The Flow Around FPSO s in Steep Regular Waves.

Size: px
Start display at page:

Download "The Flow Around FPSO s in Steep Regular Waves."

Transcription

1 The Flow Around FPSO s in Steep Regular Waves. R.H.M.Huijsmans, J. P. Borleteau Maritime Research Institute Netherlands, Wageningen, Netherlands, r.h.m.huijsmans@marin.nl SIREHNA, Nantes, France. March 17, 2003 Abstract This paper investigates the hydrodynamical aspects of a fixed FPSO in regular waves. The emphasis is geared to the validation of state of the art CFD techniques, using particle image velocimetry measurements on the water velocities around a captive model of an FPSO in regular waves. The main focus is on the following issues: Determination of the water velocities around the vessel using PIV techniques and pressures on a girth below and just above the mean waterline of the vessel using pressure gauges. Comparison of the RAO s of the water velocities, pressures and relative wave heights. The resulting pressure profiles along the girth, especially near the waterline, showed a significant non linear effect in steep beam wave conditions. The velocities as measured near the bilges of the vessel indicated a strong separation at the bilge s of the vessel. This leads to an overestimation of the water velocities near the bilge s of the vessel as calculated using a linear diffraction programme. Key words:linear Hydrodynamics, PIV, CFD 1 Introduction This paper presents the results of the experimental programme on the FPSO, ie-captive model tests for PIV measurements, extinction tests in waves for an EU project with acronym EXPRO-CFD. The experiments aim to perform measurements (flow data and hydromechanical data) on a FPSO and to deliver data for validation of state of the art CFD tools as e.g. reported by Graham et al [12], Visonneau et al [2]. The application of PIV has been studied e.g. with liquid sloshing in moving tanks over a long time. Historically, sloshing studies started with impact problems in LNG carrier tanks. Then, the developed numerical and experimental tools and methodologies have been applied to other industrial domains : aeronautics (Airbus A300 wing tank), aerospace (Ariane V oxygen tank), automotive transportation (tanker trucks, car tanks), food industry (milk tank). In the design of mooring systems and protection barriers of FPSO s in deep water often use is made of linearised (or weakly non-linear) potential flow methods. However in steep deep water waves non-linear effect like excessive rolling or green water become predominantly non-linear. Therefore model tests are very often required even in the early design phases. In an attempt to address these non-linear effects a consortium, called EXPRO CFD, funded by the European Commission, was formed. This consortium studied the usability and applicability of advanced CFD tools in the early design stages. Also in this consortium extensive model tests on FPSO s were performed to evaluate and validate the use of these advanced CFD techniques. In an approach to gather water velocity data in a spatial area around the FPSO in steep water waves use is made of 2-D PIV techniques. In this paper the flow near the bilge s of the FPSO are studied. Earlier attempts to use PIV techniques for offshore applications have been reported by Tukker et al. [11]. Applications of detail spatial velocity measurements in civil engineering and offshore engineering applications have been reported by Gray et al ([6], [5],[9]), Earnshaw et al ([3],[4]) and Jensen et al ( [8],[1]). The linear diffraction computations used in this study are based on the work presented by van Oortmerssen [10] and Huijsmans [7]. 2 General Presentation The model of the FPSO scale (1:80) is tested in the Shallow water Basin of MARIN. The measurements included: global loads, incoming waves, by means of arrays of wave gauges, the wave profiles and by means of optical techniques, the velocity field (PIV technique) near the FPSO. All measurements will Paper No: ISOPE 2003-PF-06 R.H.M.Huijsmans Page: 1 of 8

