Polygonal Meshes. Thomas Funkhouser Princeton University COS 526, Fall 2016

Size: px
Start display at page:

Download "Polygonal Meshes. Thomas Funkhouser Princeton University COS 526, Fall 2016"

Transcription

1 Polygonal Meshes Thomas Funkhouser Princeton University COS 526, Fall 2016

2 Digital Geometry Processing Processing of 3D surfaces Creation, acquisition Storage, transmission Editing, animation, simulation Manufacture Analysis Applications Movies, games Computer-aided design Medicine, biology Art, history All fields with 3D data Sweldens

3 Digital Geometry Processing Many possible surface representations Polygonal meshes Parametric surfaces Subdivision surfaces Implicit surfaces etc.

4 Digital Geometry Processing Let s focus on 3D polygonal meshes Simple, common representation Rendering with hardware support Output of many acquisition tools Input to many simulation/analysis tools Stanford Graphics Lab

5 3D Polygonal Meshes Set of polygonal faces representing a 2D surface embedded in 3D Zorin & Schroeder, SIGGRAPH 99, Course Notes

6 3D Polygonal Meshes Set of polygonal faces representing a 2D surface embedded in 3D Edge Face Vertex Zorin & Schroeder, SIGGRAPH 99, Course Notes

7 Outline Acquisition Processing Analysis

8 Outline Acquisition Processing Analysis

9 Polygonal Mesh Acquisition Interactive modeling Polygon editors Interchange formats Scanners Laser range scanners CAT, MRI, etc. (isosurfaces) Simulations Physical processes

10 Polygonal Mesh Acquisition Interactive modeling Polygon editors Interchange formats Scanners Laser range scanners CAT, MRI, etc. (isosurfaces) Simulations Physical processes Sketchup Blender

11 Polygonal Mesh Acquisition Interactive modeling Polygon editors Interchange formats Scanners Laser range scanners CAT, MRI, etc. (isosurfaces) Princeton Shape Benchmark Simulations Physical processes

12 Polygonal Mesh Acquisition Interactive modeling Polygon editors Interchange formats Scanners Laser range scanners CAT, MRI, etc. (isosurfaces) Simulations Physical processes Digital Michelangelo Project Stanford

13 Polygonal Mesh Acquisition Interactive modeling Polygon editors Interchange formats Scanners Laser range scanners CAT, MRI, etc. (isosurfaces) Simulations Physical processes Large Geometric Model Repository Georgia Tech

14 Polygonal Mesh Acquisition Interactive modeling Polygon editors Interchange formats Scanners Laser range scanners CAT, MRI, etc. (isosurfaces) Simulations Physical processes MIT

15 Outline Acquisition Processing Analysis

16 Polygonal Mesh Processing Storage Compression Transmission Analysis Parameterization Differential geometry Feature detection Segmentation Editing Smoothing, sharpening, etc. Deformation Completion

17 Polygonal Mesh Processing Storage Compression Transmission Analysis Parameterization Differential geometry Feature detection Segmentation Editing Smoothing, sharpening, etc. Deformation Completion Lossy Compression (Simplification) Garland

18 Polygonal Mesh Processing Storage Compression Transmission Analysis Parameterization Differential geometry Feature detection Segmentation Editing Smoothing, sharpening, etc. Deformation Completion

19 Polygonal Mesh Processing Storage Compression Transmission Analysis Parameterization Differential geometry Feature detection Segmentation Editing Smoothing, sharpening, etc. Deformation Completion Sheffer

20 Polygonal Mesh Processing Storage Compression Transmission Analysis Parameterization Differential geometry Feature detection Segmentation Editing Smoothing, sharpening, etc. Deformation Completion Sheffer

21 Polygonal Mesh Processing Storage Compression Transmission Analysis Parameterization Differential geometry Feature detection Segmentation Editing Smoothing, sharpening, etc. Deformation Completion Novatnek et al.

22 Polygonal Mesh Processing Storage Compression Transmission Analysis Parameterization Differential geometry Feature detection Segmentation Editing Smoothing, sharpening, etc. Deformation Completion Katz & Tal

23 Polygonal Mesh Processing Storage Compression Transmission Analysis Parameterization Differential geometry Feature detection Segmentation Editing Smoothing, sharpening, etc. Deformation Completion Smoothing Sharpening Desbrun

24 Polygonal Mesh Processing Storage Compression Transmission Analysis Parameterization Differential geometry Feature detection Segmentation Editing Smoothing, sharpening, etc. Deformation Completion Sheffer

25 Polygonal Mesh Processing Storage Compression Transmission Analysis Parameterization Differential geometry Feature detection Segmentation Editing Smoothing, sharpening, etc. Deformation Completion Podolak

26 Outline Acquisition Processing Analysis

27 Mesh Analysis Examples: Feature detection Segmentation Labeling Registration Matching Retrieval Recognition Classification Clustering Functionality

28 Mesh Analysis Examples: Feature detection Segmentation Labeling Registration Matching Retrieval Recognition Classification Clustering Functionality Schelling Points How can we find significant geometric features robustly?

