CSE 554 Lecture 7: Deformation II

Size: px
Start display at page:

Download "CSE 554 Lecture 7: Deformation II"

Transcription

1 CSE 554 Lecture 7: Deformation II Fall 2011 CSE554 Deformation II Slide 1 Review Rigid-body alignment Non-rigid deformation Intrinsic methods: deforming the boundary points An optimization problem Minimize shape distortion Maximize fit Example: Laplacian-based deformation Before After Source Target CSE554 Deformation II Slide 2 1

2 Extrinsic Deformation Computing deformation of each point in the plane or volume Not just points on the boundary curve or surface Credits: Adams and Nistri, BMC Evolutionary Biology (2010) CSE554 Deformation II Slide 3 Extrinsic Deformation Applications Registering contents between images and volumes Interactive spatial deformation CSE554 Deformation II Slide 4 2

3 Techniques Thin-plate spline deformation Free form deformation Cage-based deformation CSE554 Deformation II Slide 5 Thin-Plate Spline Given corresponding source and target points Computes a spatial deformation function for every point in the 2D plane or 3D volume Credits: Sprengel et al, EMBS (1996) CSE554 Deformation II Slide 6 3

4 Thin-Plate Spline A minimization problem Minimizing distances between source and target points Minimizing distortion of the space (as if bending a thin sheet of metal) There is a closed-form solution Solving a linear system of equations CSE554 Deformation II Slide 7 Thin-Plate Spline Input p i q i Source points: p 1,,p n Target points: q 1,,q n Output p A deformation function f[p] for any point p f[p] CSE554 Deformation II Slide 8 4

5 Thin-Plate Spline Minimization formulation E E f E d E f : fitting term Measures how close is the deformed source to the target E d : distortion term Measures how much the space is warped l: weight Controls how much non-rigid warping is allowed CSE554 Deformation II Slide 9 Thin-Plate Spline Fitting term Minimizing sum of squared distances between deformed source points and target points n E f f p i q i 2 i 1 CSE554 Deformation II Slide 10 5

6 Thin-Plate Spline Distortion term Minimizing a physical bending energy on a metal sheet (2D): E d 2 f x f x y 2 2 f y x y The energy is zero when the deformation is affine Translation, rotation, scaling, shearing CSE554 Deformation II Slide 11 Thin-Plate Spline Finding the minimizer for E E f E d Uniquely exists, and has a closed form: n f p M p p p i v i i 1 where r r 2 Log r M: an affine transformation matrix v i : deformation vectors Both M and v i are determined by p i,q i,l r CSE554 Deformation II Slide 12 6

7 Thin-Plate Spline Result At higher l, the deformation is closer to an affine transformation 0 Credits: Sprengel et al, EMBS (1996) CSE554 Deformation II Slide 13 Thin-Plate Spline Application: image registration Manual or automatic feature pair detection Source Target Deformed source Credits: Rohr et al, TMI (2001) CSE554 Deformation II Slide 14 7

8 Thin-Plate Spline Advantages Smooth deformations, with physical analogy Closed-form solution Few free parameters (no tuning is required) Disadvantages Solving the equations still takes time (hence cannot perform Interactive deformation) CSE554 Deformation II Slide 15 Free Form Deformation Uses a control lattice that embeds the shape Deforming the lattice points warps the embedded shape Credits: Sederberg and Parry, SIGGRAPH (1986) CSE554 Deformation II Slide 16 8

9 Free Form Deformation Warping the space by blending the deformation at the control points Each deformed point is a weighted sum of deformed lattice points CSE554 Deformation II Slide 17 Free Form Deformation Input Source lattice points: p 1,,p n Target lattice points: q 1,,q n Output A deformation function f[p] for any point p in the lattice grid: p f[p] n f p w i p q i i 1 p i q i w i [p]: determined by relative position of p with respect to p i CSE554 Deformation II Slide 18 9

10 Free Form Deformation Desirable properties of the weights w i [p] Greater when p is closer to p i So that the influence of each control point is local Smoothly varies with location of p So that the deformation is smooth p f[p] n 1 w i p i 1 So that f[p] = S w i [p] q i is an affine combination of q i p i q i n p w i p p i i 1 So that f[p]=p if the lattice stays unchanged CSE554 Deformation II Slide 19 Free Form Deformation Finding weights (2D) Let the lattice points be p i,j for i=0,,k and j=0,,l Compute p s relative location in the grid (s,t) p 0,2 p 1,2 p 2,2 p 3,2 Let (x min,x max ), (y min,y max ) be the range of grid t p p 0,1 p 1,1 p 2,1 p 3,1 s p x x min x max x min t p y y min y max y min p 0,0 p 1,0 s p 2,0 p 3,0 CSE554 Deformation II Slide 20 10