2 Designation Sym [] FPSO Length perpendiculars L pp m 285. Breadth B m Draft 70% fully loaded draft T m Displacement volume m Longitudinal Center of gravity LCG m (with respect to station 10) Center of gravity above keel VCG m 10. Metacentric height transverse GM t m 7.33 Pitch radius of gyration in air k yy m Roll radius of gyration in air k xx m Natural roll period T φ s 12.4 be characterized by fully unsteady hydrodynamic phenomena. 3 Model of FPSO For the captive PIV tests, the model of the FPSO will be fixed with a 6 component force transducer in order to measure the wave loads. The particulars of the tanker are displayed in the table above. The frames of the vessel are presented in figure(1) Figure 2: Location of Wave probes and pressure transducers Figure 1: Hull frames of FPSO 4 Instrumentation Global loads The FPSO is be kept fixed to a 6 degrees of freedom force transducer attached to the main carriage of the basin. This system will be constructed to measure forces (Fx, Fy and Fz) and over turning moments (Mx, My and Mz), Relative wave probes: 10 relative wave probes are attached to the FPSO on the wind ward side of the vessel as indicated in figure(2). Pressure gauges on a girth on the FPSO at station 10 / 15 : An array of 5 pressure gauges is placed in the wind ward side of the vessel at station 10 and 15 as indicated in figure(2). Flow velocity near FPSO: A laser sheet coincides with a vertical plane normal to the FPSO; for this purpose the optical head will be placed fixed to the basin floor; Two cameras placed outside the FPSO with the optical axis normal to the laser sheet; each camera will have a field of view of approximately 280x200 (mm) in the laser sheet; one camera is viewing near the free surface and one camera is viewing near bilges. The cameras and laser sheet are kept fixed to the basin floor. 5 Experimental Arrangement General Arrangement for Captive PIV Measurements The experimental set up was developed by SIREHNA on the basis on its previous experience in PIV measurements in large scale hydrodynamic facilities. The general arrangement of the experimental set up, illustrated in figure(3) was composed with the following compo- Paper No: ISOPE 2003-PF-06 R.H.M.Huijsmans Page: 2 of 8

3 the tests, the scanning frequency was set to the image frame rate, i.e. 60 Hz. Figure 4: RAO s Influence of position of Camera housing on Figure 3: Set up of PIV measurement system nents : One seeding pipe, One underwater laser sheet to light a vertical plane parallel to the wave propagation direction, Two cameras, placed inside a camera housing, to record images of the measurement area illuminated by the laser sheet. The camera housing positioning should have been such that no hydrodynamic interference with the flow at the midship position would be present. The influence of the camera position on the results is displayed in figure (4). Here the RAO s of the relative wave height at station 6 on the windward side is calculated with a linearised diffraction code for two situations. One situation with the camera housing present in the calculations and one without the presence of the camera housing. From the comparison one must conclude that for a proper CFD validation also the position of the camera housing has to be taken into account. Laser Sheet The laser sheet was created in a vertical plane, parallel to the direction of the wave propagation, thanks to an underwater optical head (diameter 60mm, length 140mm) and a fiber optic linked to a continuous Argon laser source see figure (5). The thickness of the laser sheet was on the order of 3 to 4 mm. For Figure 5: Set up of Laser Sheet on the Basin Camera Images of the flow visualization were recorded by means of the two cameras. Progressive scan cameras allowing full frame rates of 60 Hz are used (644 pixels x 480 pixels). The two cameras were installed inside a camera housing placed at a fixed position in the basin with a distance of 1.45 m (in the basin) to the laser sheet. Each camera has a Field Of View (FOV) of approximately 280 mm x200 mm in the laser sheet. One FOV was set-up to observe the bottom of the model and the bilge. The other FOV was tangent to the side of the model with the mean free surface place in the middle of the FOV. Paper No: ISOPE 2003-PF-06 R.H.M.Huijsmans Page: 3 of 8