29 Mesh Analysis Examples: Feature detection Segmentation Labeling Registration Matching Retrieval Recognition Classification Clustering Functionality Input Mesh Skeletal Graph How can we decompose a 3D model into its parts?

30 Mesh Analysis Examples: Feature detection Segmentation Labeling Registration Matching Retrieval Recognition Classification Clustering Functionality Engine Fuselage Semantic Labels Images courtesy of Ayellet Tal, Technion & Princeton University Engine Wing Wing (Golovinskiy, Lee, et al.) How can we decompose a 3D model into its parts?

31 Mesh Analysis Examples: Feature detection Segmentation Labeling Registration Matching Retrieval Recognition Classification Clustering Functionality Images courtesy of Emil Praun How can we align features of 3D models?

32 Mesh Analysis Examples: Feature detection Segmentation Labeling Registration Matching Retrieval Recognition Classification Clustering Functionality How can we compute a measure of geometric similarity?

33 Written Exercise 3

34 Mesh Analysis Examples: Feature detection Segmentation Labeling Registration Matching Retrieval Recognition Classification Clustering Functionality Harmonic Shape Descriptors How can we find similar 3D shapes in a database?

35 Mesh Analysis Examples: Feature detection Segmentation Labeling Registration Matching Retrieval Recognition Classification Clustering Functionality Images courtesy of Florida State Univ. How can we find a given 3D model in a large database?

36 Mesh Analysis Examples: Feature detection Segmentation Labeling Registration Matching Retrieval Recognition Classification Clustering Functionality Query Images courtesy of Darpa E3D Project Classes How can we determine the class of a 3D model?

37 Mesh Analysis Examples: Feature detection Segmentation Labeling Registration Matching Retrieval Recognition Classification Clustering Functionality Images courtesy of Viewpoint How can we learn classes of 3D models automatically?

38 Mesh Analysis Examples: Feature detection Segmentation Labeling Registration Matching Retrieval Recognition Classification Clustering Functionality Can we predict how an object might be used?

39 Programming Assignment 3

40 Upcoming Lectures Mesh representation Mesh processing Mesh analysis

Polygonal Meshes. 3D Object Representations. 3D Object Representations. 3D Polygonal Mesh. 3D Polygonal Mesh. Geometry background

Polygonal Meshes. 3D Object Representations. 3D Object Representations. 3D Polygonal Mesh. 3D Polygonal Mesh. Geometry background 3D Object Representations Polygonal Meshes Adam Finkelstein & Tim Weyrich Princeton University C0S 426, Spring 2008 Points o Range image o Point cloud Surfaces o Polygonal mesh o Subdivision o Parametric

More information

Shape Analysis. Introduction. Introduction. Motivation. Introduction. Introduction. Thomas Funkhouser Princeton University CS526, Fall 2006

Shape Analysis. Introduction. Introduction. Motivation. Introduction. Introduction. Thomas Funkhouser Princeton University CS526, Fall 2006 Introduction Cyberware, ATI, & 3Dcafe Analysis Thomas Funkhouser Princeton University CS526, Fall 2006 Cyberware Cheap Scanners ATI Fast Graphics Cards 3D Cafe World Wide Web Someday 3D models will be

More information

Multiresolution Meshes. COS 526 Tom Funkhouser, Fall 2016 Slides by Guskov, Praun, Sweldens, etc.

Multiresolution Meshes. COS 526 Tom Funkhouser, Fall 2016 Slides by Guskov, Praun, Sweldens, etc. Multiresolution Meshes COS 526 Tom Funkhouser, Fall 2016 Slides by Guskov, Praun, Sweldens, etc. Motivation Huge meshes are difficult to render store transmit edit Multiresolution Meshes! [Guskov et al.]

More information

Overview of 3D Object Representations

Overview of 3D Object Representations Overview of 3D Object Representations Thomas Funkhouser Princeton University C0S 426, Fall 2000 Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman,

More information

3D Modeling I. CG08b Lior Shapira Lecture 8. Based on: Thomas Funkhouser,Princeton University. Thomas Funkhouser 2000

3D Modeling I. CG08b Lior Shapira Lecture 8. Based on: Thomas Funkhouser,Princeton University. Thomas Funkhouser 2000 3D Modeling I CG08b Lior Shapira Lecture 8 Based on: Thomas Funkhouser,Princeton University Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman,

More information

Overview of 3D Object Representations

Overview of 3D Object Representations Overview of 3D Object Representations Thomas Funkhouser Princeton University C0S 597D, Fall 2003 3D Object Representations What makes a good 3D object representation? Stanford and Hearn & Baker 1 3D Object

More information

Lecture 3 Mesh. Dr. Shuang LIANG. School of Software Engineering Tongji University Spring 2013