11 Free Form Deformation Finding weights (2D) Let the lattice points be p i,j for i=0,,k and j=0,,l Compute p s relative location in the grid (s,t) p 0,2 p 1,2 p 2,2 p 3,2 The weight w i,j for lattice point p i,j is: t p u i,j p i,j B i k s B j l t p 0,1 p 1,1 p 2,1 p 3,1 w i,j p k i 0 u i,j p l j 0 u i,j p p 0,0 p 1,0 s p 2,0 p 3,0 l i,j : importance of p i,j B: Bernstein basis function: B i k s k i si 1 s k i CSE554 Deformation II Slide 21 Free Form Deformation Finding weights (2D) Weight distribution for one control point (max at that control point): w 1,1 p p 3,2 p 3,1 p 0,2 p 1,1 p 0,1 p 2,0 p 3,0 p 1,0 p 0,0 CSE554 Deformation II Slide 22 11

12 Free Form Deformation A deformation example CSE554 Deformation II Slide 23 Free Form Deformation Registration Embed the source in a lattice Compute new lattice positions over the target Fitting term Distance between deformed source shape and the target shape Agreement of the deformed image content and the target image Distortion term Thin-plate spline energy Non-folding constraint Local rigidity constraint (to prevent stretching) CSE554 Deformation II Slide 24 12

13 Free Form Deformation Registration example Deformed w/o rigidity Source Deformed with rigidity Target Credits: Loeckx et al, MICCAI (2004) CSE554 Deformation II Slide 25 Free Form Deformation Advantages Smooth deformations Easy to implement (no equation solving) Efficient and localized controls for interactive editing Can be coupled with different fitting or energy objectives Disadvantages Too many lattice points in 3D The lattice structure is not suitable for organic, non-cubical shapes CSE554 Deformation II Slide 26 13

14 Cage-based Deformation Use a control mesh ( cage ) to embed the shape Deforming the cage vertices warps the embedded shape Credits: Ju, Schaefer, and Warren, SIGGRAPH (2005) CSE554 Deformation II Slide 27 Cage-based Deformation Warping the space by blending the deformation at the cage vertices p p i n f p w i p q i i 1 w i [p]: determined by relative position of p with respect to p i f[p] q i CSE554 Deformation II Slide 28 14

15 Cage-based Deformation Finding weights (2D) Problem: given a closed polygon (cage) with vertices p i and an interior point p, find weights w i [p] such that: 1) 2) n 1 w i p i 1 n p w i p p i i 1 p p i 3) They vary smoothly with p CSE554 Deformation II Slide 29 Cage-based Deformation Finding weights (2D) A simple case: the cage is a triangle The weights are unique, and are the barycentric coordinates of p p 1 w 1 p Area p,p 2,p 3 Area p1,p 2,p 3 p p 2 p 3 CSE554 Deformation II Slide 30 15

16 Cage-based Deformation Finding weights (2D) The harder case: the cage is an arbitrary (possibly concave) polygon The weights are not unique A good choice: Mean Value Coordinates (MVC) Can be extended to 3D p i-1 u i p Tan i 2 Tan i 1 2 p i p u i p w i p n i 1 u i p p α i α i+1 p i p i+1 CSE554 Deformation II Slide 31 Cage-based Deformation Finding weights (2D) Weight distribution of one cage vertex in MVC: w i p p i CSE554 Deformation II Slide 32 16

17 Cage-based Deformation Application: character animation Using improved weights: Harmonic Coordinates CSE554 Deformation II Slide 33 Cage-based Deformation Registration Embed source in a cage Compute new locations of cage vertices over the target Minimizing some fitting and energy objectives Not seen in literature yet future work! CSE554 Deformation II Slide 34 17

18 Cage-based Deformation Advantages over free form deformations Much smaller number of control points Flexible structure suitable for organic shapes Disadvantages Setting up the cage can be time-consuming The cage needs to be a closed shape Not as flexible as point handles CSE554 Deformation II Slide 35 Further Readings Thin-plate spline deformation Principal warps: thin-plate splines and the decomposition of deformations, by Bookstein (1989) Landmark-Based Elastic Registration Using Approximating Thin-Plate Splines, by Rohr et al. (2001) Free form deformation Free-Form Deformation of Solid Geometric Models, by Sederberg and Parry (1986) Extended Free-Form Deformation: A sculpturing Tool for 3D Geometric Modeling, by Coquillart (1990) Cage-based deformation Mean value coordinates for closed triangular meshes, by Ju et al. (2005) Harmonic coordinates for character animation, by Joshi et al. (2007) Green coordinates, by Lipman et al. (2008) CSE554 Deformation II Slide 36 18

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo 12 - Spatial And Skeletal Deformations Space Deformations Space Deformation Displacement function defined on the ambient space Evaluate the function on the points of the shape embedded in the space Twist