4 Image Recording For the present tests, the image acquisition rate and the number of recordable images were set to 900 images at 60 Hz for each computer (i.e. camera) which represent a time duration of 15 seconds in the basin or 135 second in full scale Seeding The water was seeded by means of a seeding pipe placed 6m upstream the laser sheet. The seeding pipe is presented on figure (3) which shows the general set up for PIV measurements. Summary of the Tests The program for the tests was based on the following parameters : Incoming waves monochromatic waves among 10 waves defined by 2 amplitudes and 5 periods, wave amplitudes of 2.0 and 5.0 m and wave periods from 9 to 16 seconds Incidence of the model with respect to the waves : Beam seas, Bow quartering seas Position of the PIV measurements area along the model Station 17.5 Station 10 (amidships), Station 6 6 Discussion of Results PIV Images near bilge s of FPSO model The results of the PIV measurements consist of a time sequence of frames where the water velocity are displayed. A sample is displayed in figure (10) to (13). For two points the RAO of the y and z water velocity are determined. The two points, indicated as A and B in figure(1), are near the bilge of the FPSO vessel. From linear diffraction analysis the y-z water velocity RAO are determined. They are plotted together with the results from the PIV analysis in figure (6) to figure (9). As can be seen from the calculated and measured water velocity RAO s an definite over estimation from the linear computations is observed as expected. The calculated vertical water velocities at point A, just below the keel of the vessel, showed no significant amplitude. This was also observed from the measured vertical water velocities at point A. However the measured data did produce a significant amount of scatter in the RAO s. The difference between the two measured RAO s, ie for the 2.0m and 5.0m wave amplitude case, did not lead to a definite conclusion with respect to the non-linearity of the observed watervelocities. From the displayed water velocity vector plots ( see figure(10), (11) and (12) one observes a marked separation region of the flow near the bilge s of the vessel. Frame of Reference The optical measurements are provided in a right-hand orthogonal frame of reference (O,x,y,z) which is fixed with respect to the basin and defined as follows: x-axis is parallel to the wave propagation, positive from upstream to downstream, z-axis is vertical, pointing upwards, y-axis is perpendicular to the x-axis and the z-axis. The origin, O, of the frame is located at the intersection of the plane of the mean free surface and the vertical line on the side of the model illuminated by the laser sheet. Figure 6: Y- Water velocity RAO s compared with PIV measurements at A PIV Analysis The analyses of the images recorded during this test campaign was composed of the two following main steps: Global cross correlation, Adaptive cross correlation. Each step was completed by a global filtering, a local filtering, an interpolation and a smoothing process. The figure (10) presents an example of velocity map determined from the two consecutive PIV images. Global Wave Load Response on FPSO The measured global wave load response in sway heave and roll are displayed in figure (14) to figure (15), together with the calculated linear response RAO s. Here the non linearity effects are observed from the two wave amplitudes, 2.0m and 5.0m that have been used in the experiments. One observes that the calculated RAO s of the wave loads fairly well agree with the RAO taken for the wave amplitude of 2.0m tests. Paper No: ISOPE 2003-PF-06 R.H.M.Huijsmans Page: 4 of 8

5 Figure 7: Z- Water velocity RAO s compared with PIV measurements at A Figure 9: Z- Water velocity RAO s compared with PIV measurements at B Figure 8: Y- Water velocity RAO s compared with PIV measurements at B Figure 10: Vector Plots of Watervelocity obtained from two Consecutive PIV Images Pressure Gauges and Relative Wave heights At the midship (station 10) and station 15 a set of 5 pressure gauges are mounted onto the FPSO model. From the captive tests the time series of the pressures are obtained. A sample from these time series is displayed in figure (16) for a beam wave condition of 11.3 seconds wave period and a wave amplitude of 5.0 m. In order to evaluate the effective non linearity of the pressure and/or relative wave height a plot is presented where the pressures are plotted against the relative wave height. These plots are displayed in figure (17), figure (18) and figure (19), corresponding to the time serie as displayed in figure (16). The pressure maps of the gauges just above the waterline, as indicated in figure(17) as P10top, shows a hysterysis type of behavior. When no non-linear effects would be present, then a straight line is expected. This last behavior is visible in the pressure maps below the mean waterline as presented in figures (18) and (19). Conclusions From the PIV experiments one can conclude that the quality of the velocity map data provides rich enough information for the validation of advanced CFD codes. Clear separation bubbles are observed and quantified from the PIV experiments. The initial validation of the water velocity RAO s are done with standard linear diffraction theory. As can be expected in the regions not close to the bilge of the vessel one sees a fair comparison of the theory and measurements. The main deviations, especially below the keel of the vessel in the vertical velocity RAO s are to be related to low values of the vertical Paper No: ISOPE 2003-PF-06 R.H.M.Huijsmans Page: 5 of 8