Lecture 3 Mesh. Dr. Shuang LIANG. School of Software Engineering Tongji University Spring 2013 Lecture 3 Mesh Dr. Shuang LIANG School of Software Engineering Tongji University Spring 2013 Today s Topics Overview Mesh Acquisition Mesh Data Structures Subdivision Surfaces Today s Topics Overview Mesh

More information

Introduction and Overview

Introduction and Overview CS 523: Computer Graphics, Spring 2009 Shape Modeling Introduction and Overview 1/28/2009 1 Geometric Modeling To describe any reallife object on the computer must start with shape (2D/3D) Geometry processing

More information

Geometric Modeling For Computer Graphics

Geometric Modeling For Computer Graphics Geometric Modeling For Computer Graphics Thomas Funkhouser Princeton University C0S 598B, Spring 2000 Hypothesis 3D models will become ubiquitous (eventually) Laser range scanners World Wide Web Fast graphics

More information

Subdivision Surfaces. Course Syllabus. Course Syllabus. Modeling. Equivalence of Representations. 3D Object Representations

Subdivision Surfaces. Course Syllabus. Course Syllabus. Modeling. Equivalence of Representations. 3D Object Representations Subdivision Surfaces Adam Finkelstein Princeton University COS 426, Spring 2003 Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman, CS426, Fall99)

More information

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo Geometric Modeling Bing-Yu Chen National Taiwan University The University of Tokyo What are 3D Objects? 3D Object Representations What are 3D objects? The Graphics Process 3D Object Representations Raw

More information

CS 532: 3D Computer Vision 12 th Set of Notes

CS 532: 3D Computer Vision 12 th Set of Notes 1 CS 532: 3D Computer Vision 12 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Meshes Slides

More information

Polygonal Mesh. Geometric object made of vertices, edges and faces. Faces are polygons. Polyhedron. Triangular mesh Quad mesh. Pyramid Cube Sphere (?

Polygonal Mesh. Geometric object made of vertices, edges and faces. Faces are polygons. Polyhedron. Triangular mesh Quad mesh. Pyramid Cube Sphere (? 1 Mesh Modeling Polygonal Mesh Geometric object made of vertices, edges and faces Polyhedron Pyramid Cube Sphere (?) Can also be 2D (although much less interesting) Faces are polygons Triangular mesh Quad

More information

3D Object Representation. Michael Kazhdan ( /657)

3D Object Representation. Michael Kazhdan ( /657) 3D Object Representation Michael Kazhdan (601.457/657) 3D Objects How can this object be represented in a computer? 3D Objects This one? H&B Figure 10.46 3D Objects This one? H&B Figure 9.9 3D Objects

More information

3D Object Representations. COS 526, Fall 2016 Princeton University

3D Object Representations. COS 526, Fall 2016 Princeton University 3D Object Representations COS 526, Fall 2016 Princeton University 3D Object Representations How do we... Represent 3D objects in a computer? Acquire computer representations of 3D objects? Manipulate computer

More information

Cloning Skeleton-driven Animation to Other Models

Cloning Skeleton-driven Animation to Other Models Cloning Skeleton-driven Animation to Other Models Wan-Chi Luo Jian-Bin Huang Bing-Yu Chen Pin-Chou Liu National Taiwan University {maggie, azar, toby}@cmlab.csie.ntu.edu.tw robin@ntu.edu.tw Abstract-3D

More information

Computer Graphics. CS52 Fall computer graphics introduction 2006 fabio pellacini 1

Computer Graphics. CS52 Fall computer graphics introduction 2006 fabio pellacini 1 Computer Graphics CS52 Fall 2006 computer graphics introduction 2006 fabio pellacini 1 introduction computer graphics introduction 2006 fabio pellacini 2 Computer Graphics: the study of creating images

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics CS 5620 Fall 2015 www.youtube.com/watch?v=hjhic0mt4ts 3 Computer Graphics Synthesis of static/dynamic 2D images from 3D geometry using computers Teaching Staff Lecturer: Prof. Craig Gotsman Class: Mon

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics 1/15

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics 1/15 Describing Shapes Constructing Objects in Computer Graphics 1/15 2D Object Definition (1/3) Lines and polylines: Polylines: lines drawn between ordered points A closed polyline is a polygon, a simple polygon

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces CS 4620 Lecture 31 Cornell CS4620 Fall 2015 1 Administration A5 due on Friday Dreamworks visiting Thu/Fri Rest of class Surfaces, Animation, Rendering w/ prior instructor Steve Marschner

More information

Data driven 3D shape analysis and synthesis

Data driven 3D shape analysis and synthesis Data driven 3D shape analysis and synthesis Head Neck Torso Leg Tail Ear Evangelos Kalogerakis UMass Amherst 3D shapes for computer aided design Architecture Interior design 3D shapes for information visualization

More information

Advanced Computer Graphics

Advanced Computer Graphics Advanced Computer Graphics Lecture 2: Modeling (1): Polygon Meshes Bernhard Jung TU-BAF, Summer 2007 Overview Computer Graphics Icon: Utah teapot Polygon Meshes Subdivision Polygon Mesh Optimization high-level:

More information

3D Shape Analysis with Multi-view Convolutional Networks. Evangelos Kalogerakis

3D Shape Analysis with Multi-view Convolutional Networks. Evangelos Kalogerakis 3D Shape Analysis with Multi-view Convolutional Networks Evangelos Kalogerakis 3D model repositories [3D Warehouse - video] 3D geometry acquisition [KinectFusion - video] 3D shapes come in various flavors

More information

3/1/2010. Acceleration Techniques V1.2. Goals. Overview. Based on slides from Celine Loscos (v1.0)

3/1/2010. Acceleration Techniques V1.2. Goals. Overview. Based on slides from Celine Loscos (v1.0) Acceleration Techniques V1.2 Anthony Steed Based on slides from Celine Loscos (v1.0) Goals Although processor can now deal with many polygons (millions), the size of the models for application keeps on

More information

Course Web Site ENGN2501 DIGITAL GEOMETRY PROCESSING. Tue & Thu Barus&Holley 157

Course Web Site ENGN2501 DIGITAL GEOMETRY PROCESSING. Tue & Thu Barus&Holley 157 ENGN2501 DIGITAL GEOMETRY PROCESSING Tue & Thu 2:30-3:50 @ Barus&Holley 157 Instructor: Gabriel Taubin http://mesh.brown.edu/dgp } Polygon Meshes / Point Clouds } Representation / Data

More information

CS337 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics. Bin Sheng Representing Shape 9/20/16 1/15

CS337 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics. Bin Sheng Representing Shape 9/20/16 1/15 Describing Shapes Constructing Objects in Computer Graphics 1/15 2D Object Definition (1/3) Lines and polylines: Polylines: lines drawn between ordered points A closed polyline is a polygon, a simple polygon

More information

Computer Graphics. CS52 Winter computer graphics introduction 2008 fabio pellacini 1. introduction

Computer Graphics. CS52 Winter computer graphics introduction 2008 fabio pellacini 1. introduction Computer Graphics CS52 Winter 2008 computer graphics introduction 2008 fabio pellacini 1 introduction computer graphics introduction 2008 fabio pellacini 2 Computer Graphics: the study of creating images

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 17 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Geometric Registration for Deformable Shapes 1.1 Introduction

Geometric Registration for Deformable Shapes 1.1 Introduction Geometric Registration for Deformable Shapes 1.1 Introduction Overview Data Sources and Applications Problem Statement Overview Presenters Will Chang University of California at San Diego, USA Hao Li ETH

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 15 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

3-Dimensional Object Modeling with Mesh Simplification Based Resolution Adjustment

3-Dimensional Object Modeling with Mesh Simplification Based Resolution Adjustment 3-Dimensional Object Modeling with Mesh Simplification Based Resolution Adjustment Özgür ULUCAY Sarp ERTÜRK University of Kocaeli Electronics & Communication Engineering Department 41040 Izmit, Kocaeli

More information

Statistics and Information Technology

Statistics and Information Technology Statistics and Information Technology Werner Stuetzle Professor and Chair, Statistics Adjunct Professor, Computer Science and Engineering University of Washington Prepared for NSF Workshop on Statistics:

More information

Preparation Meeting. Recent Advances in the Analysis of 3D Shapes. Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers

Preparation Meeting. Recent Advances in the Analysis of 3D Shapes. Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers Preparation Meeting Recent Advances in the Analysis of 3D Shapes Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers What You Will Learn in the Seminar Get an overview on state of the art

More information

Making Machines See. Roberto Cipolla Department of Engineering. Research team

Making Machines See. Roberto Cipolla Department of Engineering. Research team Making Machines See Roberto Cipolla Department of Engineering Research team http://www.eng.cam.ac.uk/~cipolla/people.html Cognitive Systems Engineering Cognitive Systems Engineering Introduction Making

More information

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Vertex Clustering. Mesh Simplification Overview

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Vertex Clustering. Mesh Simplification Overview Mesh Simplification Mesh Simplification Adam Finkelstein Princeton University COS 56, Fall 008 Slides from: Funkhouser Division, Viewpoint, Cohen Mesh Simplification Motivation Interactive visualization

More information

CSE452 Computer Graphics

CSE452 Computer Graphics CSE452 Computer Graphics Lecture 19: From Morphing To Animation Capturing and Animating Skin Deformation in Human Motion, Park and Hodgins, SIGGRAPH 2006 CSE452 Lecture 19: From Morphing to Animation 1

More information

Triangle meshes I. CS 4620 Lecture Kavita Bala (with previous instructor Marschner) Cornell CS4620 Fall 2015 Lecture 2

Triangle meshes I. CS 4620 Lecture Kavita Bala (with previous instructor Marschner) Cornell CS4620 Fall 2015 Lecture 2 Triangle meshes I CS 4620 Lecture 2 1 Shape http://fc00.deviantart.net/fs70/f/2014/220/5/3/audi_r8_render_by_smiska333-d7u9pjt.jpg spheres Andrzej Barabasz approximate sphere Rineau & Yvinec CGAL manual