More information

Def De orma f tion orma Disney/Pixar

Def De orma f tion orma Disney/Pixar Deformation Disney/Pixar Deformation 2 Motivation Easy modeling generate new shapes by deforming existing ones 3 Motivation Easy modeling generate new shapes by deforming existing ones 4 Motivation Character

More information

CSE452 Computer Graphics

CSE452 Computer Graphics CSE452 Computer Graphics Lecture 19: From Morphing To Animation Capturing and Animating Skin Deformation in Human Motion, Park and Hodgins, SIGGRAPH 2006 CSE452 Lecture 19: From Morphing to Animation 1

More information

Deformation II. Disney/Pixar

Deformation II. Disney/Pixar Deformation II Disney/Pixar 1 Space Deformation Deformation function on ambient space f : n n Shape S deformed by applying f to points of S S = f (S) f (x,y)=(2x,y) S S 2 Motivation Can be applied to any

More information

Free-Form Deformation and Other Deformation Techniques

Free-Form Deformation and Other Deformation Techniques Free-Form Deformation and Other Deformation Techniques Deformation Deformation Basic Definition Deformation: A transformation/mapping of the positions of every particle in the original object to those

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 6. Mesh Simplification Problems High resolution meshes becoming increasingly available 3D active scanners Computer

More information

Warping and Morphing. Ligang Liu Graphics&Geometric Computing Lab USTC

Warping and Morphing. Ligang Liu Graphics&Geometric Computing Lab USTC Warping and Morphing Ligang Liu Graphics&Geometric Computing Lab USTC http://staff.ustc.edu.cn/~lgliu Metamorphosis "transformation of a shape and its visual attributes" Intrinsic in our environment Deformations

More information

Kai Hormann, N. Sukumar. Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics

Kai Hormann, N. Sukumar. Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics Kai Hormann, N. Sukumar Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics Contents Chapter 1 Multi-Sided Patches via Barycentric Coordinates 1 Scott Schaefer 1.1 INTRODUCTION

More information

Image Warping. Srikumar Ramalingam School of Computing University of Utah. [Slides borrowed from Ross Whitaker] 1

Image Warping. Srikumar Ramalingam School of Computing University of Utah. [Slides borrowed from Ross Whitaker] 1 Image Warping Srikumar Ramalingam School of Computing University of Utah [Slides borrowed from Ross Whitaker] 1 Geom Trans: Distortion From Optics Barrel Distortion Pincushion Distortion Straight lines

More information

Accurate Reconstruction by Interpolation

Accurate Reconstruction by Interpolation Accurate Reconstruction by Interpolation Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore International Conference on Inverse Problems and Related Topics

More information

Computer Graphics 7 - Rasterisation

Computer Graphics 7 - Rasterisation Computer Graphics 7 - Rasterisation Tom Thorne Slides courtesy of Taku Komura www.inf.ed.ac.uk/teaching/courses/cg Overview Line rasterisation Polygon rasterisation Mean value coordinates Decomposing polygons

More information

Parameterization of Triangular Meshes with Virtual Boundaries

Parameterization of Triangular Meshes with Virtual Boundaries Parameterization of Triangular Meshes with Virtual Boundaries Yunjin Lee 1;Λ Hyoung Seok Kim 2;y Seungyong Lee 1;z 1 Department of Computer Science and Engineering Pohang University of Science and Technology

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

Computational Design. Stelian Coros

Computational Design. Stelian Coros Computational Design Stelian Coros Schedule for presentations February 3 5 10 12 17 19 24 26 March 3 5 10 12 17 19 24 26 30 April 2 7 9 14 16 21 23 28 30 Send me: ASAP: 3 choices for dates + approximate

More information

Large Mesh Deformation Using the Volumetric Graph Laplacian

Large Mesh Deformation Using the Volumetric Graph Laplacian Large Mesh Deformation Using the Volumetric Graph Laplacian Kun Zhou1 Jin Huang2 John Snyder3 Xinguo Liu1 Hujun Bao2 Baining Guo1 Heung-Yeung Shum1 1 Microsoft Research Asia 2 Zhejiang University 3 Microsoft

More information

Discrete Geometry Processing

Discrete Geometry Processing Non Convex Boundary Convex boundary creates significant distortion Free boundary is better Some slides from the Mesh Parameterization Course (Siggraph Asia 008) 1 Fixed vs Free Boundary Fixed vs Free Boundary

More information

Comparison and affine combination of generalized barycentric coordinates for convex polygons

Comparison and affine combination of generalized barycentric coordinates for convex polygons Annales Mathematicae et Informaticae 47 (2017) pp. 185 200 http://ami.uni-eszterhazy.hu Comparison and affine combination of generalized barycentric coordinates for convex polygons Ákos Tóth Department