6 Figure 11: Vector Plots of Watervelocity obtained from two Consecutive PIV Images Figure 13: Vector Plots of Watervelocity obtained from two Consecutive PIV Images Figure 12: Vector Plots of Watervelocity obtained from two Consecutive PIV Images water velocity, which hampered the accuracy of the measured data. Also separation of the fluid flow near the bilges will give strong deviation from linear theory. As far as the pressure measurements are concerned, the pressures measured showed a strong asymmetry, due to wet-dry regions on the vessel. References Figure 14: RAO of Vertical Wave force [1] Clamond D. and Grue J. and Richon J-B. and Gray C. Jensen, J. and Sveen. Accelerations in water waves by extended particle image velocimetry. Experiments in Fluids, [2] G.B. Deng and J. Piquet and X. Vasseur and M. Visonneau. A fully coupled method for computing incompressible turbulent flows. In Proceedings of 16th Inter- Paper No: ISOPE 2003-PF-06 national Conference on Numerical Methods in Fluid Dynamics, Arcachon France, [3] Greated C. and Easson W.J. Earnshaw, H.C. and Bruce. Piv measurements of oscillatory flow over a rippled bed. In Proceedings of 24th Int. Conference on Coastal Eng. (ASCE), R.H.M.Huijsmans Page: 6 of 8

7 Figure 16: Time series of a set of pressure gauges and relative wave heights Figure 15: RAO of Roll Moment [4] Greated C. and Easson W.J. Earnshaw, H.C. and Bruce. Low-cost particle image velocimetry: System and application. In Proceedings of 1998 Int. Conference Offshore and Polar Engineering, [5] Greated C. Gray, C. and Skyner. The measurement of breaking waves using particle image velocimetry. In Proceedings of 1988 Int. Conference ICALEO, [6] T. Gray, C. and Bruce. The application of particle image velocimetry (piv) to offshore engineering. In Proceedings of 1995 Int. Symposium on Offshore and Polar Engineering, [7] R.H.M. Huijsmans. Mathematical modeling of the mean wave drift force in current: A numerical and experimental study. PhD thesis, technical University Delft, [8] Huseby M. Jensen, A. and Sveen. Measurements of velocities and accelerations in steep irregular water waves. Report of Department of Mathematics University of Oslo, Norway, [9] McCluskey D.R. Gray, C. and Greated. An analysis of the scanning beam piv illumination system. Meas. Sci. Technol., 2, [10] Oortmerssen G. van. The motions of a moored ship in waves. PhD thesis, technical University Delft, Figure 17: Pressure map for the gauge just above the mean waterline [11] Tukker J. and Kuiper G. and Huijsmans R.H.M. Wake flow measurements in towing tanks with piv. In Proceedings of 9th Int. Symposium on Flow Visualization, Paper No: ISOPE 2003-PF-06 R.H.M.Huijsmans Page: 7 of 8

8 Figure 18: Pressure map for the gauge just below the mean waterline [12] D.Xiu, G.E.Karniadakis. A semi-lagrangian high-order method for navier-stokes equations. Journal of Computational Physics, 172, Figure 19: Pressure map for the gauge just above the bilge of the Vessel Paper No: ISOPE 2003-PF-06 R.H.M.Huijsmans Page: 8 of 8

COMPARISON OF FULL-SCALE MEASUREMENTS WITH CALCULATED MOTION CHARACTERISTICS OF A WEST OF AFRICA FPSO

COMPARISON OF FULL-SCALE MEASUREMENTS WITH CALCULATED MOTION CHARACTERISTICS OF A WEST OF AFRICA FPSO Proceedings of OMAE3 ND International Conference on Offshore Mechanics and Arctic Engineering June 8 3, 3, Cancun, Mexico OMAE3-378 COMPARISON OF FULL-SCALE MEASUREMENTS WITH CALCULATED MOTION CHARACTERISTICS

More information

Experimental and numerical study of sloshing and swirling in partially filled membrane-type LNG tanks

Experimental and numerical study of sloshing and swirling in partially filled membrane-type LNG tanks Maritime Transportation and Harvesting of Sea Resources Guedes Soares & Teixeira (Eds) 2018 Taylor & Francis Group, London, ISBN 978-0-8153-7993-5 Experimental and numerical study of sloshing and swirling