More information

3D Modeling techniques

3D Modeling techniques 3D Modeling techniques 0. Reconstruction From real data (not covered) 1. Procedural modeling Automatic modeling of a self-similar objects or scenes 2. Interactive modeling Provide tools to computer artists

More information

An Introduction to Geometric Modeling using Polygonal Meshes

An Introduction to Geometric Modeling using Polygonal Meshes An Introduction to Geometric Modeling using Polygonal Meshes Joaquim Madeira Version 0.2 October 2014 U. Aveiro, October 2014 1 Main topics CG and affine areas Geometric Modeling Polygonal meshes Exact

More information

Mesh Decimation Using VTK

Mesh Decimation Using VTK Mesh Decimation Using VTK Michael Knapp knapp@cg.tuwien.ac.at Institute of Computer Graphics and Algorithms Vienna University of Technology Abstract This paper describes general mesh decimation methods

More information

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations Subdivision Surface based One-Piece Representation Shuhua Lai Department of Computer Science, University of Kentucky Outline. Introduction. Parametrization of General CCSSs 3. One-Piece through Interpolation

More information

Discovering Similarities in 3D Data

Discovering Similarities in 3D Data Discovering Similarities in 3D Data Vladimir Kim, Tianqiang Liu, Sid Chaudhuri, Steve Diverdi, Wilmot Li, Niloy Mitra, Yaron Lipman, Thomas Funkhouser Motivation 3D data is widely available Medicine Mechanical

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] November 20, 2003 Doug James Carnegie Mellon University http://www.cs.cmu.edu/~djames/15-462/fall03

More information

Solid Modeling. Thomas Funkhouser Princeton University C0S 426, Fall Represent solid interiors of objects

Solid Modeling. Thomas Funkhouser Princeton University C0S 426, Fall Represent solid interiors of objects Solid Modeling Thomas Funkhouser Princeton University C0S 426, Fall 2000 Solid Modeling Represent solid interiors of objects Surface may not be described explicitly Visible Human (National Library of Medicine)

More information

Parameterization of Triangular Meshes with Virtual Boundaries

Parameterization of Triangular Meshes with Virtual Boundaries Parameterization of Triangular Meshes with Virtual Boundaries Yunjin Lee 1;Λ Hyoung Seok Kim 2;y Seungyong Lee 1;z 1 Department of Computer Science and Engineering Pohang University of Science and Technology

More information

Parametric description

Parametric description Examples: surface of revolution Vase Torus Parametric description Parameterization for a subdivision curve Modeling Polygonal meshes Graphics I Faces Face based objects: Polygonal meshes OpenGL is based

More information

Physically-Based Modeling and Animation. University of Missouri at Columbia

Physically-Based Modeling and Animation. University of Missouri at Columbia Overview of Geometric Modeling Overview 3D Shape Primitives: Points Vertices. Curves Lines, polylines, curves. Surfaces Triangle meshes, splines, subdivision surfaces, implicit surfaces, particles. Solids

More information

CMSC 491A/691A Artistic Rendering. Announcements

CMSC 491A/691A Artistic Rendering. Announcements CMSC 491A/691A Artistic Rendering Penny Rheingans UMBC Announcements Lab meeting: Tues 2pm, ITE 352, starting next week Proposal due Thurs 1 Shape Cues: Outlines Outline flat parts Outline important boundaries

More information

Cut-and-Paste Editing of Multiresolution Surfaces

Cut-and-Paste Editing of Multiresolution Surfaces Cut-and-Paste Editing of Multiresolution Surfaces Henning Biermann, Ioana Martin, Fausto Bernardini, Denis Zorin NYU Media Research Lab IBM T. J. Watson Research Center Surface Pasting Transfer geometry

More information

EECS 487: Interactive Computer Graphics

EECS 487: Interactive Computer Graphics EECS 487: Interactive Computer Graphics Lecture 36: Polygonal mesh simplification The Modeling-Rendering Paradigm Modeler: Modeling complex shapes no equation for a chair, face, etc. instead, achieve complexity

More information

Polygon Meshes and Implicit Surfaces

Polygon Meshes and Implicit Surfaces CSCI 420 Computer Graphics Lecture 9 Polygon Meshes and Implicit Surfaces Polygon Meshes Implicit Surfaces Constructive Solid Geometry [Angel Ch. 10] Jernej Barbic University of Southern California 1 Modeling

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 15, 2003 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Polygon Meshes and Implicit Surfaces

Polygon Meshes and Implicit Surfaces CSCI 420 Computer Graphics Lecture 9 and Constructive Solid Geometry [Angel Ch. 10] Jernej Barbic University of Southern California Modeling Complex Shapes An equation for a sphere is possible, but how

More information

3D Object Representation

3D Object Representation 3D Object Representation Connelly Barnes CS 4810: Graphics Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin 3D Object Representation