More information

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala Animations Hakan Bilen University of Edinburgh Computer Graphics Fall 2017 Some slides are courtesy of Steve Marschner and Kavita Bala Animation Artistic process What are animators trying to do? What tools

More information

10 - ARAP and Linear Blend Skinning

10 - ARAP and Linear Blend Skinning 10 - ARAP and Linear Blend Skinning Acknowledgements: Olga Sorkine-Hornung As Rigid As Possible Demo Libigl demo 405 As-Rigid-As-Possible Deformation Preserve shape of cells covering the surface Ask each

More information

Curves, Surfaces and Recursive Subdivision

Curves, Surfaces and Recursive Subdivision Department of Computer Sciences Graphics Fall 25 (Lecture ) Curves, Surfaces and Recursive Subdivision Conics: Curves and Quadrics: Surfaces Implicit form arametric form Rational Bézier Forms Recursive

More information

Geometric Transformations and Image Warping

Geometric Transformations and Image Warping Geometric Transformations and Image Warping Ross Whitaker SCI Institute, School of Computing University of Utah Univ of Utah, CS6640 2009 1 Geometric Transformations Greyscale transformations -> operate

More information

Physically-Based Modeling and Animation. University of Missouri at Columbia

Physically-Based Modeling and Animation. University of Missouri at Columbia Overview of Geometric Modeling Overview 3D Shape Primitives: Points Vertices. Curves Lines, polylines, curves. Surfaces Triangle meshes, splines, subdivision surfaces, implicit surfaces, particles. Solids

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

Interactive Deformation with Triangles

Interactive Deformation with Triangles Interactive Deformation with Triangles James Dean Palmer and Ergun Akleman Visualization Sciences Program Texas A&M University Jianer Chen Department of Computer Science Texas A&M University Abstract In

More information

Deformations. Recall: important tmodel dlof shape change is the deformation of one form into another.

Deformations. Recall: important tmodel dlof shape change is the deformation of one form into another. Deformations Recall: important tmodel dlof shape change is the deformation of one form into another. Dates back to D Arcy Thompson s (1917) transformation grids. Deformation maps a set of morphological

More information

Research Article Polygon Morphing and Its Application in Orebody Modeling

Research Article Polygon Morphing and Its Application in Orebody Modeling Mathematical Problems in Engineering Volume 212, Article ID 732365, 9 pages doi:1.1155/212/732365 Research Article Polygon Morphing and Its Application in Orebody Modeling Hacer İlhan and Haşmet Gürçay

More information

Generalized barycentric coordinates

Generalized barycentric coordinates Generalized barycentric coordinates Michael S. Floater August 20, 2012 In this lecture, we review the definitions and properties of barycentric coordinates on triangles, and study generalizations to convex,

More information

As-Rigid-As-Possible Shape Manipulation

As-Rigid-As-Possible Shape Manipulation As-Rigid-As-Possible Shape Manipulation T. Igarashi 1, T. Mascovich 2 J. F. Hughes 3 1 The University of Tokyo 2 Brown University 3 PRESTO, JST SIGGRAPH 2005 Presented by: Prabin Bariya Interactive shape

More information

Understanding Gridfit

Understanding Gridfit Understanding Gridfit John R. D Errico Email: woodchips@rochester.rr.com December 28, 2006 1 Introduction GRIDFIT is a surface modeling tool, fitting a surface of the form z(x, y) to scattered (or regular)

More information

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 9: Introduction to Spline Curves Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 13: Slide 2 Splines The word spline comes from the ship building trade

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

CS337 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics. Bin Sheng Representing Shape 9/20/16 1/15

CS337 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics. Bin Sheng Representing Shape 9/20/16 1/15 Describing Shapes Constructing Objects in Computer Graphics 1/15 2D Object Definition (1/3) Lines and polylines: Polylines: lines drawn between ordered points A closed polyline is a polygon, a simple polygon

More information

Mesh Processing Pipeline

Mesh Processing Pipeline Mesh Smoothing 1 Mesh Processing Pipeline... Scan Reconstruct Clean Remesh 2 Mesh Quality Visual inspection of sensitive attributes Specular shading Flat Shading Gouraud Shading Phong Shading 3 Mesh Quality

More information

Information Coding / Computer Graphics, ISY, LiTH. Splines

Information Coding / Computer Graphics, ISY, LiTH. Splines 28(69) Splines Originally a drafting tool to create a smooth curve In computer graphics: a curve built from sections, each described by a 2nd or 3rd degree polynomial. Very common in non-real-time graphics,

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics 1/15

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics 1/15 Describing Shapes Constructing Objects in Computer Graphics 1/15 2D Object Definition (1/3) Lines and polylines: Polylines: lines drawn between ordered points A closed polyline is a polygon, a simple polygon