More information

The Study of Ship Motions in Regular Waves using a Mesh-Free Numerical Method

The Study of Ship Motions in Regular Waves using a Mesh-Free Numerical Method The Study of Ship Motions in Regular Waves using a Mesh-Free Numerical Method by Bruce Kenneth Cartwright, B. Eng., M. Sc. Submitted in fulfilment of the requirements for the Degree of Master of Philosophy

More information

Simulation of Offshore Wave Impacts with a Volume of Fluid Method. Tim Bunnik Tim Bunnik MARIN

Simulation of Offshore Wave Impacts with a Volume of Fluid Method. Tim Bunnik Tim Bunnik MARIN Simulation of Offshore Wave Impacts with a Volume of Fluid Method Tim Bunnik Tim Bunnik MARIN Outline Part I: Numerical method -Overview Part II: Applications - Dambreak - Wave run-up - Sloshing loads

More information

Comparison of model tests and calculations

Comparison of model tests and calculations Comparison of model tests and calculations Experimental Methods in Marine Hydrodynamics Lecture in week 45 Covers chapter 12 in the lecture notes 1 Contents Validation or verification? Numerical vs. Physical

More information

CFD FOR OFFSHORE APPLICATIONS USING REFRESCO. Arjen Koop - Senior Project Manager Offshore MARIN

CFD FOR OFFSHORE APPLICATIONS USING REFRESCO. Arjen Koop - Senior Project Manager Offshore MARIN CFD FOR OFFSHORE APPLICATIONS USING REFRESCO Arjen Koop - Senior Project Manager Offshore MARIN COMPUTATIONAL FLUID DYNAMICS (CFD) Advantages: Quantitative predictions Detailed insight in physical processes

More information

Transactions on Modelling and Simulation vol 10, 1995 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 10, 1995 WIT Press,  ISSN X Hydrodynamic coefficients and motions due to a floating cylinder in waves D.D. Bhatta, M. Rahman Department of Applied Mathematics, Technical University of Nova Scotia, Halifax, Nova Scotia, Canada B3J

More information

SOFTWARE. Sesam user course. 20 February 2017 Wadam - General wave load analysis. Ungraded SAFER, SMARTER, GREENER DNV GL 2014

SOFTWARE. Sesam user course. 20 February 2017 Wadam - General wave load analysis. Ungraded SAFER, SMARTER, GREENER DNV GL 2014 SOFTWARE Sesam user course DNV GL 1 SAFER, SMARTER, GREENER Wave Analysis by Diffraction And Morison theory Computation of wave loads and global response 2 Diffraction & radiation theory Structural part

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 13 Table of Contents Codes in the Frequency Domain... 2 1. PURPOSE OF PROCEDURE... 2 2. SCOPE... 2 2.1 Present Theoretical Limitations... 4 2.2 Numerical Aspects... 4 2.3 Software Engineering

More information

WAVE PATTERNS, WAVE INDUCED FORCES AND MOMENTS FOR A GRAVITY BASED STRUCTURE PREDICTED USING CFD

WAVE PATTERNS, WAVE INDUCED FORCES AND MOMENTS FOR A GRAVITY BASED STRUCTURE PREDICTED USING CFD Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering OMAE2011 June 19-24, 2011, Rotterdam, The Netherlands OMAE2011-49593 WAVE PATTERNS, WAVE INDUCED FORCES

More information

Flow Field of Truncated Spherical Turrets

Flow Field of Truncated Spherical Turrets Flow Field of Truncated Spherical Turrets Kevin M. Albarado 1 and Amelia Williams 2 Aerospace Engineering, Auburn University, Auburn, AL, 36849 Truncated spherical turrets are used to house cameras and

More information

PIV analysis around the Bilge Keel of a Ship Model in Free Roll Decay

PIV analysis around the Bilge Keel of a Ship Model in Free Roll Decay PIV analysis around the Bilge Keel of a Ship Model in Free Roll Decay G.Aloisio *, F.Di Felice *. * INSEAN, Italian Ship Model Basin, Rome Abstract The results of an experimental analysis of the velocity

More information

A New Simulation Method for the Installation of Subsea Structures from the Splash Zone to the Ultra Deep

