICORE PROCESSOR Raju

More information

CIRCULAR MOIRÉ PATTERNS IN 3D COMPUTER VISION APPLICATIONS

CIRCULAR MOIRÉ PATTERNS IN 3D COMPUTER VISION APPLICATIONS CIRCULAR MOIRÉ PATTERNS IN 3D COMPUTER VISION APPLICATIONS Setiawan Hadi Mathematics Department, Universitas Padjadjaran e-mail : shadi@unpad.ac.id Abstract Geometric patterns generated by superimposing

More information

Rapid Natural Scene Text Segmentation

Rapid Natural Scene Text Segmentation Rapid Natural Scene Text Segmentation Ben Newhouse, Stanford University December 10, 2009 1 Abstract A new algorithm was developed to segment text from an image by classifying images according to the gradient

More information

Lecture 8 Object Descriptors

Lecture 8 Object Descriptors Lecture 8 Object Descriptors Azadeh Fakhrzadeh Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading instructions Chapter 11.1 11.4 in G-W Azadeh Fakhrzadeh

More information

Local Features: Detection, Description & Matching

Local Features: Detection, Description & Matching Local Features: Detection, Description & Matching Lecture 08 Computer Vision Material Citations Dr George Stockman Professor Emeritus, Michigan State University Dr David Lowe Professor, University of British

More information