More information

Smart point landmark distribution for thin-plate splines

Smart point landmark distribution for thin-plate splines Smart point landmark distribution for thin-plate splines John Lewis a, Hea-Juen Hwang a, Ulrich Neumann a, and Reyes Enciso b a Integrated Media Systems Center, University of Southern California, 3740

More information

CS 775: Advanced Computer Graphics. Lecture 4: Skinning

CS 775: Advanced Computer Graphics. Lecture 4: Skinning CS 775: Advanced Computer Graphics Lecture 4: http://www.okino.com/conv/skinning.htm Binding Binding Always done in a standard rest or bind pose. Binding Always done in a standard rest or bind pose. Associate

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to Computer Graphics 2016 Spring National Cheng Kung University Instructors: Min-Chun Hu 胡敏君 Shih-Chin Weng 翁士欽 ( 西基電腦動畫 ) Data Representation Curves and Surfaces Limitations of Polygons Inherently

More information

Geometric Registration for Deformable Shapes 2.2 Deformable Registration

Geometric Registration for Deformable Shapes 2.2 Deformable Registration Geometric Registration or Deormable Shapes 2.2 Deormable Registration Variational Model Deormable ICP Variational Model What is deormable shape matching? Example? What are the Correspondences? Eurographics

More information

Facial Expression Morphing and Animation with Local Warping Methods

Facial Expression Morphing and Animation with Local Warping Methods Facial Expression Morphing and Animation with Local Warping Methods Daw-Tung Lin and Han Huang Department of Computer Science and Information Engineering Chung Hua University 30 Tung-shiang, Hsin-chu,

More information

Simple Formulas for Quasiconformal Plane Deformations

Simple Formulas for Quasiconformal Plane Deformations Simple Formulas for Quasiconformal Plane Deformations by Yaron Lipman, Vladimir Kim, and Thomas Funkhouser ACM TOG 212 Stephen Mann Planar Shape Deformations Used in Mesh parameterization Animation shape

More information

Dynamic Surface Deformation and Modeling Using Rubber Sweepers

Dynamic Surface Deformation and Modeling Using Rubber Sweepers Dynamic Surface Deformation and Modeling Using Rubber Sweepers Chengjun Li, Wenbing Ge, and Guoping Wang Peking University, Beijing, China, lcj@graphics.pku.edu.cn, Homepage: http://graphics.pku.edu.cn/

More information

Images from 3D Creative Magazine. 3D Modelling Systems

Images from 3D Creative Magazine. 3D Modelling Systems Images from 3D Creative Magazine 3D Modelling Systems Contents Reference & Accuracy 3D Primitives Transforms Move (Translate) Rotate Scale Mirror Align 3D Booleans Deforms Bend Taper Skew Twist Squash

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Surfaces, meshes, and topology

Surfaces, meshes, and topology Surfaces from Point Samples Surfaces, meshes, and topology A surface is a 2-manifold embedded in 3- dimensional Euclidean space Such surfaces are often approximated by triangle meshes 2 1 Triangle mesh

More information

Lecture 2.2 Cubic Splines

Lecture 2.2 Cubic Splines Lecture. Cubic Splines Cubic Spline The equation for a single parametric cubic spline segment is given by 4 i t Bit t t t i (..) where t and t are the parameter values at the beginning and end of the segment.

More information

Approximating Point Clouds by Generalized Bézier Surfaces

Approximating Point Clouds by Generalized Bézier Surfaces WAIT: Workshop on the Advances in Information Technology, Budapest, 2018 Approximating Point Clouds by Generalized Bézier Surfaces Péter Salvi 1, Tamás Várady 1, Kenjirō T. Miura 2 1 Budapest University

More information

An optimization method for generating self-equilibrium shape of curved surface from developable surface

An optimization method for generating self-equilibrium shape of curved surface from developable surface 25-28th September, 2017, Hamburg, Germany Annette Bögle, Manfred Grohmann (eds.) An optimization method for generating self-equilibrium shape of curved surface from developable surface Jinglan CI *, Maoto

More information

3D Modeling Parametric Curves & Surfaces

3D Modeling Parametric Curves & Surfaces 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2012 3D Object Representations Raw data Point cloud Range image Polygon soup Solids Voxels BSP tree CSG Sweep Surfaces Mesh Subdivision

More information

Geometric Modeling in Graphics

Geometric Modeling in Graphics Geometric Modeling in Graphics Part 10: Surface reconstruction Martin Samuelčík www.sccg.sk/~samuelcik samuelcik@sccg.sk Curve, surface reconstruction Finding compact connected orientable 2-manifold surface

More information

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala Animation CS 4620 Lecture 33 Cornell CS4620 Fall 2015 1 Announcements Grading A5 (and A6) on Monday after TG 4621: one-on-one sessions with TA this Friday w/ prior instructor Steve Marschner 2 Quaternions