More information

Advanced Graphics

Advanced Graphics 320491 Advanced Graphics Prof. Dr.-Ing. Lars Linsen Spring 2015 0. Introduction 320491: Advanced Graphics - Chapter 1 2 0.1 Syllabus 320491: Advanced Graphics - Chapter 1 3 Course Website http://www.faculty.jacobsuniversity.de/llinsen/teaching/320491.htm

More information

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 2.11] Jernej Barbic University of Southern California Scientific Visualization

More information

Visualization. CSCI 420 Computer Graphics Lecture 26

Visualization. CSCI 420 Computer Graphics Lecture 26 CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 11] Jernej Barbic University of Southern California 1 Scientific Visualization

More information

o Represent 3D objects in a computer? o Manipulate 3D objects with a computer? o CAD programs o Subdivision surface editors :)

o Represent 3D objects in a computer? o Manipulate 3D objects with a computer? o CAD programs o Subdivision surface editors :) Modeling How do we... o Represent 3D objects in a computer? Procedural Modeling Adam Finkelstein Princeton University COS 426, Spring 2003 o Construct such representations quickly and/or automatically

More information

Implicit Surfaces & Solid Representations COS 426

Implicit Surfaces & Solid Representations COS 426 Implicit Surfaces & Solid Representations COS 426 3D Object Representations Desirable properties of an object representation Easy to acquire Accurate Concise Intuitive editing Efficient editing Efficient

More information

Normal Mesh Compression

Normal Mesh Compression Normal Mesh Compression Andrei Khodakovsky Caltech 549B (e:54, p:45db) 1225B (e:20, p:54db) Igor Guskov Caltech 3037B (e:8.1, p:62db) 18111B (e:1.77, p:75db) original Figure 1: Partial reconstructions

More information

11/1/13. Polygon Meshes and Implicit Surfaces. Shape Representations. Polygon Models in OpenGL. Modeling Complex Shapes

11/1/13. Polygon Meshes and Implicit Surfaces. Shape Representations. Polygon Models in OpenGL. Modeling Complex Shapes CSCI 420 Computer Graphics Lecture 7 and Constructive Solid Geometry [Angel Ch. 12.1-12.3] Jernej Barbic University of Southern California Modeling Complex Shapes An equation for a sphere is possible,

More information

and Recent Extensions Progressive Meshes Progressive Meshes Multiresolution Surface Modeling Multiresolution Surface Modeling Hugues Hoppe

and Recent Extensions Progressive Meshes Progressive Meshes Multiresolution Surface Modeling Multiresolution Surface Modeling Hugues Hoppe Progressive Meshes Progressive Meshes and Recent Extensions Hugues Hoppe Microsoft Research SIGGRAPH 97 Course SIGGRAPH 97 Course Multiresolution Surface Modeling Multiresolution Surface Modeling Meshes

More information

CS 283: Assignment 1 Geometric Modeling and Mesh Simplification

CS 283: Assignment 1 Geometric Modeling and Mesh Simplification CS 283: Assignment 1 Geometric Modeling and Mesh Simplification Ravi Ramamoorthi 1 Introduction This assignment is about triangle meshes as a tool for geometric modeling. As the complexity of models becomes

More information

Recognizing Deformable Shapes. Salvador Ruiz Correa UW Ph.D. Graduate Researcher at Children s Hospital

Recognizing Deformable Shapes. Salvador Ruiz Correa UW Ph.D. Graduate Researcher at Children s Hospital Recognizing Deformable Shapes Salvador Ruiz Correa UW Ph.D. Graduate Researcher at Children s Hospital Input 3-D Object Goal We are interested in developing algorithms for recognizing and classifying deformable

More information

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University 15-462 Computer Graphics I Lecture 21 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

CS 395T Numerical Optimization for Graphics and AI (3D Vision) Qixing Huang August 29 th 2018

CS 395T Numerical Optimization for Graphics and AI (3D Vision) Qixing Huang August 29 th 2018 CS 395T Numerical Optimization for Graphics and AI (3D Vision) Qixing Huang August 29 th 2018 3D Vision Understanding geometric relations between images and the 3D world between images Obtaining 3D information

More information

Recognizing Deformable Shapes. Salvador Ruiz Correa Ph.D. Thesis, Electrical Engineering

Recognizing Deformable Shapes. Salvador Ruiz Correa Ph.D. Thesis, Electrical Engineering Recognizing Deformable Shapes Salvador Ruiz Correa Ph.D. Thesis, Electrical Engineering Basic Idea Generalize existing numeric surface representations for matching 3-D objects to the problem of identifying

More information

Brain Surface Conformal Spherical Mapping

Brain Surface Conformal Spherical Mapping Brain Surface Conformal Spherical Mapping Min Zhang Department of Industrial Engineering, Arizona State University mzhang33@asu.edu Abstract It is well known and proved that any genus zero surface can