More information

Solid and shell elements

Solid and shell elements Solid and shell elements Theodore Sussman, Ph.D. ADINA R&D, Inc, 2016 1 Overview 2D and 3D solid elements Types of elements Effects of element distortions Incompatible modes elements u/p elements for incompressible

More information

Advanced Computer Graphics

Advanced Computer Graphics G22.2274 001, Fall 2009 Advanced Computer Graphics Project details and tools 1 Project Topics Computer Animation Geometric Modeling Computational Photography Image processing 2 Optimization All projects

More information

Meshless Modeling, Animating, and Simulating Point-Based Geometry

Meshless Modeling, Animating, and Simulating Point-Based Geometry Meshless Modeling, Animating, and Simulating Point-Based Geometry Xiaohu Guo SUNY @ Stony Brook Email: xguo@cs.sunysb.edu http://www.cs.sunysb.edu/~xguo Graphics Primitives - Points The emergence of points

More information

CS 523: Computer Graphics, Spring Shape Modeling. Skeletal deformation. Andrew Nealen, Rutgers, /12/2011 1

CS 523: Computer Graphics, Spring Shape Modeling. Skeletal deformation. Andrew Nealen, Rutgers, /12/2011 1 CS 523: Computer Graphics, Spring 2011 Shape Modeling Skeletal deformation 4/12/2011 1 Believable character animation Computers games and movies Skeleton: intuitive, low-dimensional subspace Clip courtesy

More information

Specification and Computation of Warping and Morphing Transformations. Bruno Costa da Silva Microsoft Corp.

Specification and Computation of Warping and Morphing Transformations. Bruno Costa da Silva Microsoft Corp. Specification and Computation of Warping and Morphing Transformations Bruno Costa da Silva Microsoft Corp. Morphing Transformations Representation of Transformations Specification of Transformations Specification

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

Bounded Distortion Mapping and Shape Deformation

Bounded Distortion Mapping and Shape Deformation Bounded Distortion Mapping and Shape Deformation 陈仁杰 德国马克斯普朗克计算机研究所 GAMES Web Seminar, 29 March 2018 Outline Planar Mapping & Applications Bounded Distortion Mapping Harmonic Shape Deformation Shape Interpolation

More information

CS 231. Deformation simulation (and faces)

CS 231. Deformation simulation (and faces) CS 231 Deformation simulation (and faces) Deformation BODY Simulation Discretization Spring-mass models difficult to model continuum properties Simple & fast to implement and understand Finite Element

More information

Free-Form Deformation (FFD)

Free-Form Deformation (FFD) Chapter 14 Free-Form Deformation (FFD) Free-form deformation (FFD) is a technique for manipulating any shape in a free-form manner. Pierre Bézier used this idea to manipulate large numbers of control points

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 4. Geometric Registration 4.1 Rigid Registration Range Scanning: Reconstruction Set of raw scans Reconstructed

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 7: Image Alignment and Panoramas What s inside your fridge? http://www.cs.washington.edu/education/courses/cse590ss/01wi/ Projection matrix intrinsics projection

More information

Animation II: Soft Object Animation. Watt and Watt Ch.17

Animation II: Soft Object Animation. Watt and Watt Ch.17 Animation II: Soft Object Animation Watt and Watt Ch.17 Soft Object Animation Animation I: skeletal animation forward kinematics x=f(φ) inverse kinematics φ=f -1 (x) Curves and Surfaces I&II: parametric

More information

Skinning Mesh Animations

Skinning Mesh Animations Doug L. James, Christopher D. Twigg Carnegie Mellon University presented by Johannes Schmid 1 Outline Introduction & Motivation Overview & Details Results Discussion 2 Introduction Mesh sequence: 3 General

More information

Module: 2 Finite Element Formulation Techniques Lecture 3: Finite Element Method: Displacement Approach

Module: 2 Finite Element Formulation Techniques Lecture 3: Finite Element Method: Displacement Approach 11 Module: 2 Finite Element Formulation Techniques Lecture 3: Finite Element Method: Displacement Approach 2.3.1 Choice of Displacement Function Displacement function is the beginning point for the structural

More information

A New Free-form Deformation Through the Control of Parametric Surfaces

A New Free-form Deformation Through the Control of Parametric Surfaces A New Free-form Deformation Through the Control of Parametric Surfaces Jieqing Feng Lizhuang Ma and Qunsheng Peng State Key Lab. of CAD&CG, Zhejiang University Hangzhou 310027, P. R. of CHINA email: jqfeng@cad.zju.edu.cn

More information

Shape Blending Using the Star-Skeleton Representation

Shape Blending Using the Star-Skeleton Representation Shape Blending Using the Star-Skeleton Representation Michal Shapira Ari Rappoport Institute of Computer Science, The Hebrew University of Jerusalem Jerusalem 91904, Israel. arir@cs.huji.ac.il Abstract:

More information

CS 4620 Final Exam. (a) Is a circle C 0 continuous?