More information

CSE 554 Lecture 7: Deformation II

CSE 554 Lecture 7: Deformation II CSE 554 Lecture 7: Deformation II Fall 2011 CSE554 Deformation II Slide 1 Review Rigid-body alignment Non-rigid deformation Intrinsic methods: deforming the boundary points An optimization problem Minimize

More information

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662 Geometry Processing & Geometric Queries Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: fans,

More information

NormalShop: Modeling surface mesostructure

NormalShop: Modeling surface mesostructure NormalShop: Modeling surface mesostructure Thiago Pereira Luiz Velho IMPA - Instituto de Matematica Pura e Aplicada Abstract Normals 1 have been used in geometry acquisition and rendering for years. However,

More information

Computer Graphics Introduction. Taku Komura

Computer Graphics Introduction. Taku Komura Computer Graphics Introduction Taku Komura What s this course all about? We will cover Graphics programming and algorithms Graphics data structures Applied geometry, modeling and rendering Not covering

More information

Recognizing Deformable Shapes. Salvador Ruiz Correa (CSE/EE576 Computer Vision I)

Recognizing Deformable Shapes. Salvador Ruiz Correa (CSE/EE576 Computer Vision I) Recognizing Deformable Shapes Salvador Ruiz Correa (CSE/EE576 Computer Vision I) Input 3-D Object Goal We are interested in developing algorithms for recognizing and classifying deformable object shapes

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 6. Mesh Simplification Problems High resolution meshes becoming increasingly available 3D active scanners Computer

More information

Triangle meshes I. CS 4620 Lecture 2

Triangle meshes I. CS 4620 Lecture 2 Triangle meshes I CS 4620 Lecture 2 2014 Steve Marschner 1 spheres Andrzej Barabasz approximate sphere Rineau & Yvinec CGAL manual 2014 Steve Marschner 2 finite element analysis PATRIOT Engineering 2014

More information

COMP30019 Graphics and Interaction Rendering pipeline & object modelling

COMP30019 Graphics and Interaction Rendering pipeline & object modelling COMP30019 Graphics and Interaction Rendering pipeline & object modelling Department of Computer Science and Software Engineering The Lecture outline Introduction to Modelling Polygonal geometry The rendering

More information

Lecture outline. COMP30019 Graphics and Interaction Rendering pipeline & object modelling. Introduction to modelling

Lecture outline. COMP30019 Graphics and Interaction Rendering pipeline & object modelling. Introduction to modelling Lecture outline COMP30019 Graphics and Interaction Rendering pipeline & object modelling Department of Computer Science and Software Engineering The Introduction to Modelling Polygonal geometry The rendering

More information

Su et al. Shape Descriptors - III

Su et al. Shape Descriptors - III Su et al. Shape Descriptors - III Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 Funkhouser; Feng, Liu, Gong Recap Global A shape descriptor is a set of numbers that describes a shape in a way that

More information

Registration of Dynamic Range Images

Registration of Dynamic Range Images Registration of Dynamic Range Images Tan-Chi Ho 1,2 Jung-Hong Chuang 1 Wen-Wei Lin 2 Song-Sun Lin 2 1 Department of Computer Science National Chiao-Tung University 2 Department of Applied Mathematics National

More information

Curves and Surfaces Computer Graphics I Lecture 10

Curves and Surfaces Computer Graphics I Lecture 10 15-462 Computer Graphics I Lecture 10 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] September 30, 2003 Doug James Carnegie

More information

Example-Based Skeleton Extraction. Scott Schaefer Can Yuksel

Example-Based Skeleton Extraction. Scott Schaefer Can Yuksel Example-Based Skeleton Extraction Scott Schaefer Can Yuksel Example-Based Deformation Examples Previous Work Mesh-based Inverse Kinematics [Sumner et al. 2005], [Der et al. 2006] Example-based deformation

More information

polygon meshes polygon meshes representation

polygon meshes polygon meshes representation polygon meshes computer graphics polygon meshes 2009 fabio pellacini 1 polygon meshes representation which representation is good? often triangles/quads only will work on triangles compact efficient for

More information

IBM Pietà 3D Scanning Project :

IBM Pietà 3D Scanning Project : The IBM Pieta Project: A Historical Perspective Gabriel Taubin Brown University IBM Pietà 3D Scanning Project : 1998-2000 Shape Appearance http://www.research.ibm.com/pieta IBM Visual and Geometric Computing

More information

ERC Expressive Seminar

ERC Expressive Seminar ERC Expressive Seminar March 7th - 2013 Models and Intuitive Modeling Loïc Barthe VORTEX group IRIT Université de Toulouse Plan Context and introduction Intuitive modeling Modeling with meshes only Other

More information

Shape Classification and Cell Movement in 3D Matrix Tutorial (Part I)

Shape Classification and Cell Movement in 3D Matrix Tutorial (Part I) Shape Classification and Cell Movement in 3D Matrix Tutorial (Part I) Fred Park UCI icamp 2011 Outline 1. Motivation and Shape Definition 2. Shape Descriptors 3. Classification 4. Applications: Shape Matching,

More information

Multiresolution Remeshing Using Weighted Centroidal Voronoi Diagram

Multiresolution Remeshing Using Weighted Centroidal Voronoi Diagram Multiresolution Remeshing Using Weighted Centroidal Voronoi Diagram Chao-Hung Lin 1, Chung-Ren Yan 2, Ji-Hsen Hsu 2, and Tong-Yee Lee 2 1 Dept. of Geomatics, National Cheng Kung University, Taiwan 2 Dept.

More information

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION Dan Englesson danen344@student.liu.se Sunday 12th April, 2011 Abstract In this lab assignment which was done in the course TNM079, Modeling and animation,

More information

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 A Developer s Survey of Polygonal Simplification algorithms CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 Some questions to ask Why simplification? What are my models like? What matters

More information

Motivation. towards more realism. + Texture Mapping Texture Mapping

Motivation. towards more realism. + Texture Mapping Texture Mapping Texture Mapping Wireframe Model + Lighting & Shading Motivation + Texture Mapping http://www.3drender.com/jbirn/productions.html towards more realism 2 Idea Add surface detail without raising geometric

More information

Graphics. Automatic Efficient to compute Smooth Low-distortion Defined for every point Aligns semantic features. Other disciplines

Graphics. Automatic Efficient to compute Smooth Low-distortion Defined for every point Aligns semantic features. Other disciplines Goal: Find a map between surfaces Blended Intrinsic Maps Vladimir G. Kim Yaron Lipman Thomas Funkhouser Princeton University Goal: Find a map between surfaces Automatic Efficient to compute Smooth Low-distortion

More information

Generating 3D Meshes from Range Data

Generating 3D Meshes from Range Data Princeton University COS598B Lectures on 3D Modeling Generating 3D Meshes from Range Data Robert Kalnins Robert Osada Overview Range Images Optical Scanners Error sources and solutions Range Surfaces Mesh

More information

Object representation

Object representation Object representation Geri s Game Pixar 1997 Subdivision surfaces Polhemus 3d scan Over 700 controls 2 Computer Graphics Quick test #1 Describe the picture Graphical systems, visualization and multimedia

More information

Digital Geometry Processing

Digital Geometry Processing Digital Geometry Processing 1. Research Team Project Leader: Graduate Students: Industrial Partner(s): Prof. Mathieu Desbrun, Computer Science Sean Cahill, Maithili Dandige, Ilya Eckstein, Yiying Tong

More information

Modeling. Simulating the Everyday World

Modeling. Simulating the Everyday World Modeling Simulating the Everyday World Three broad areas: Modeling (Geometric) = Shape Animation = Motion/Behavior Rendering = Appearance Page 1 Geometric Modeling 1. How to represent 3d shapes Polygonal

More information

Image-based modeling (IBM) and image-based rendering (IBR)

Image-based modeling (IBM) and image-based rendering (IBR) Image-based modeling (IBM) and image-based rendering (IBR) CS 248 - Introduction to Computer Graphics Autumn quarter, 2005 Slides for December 8 lecture The graphics pipeline modeling animation rendering

More information

Curves & Surfaces. Last Time? Progressive Meshes. Selective Refinement. Adjacency Data Structures. Mesh Simplification. Mesh Simplification

Curves & Surfaces. Last Time? Progressive Meshes. Selective Refinement. Adjacency Data Structures. Mesh Simplification. Mesh Simplification Last Time? Adjacency Data Structures Curves & Surfaces Geometric & topologic information Dynamic allocation Efficiency of access Mesh Simplification edge collapse/vertex split geomorphs progressive transmission

More information

APPROACH FOR MESH OPTIMIZATION AND 3D WEB VISUALIZATION

APPROACH FOR MESH OPTIMIZATION AND 3D WEB VISUALIZATION APPROACH FOR MESH OPTIMIZATION AND 3D WEB VISUALIZATION Pavel I. Hristov 1, Emiliyan G. Petkov 2 1 Pavel I. Hristov Faculty of Mathematics and Informatics, St. Cyril and St. Methodius University, Veliko

More information

Compu&ng Correspondences in Geometric Datasets. 4.2 Symmetry & Symmetriza/on

Compu&ng Correspondences in Geometric Datasets. 4.2 Symmetry & Symmetriza/on Compu&ng Correspondences in Geometric Datasets 4.2 Symmetry & Symmetriza/on Symmetry Invariance under a class of transformations Reflection Translation Rotation Reflection + Translation + global vs. partial

More information

Recognizing Deformable Shapes. Salvador Ruiz Correa Ph.D. UW EE

Recognizing Deformable Shapes. Salvador Ruiz Correa Ph.D. UW EE Recognizing Deformable Shapes Salvador Ruiz Correa Ph.D. UW EE Input 3-D Object Goal We are interested in developing algorithms for recognizing and classifying deformable object shapes from range data.

More information