CS 4620 Final Exam. (a) Is a circle C 0 continuous? CS 4620 Final Exam Wednesday 9, December 2009 2 1 2 hours Prof. Doug James Explain your reasoning for full credit. You are permitted a double-sided sheet of notes. Calculators are allowed but unnecessary.

More information

09 - Designing Surfaces. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo

09 - Designing Surfaces. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo 9 - Designing Surfaces Triangular surfaces A surface can be discretized by a collection of points and triangles Each triangle is a subset of a plane Every point on the surface can be expressed as an affine

More information

Geometric modeling 1

Geometric modeling 1 Geometric Modeling 1 Look around the room. To make a 3D model of a room requires modeling every single object you can see. Leaving out smaller objects (clutter) makes the room seem sterile and unrealistic

More information

Mesh Morphing. Ligang Liu Graphics&Geometric Computing Lab USTC

Mesh Morphing. Ligang Liu Graphics&Geometric Computing Lab USTC Mesh Morphing Ligang Liu Graphics&Geometric Computing Lab USTC http://staff.ustc.edu.cn/~lgliu Morphing Given two objects produce sequence of intermediate objects that gradually evolve from one object

More information

NURBS Warps. 1 Introduction. Florent Brunet 123 CNRS/Université Blaise Pascal Clermont-Ferrand, France

NURBS Warps. 1 Introduction. Florent Brunet 123 CNRS/Université Blaise Pascal Clermont-Ferrand, France BRUNET et al.: NURBS WARPS 1 NURBS Warps Florent Brunet 123 florent.brunet@univ-bpclermont.fr Adrien Bartoli 1 adrien.bartoli@gmail.com Nassir Navab 2 navab@cs.tum.edu Rémy Malgouyres 3 remy.malgouyres@laic.u-clermont1.fr

More information

CS 231. Deformation simulation (and faces)

CS 231. Deformation simulation (and faces) CS 231 Deformation simulation (and faces) 1 Cloth Simulation deformable surface model Represent cloth model as a triangular or rectangular grid Points of finite mass as vertices Forces or energies of points

More information

Mesh-Based Inverse Kinematics

Mesh-Based Inverse Kinematics CS468, Wed Nov 9 th 2005 Mesh-Based Inverse Kinematics R. W. Sumner, M. Zwicker, C. Gotsman, J. Popović SIGGRAPH 2005 The problem 1 General approach Learn from experience... 2 As-rigid-as-possible shape

More information

Laplacian Meshes. COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman

Laplacian Meshes. COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman Laplacian Meshes COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman Outline Differential surface representation Ideas and applications Compact shape representation Mesh editing and manipulation

More information

CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Project 3 due tomorrow Midterm 2 next

More information

Locally Injective Mappings

Locally Injective Mappings 8/6/ Locally Injective Mappings Christian Schüller 1 Ladislav Kavan 2 Daniele Panozzo 1 Olga Sorkine-Hornung 1 1 ETH Zurich 2 University of Pennsylvania Locally Injective Mappings Popular tasks in geometric

More information

9. Three Dimensional Object Representations

9. Three Dimensional Object Representations 9. Three Dimensional Object Representations Methods: Polygon and Quadric surfaces: For simple Euclidean objects Spline surfaces and construction: For curved surfaces Procedural methods: Eg. Fractals, Particle

More information

Subdivision Curves and Surfaces: An Introduction

Subdivision Curves and Surfaces: An Introduction Subdivision Curves and Surfaces: An Introduction Corner Cutting De Casteljau s and de Boor s algorithms all use corner-cutting procedures. Corner cutting can be local or non-local. A cut is local if it

More information

CSE 167: Introduction to Computer Graphics Lecture 12: Bézier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013

CSE 167: Introduction to Computer Graphics Lecture 12: Bézier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 CSE 167: Introduction to Computer Graphics Lecture 12: Bézier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Homework assignment 5 due tomorrow, Nov

More information

APPLICATION OF INTERACTIVE DEFORMATION TO ASSEMBLED MESH MODELS FOR CAE ANALYSIS

APPLICATION OF INTERACTIVE DEFORMATION TO ASSEMBLED MESH MODELS FOR CAE ANALYSIS Proceedings of the ASME 007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 007 September 4-7, 007, Las Vegas, Nevada, USA DETC007-34636

More information

Review of Tuesday. ECS 175 Chapter 3: Object Representation

Review of Tuesday. ECS 175 Chapter 3: Object Representation Review of Tuesday We have learnt how to rasterize lines and fill polygons Colors (and other attributes) are specified at vertices Interpolation required to fill polygon with attributes 26 Review of Tuesday

More information

Geometric Transformations and Image Warping Chapter 2.6.5

Geometric Transformations and Image Warping Chapter 2.6.5 Geometric Transformations and Image Warping Chapter 2.6.5 Ross Whitaker (modified by Guido Gerig) SCI Institute, School of Computing University of Utah Univ of Utah, CS6640 2010 1 Geometric Transformations

More information

The aim is to find an average between two objects Not an average of two images of objects but an image of the average object!

The aim is to find an average between two objects Not an average of two images of objects but an image of the average object! The aim is to find an average between two objects Not an average of two images of objects but an image of the average object! How can we make a smooth transition in time? Do a weighted average over time

More information

Revised Sheet Metal Simulation, J.E. Akin, Rice University

Revised Sheet Metal Simulation, J.E. Akin, Rice University Revised Sheet Metal Simulation, J.E. Akin, Rice University A SolidWorks simulation tutorial is just intended to illustrate where to find various icons that you would need in a real engineering analysis.

More information

Elastic Analysis of a Bending Plate

Elastic Analysis of a Bending Plate analys: linear static. constr: suppor. elemen: plate q12pl. load: elemen face force. materi: elasti isotro. option: direct units. post: binary ndiana. pre: dianai. result: cauchy displa extern force green

More information

Chapter 18. Geometric Operations

Chapter 18. Geometric Operations Chapter 18 Geometric Operations To this point, the image processing operations have computed the gray value (digital count) of the output image pixel based on the gray values of one or more input pixels;

More information

View Interpolation for Dynamic Scenes

View Interpolation for Dynamic Scenes EUROGRAPHICS 2002 / I. Navazo Alvaro and Ph. Slusallek (Guest Editors) Short Presentations View Interpolation for Dynamic Scenes Jiangjian Xiao Cen Rao Mubarak Shah Computer Vision Lab School of Electrical

More information

Subdivision curves and surfaces. Brian Curless CSE 557 Fall 2015

Subdivision curves and surfaces. Brian Curless CSE 557 Fall 2015 Subdivision curves and surfaces Brian Curless CSE 557 Fall 2015 1 Reading Recommended: Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications, 1996, section 6.1-6.3, 10.2,

More information

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction ALE simulations ua sus using Metafor eao 1. Introduction 2. Operator split 3. Convection schemes 4. Rezoning methods 5. Contact with friction 1 Introduction EULERIAN FORMALISM Undistorted mesh Ideal for

More information

3D Geometric Metamorphosis based on Harmonic Map

3D Geometric Metamorphosis based on Harmonic Map 3D Geometric Metamorphosis based on Harmonic Map Takashi KANAI Hiromasa SUZUKI Fumihiko KIMURA Department of Precision Machinery Engineering The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113,

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

2D Shape Deformation Using Nonlinear Least Squares Optimization

2D Shape Deformation Using Nonlinear Least Squares Optimization 2D Shape Deformation Using Nonlinear Least Squares Optimization Paper ID: 20 Abstract This paper presents a novel 2D shape deformation algorithm based on nonlinear least squares optimization. The algorithm

More information

A New Shape Matching Measure for Nonlinear Distorted Object Recognition

A New Shape Matching Measure for Nonlinear Distorted Object Recognition A New Shape Matching Measure for Nonlinear Distorted Object Recognition S. Srisuky, M. Tamsriy, R. Fooprateepsiri?, P. Sookavatanay and K. Sunaty Department of Computer Engineeringy, Department of Information

More information

IMAGE-BASED RENDERING

IMAGE-BASED RENDERING IMAGE-BASED RENDERING 1. What is Image-Based Rendering? - The synthesis of new views of a scene from pre-recorded pictures.!"$#% "'&( )*+,-/.). #0 1 ' 2"&43+5+, 2. Why? (1) We really enjoy visual magic!

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS480: Computer Graphics Curves and Surfaces Sung-Eui Yoon ( 윤성의 ) Course URL: http://jupiter.kaist.ac.kr/~sungeui/cg Today s Topics Surface representations Smooth curves Subdivision 2 Smooth Curves and

More information

Skeletal deformation

Skeletal deformation CS 523: Computer Graphics, Spring 2009 Shape Modeling Skeletal deformation 4/22/2009 1 Believable character animation Computers games and movies Skeleton: intuitive, low dimensional subspace Clip courtesy

More information

A skeleton/cage hybrid paradigm for digital animation

A skeleton/cage hybrid paradigm for digital animation A skeleton/cage hybrid paradigm for digital animation Fabrizio Corda 1 1 Università degli studi di Cagliari Abstract. Digital animators require simple tools and techniques that allow them to create computer

More information