A New Simulation Method for the Installation of Subsea Structures from the Splash Zone to the Ultra Deep A New Simulation Method for the Installation of Subsea Structures from the Splash Zone to the Ultra Deep Bas Buchner and Tim Bunnik MARIN (Maritime Research Institute Netherlands) Haagsteeg 2 / P.O. Box

More information

Pulsating flow around a stationary cylinder: An experimental study

Pulsating flow around a stationary cylinder: An experimental study Proceedings of the 3rd IASME/WSEAS Int. Conf. on FLUID DYNAMICS & AERODYNAMICS, Corfu, Greece, August 2-22, 2 (pp24-244) Pulsating flow around a stationary cylinder: An experimental study A. DOUNI & D.

More information

Numerical Estimation and Validation of Shallow Draft Effect on Roll Damping

Numerical Estimation and Validation of Shallow Draft Effect on Roll Damping The 14 th International Ship Stability Workshop (ISSW), 29 th September- 1 st October 2014, Kuala Lumpur, Malaysia Numerical Estimation and Validation of Shallow Draft Effect on Roll Damping Toru Katayama

More information

Experimental Validation of the Computation Method for Strongly Nonlinear Wave-Body Interactions

Experimental Validation of the Computation Method for Strongly Nonlinear Wave-Body Interactions Experimental Validation of the Computation Method for Strongly Nonlinear Wave-Body Interactions by Changhong HU and Masashi KASHIWAGI Research Institute for Applied Mechanics, Kyushu University Kasuga

More information

Numerical and experimental investigations into liquid sloshing in a rectangular tank

Numerical and experimental investigations into liquid sloshing in a rectangular tank The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Numerical and experimental investigations into liquid sloshing in a rectangular

More information

Particle Image Velocimetry Part - 3

Particle Image Velocimetry Part - 3 AerE 545X class notes #5 Particle Image Velocimetry Part - 3 Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A PIV System Setup Particle tracers: Illumination system:

More information

Best Practices for Maneuvering

Best Practices for Maneuvering Best Practices for Maneuvering STAR Global Conference - Berlin 2017 Timothy Yen, PhD Marine and Offshore Technical Specialist Priyanka Cholletti Advanced Application Engineer Carlo Pettinelli Engineering

More information

NUMERICAL STUDY OF TWO DIFFERENT TYPES OF SEMI-SUBMERSIBLE PLATFORMS WITH MOORING SYSTEMS IN THE SEA

NUMERICAL STUDY OF TWO DIFFERENT TYPES OF SEMI-SUBMERSIBLE PLATFORMS WITH MOORING SYSTEMS IN THE SEA NUMERICAL STUDY OF TWO DIFFERENT TYPES OF SEMI-SUBMERSIBLE PLATFORMS WITH MOORING SYSTEMS IN THE SEA Yao Peng, Decheng Wan* State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean

More information

Characterisation of an idealised offshore wind farm foundation, under waves and the combination of waves and currents

Characterisation of an idealised offshore wind farm foundation, under waves and the combination of waves and currents Characterisation of an idealised offshore wind farm foundation, under waves and the combination of waves and currents Isabel García-Hermosa, J. Lebunetel, N. Abcha, J. Brossard, A. Ezersky, D. Mouazé,

More information

MODELLING THE FLOW AROUND AN ISLAND AND A HEADLAND: APPLICATION OF A TWO MIXING LENGTH MODEL WITH TELEMAC3D. Nicolas Chini 1 and Peter K.

MODELLING THE FLOW AROUND AN ISLAND AND A HEADLAND: APPLICATION OF A TWO MIXING LENGTH MODEL WITH TELEMAC3D. Nicolas Chini 1 and Peter K. MODELLING THE FLOW AROUND AN ISLAND AND A HEADLAND: APPLICATION OF A TWO MIXING LENGTH MODEL WITH TELEMAC3D Nicolas Chini 1 and Peter K. Stansby 2 Numerical modelling of the circulation around islands

More information

Time-resolved PIV measurements with CAVILUX HF diode laser

Time-resolved PIV measurements with CAVILUX HF diode laser Time-resolved PIV measurements with CAVILUX HF diode laser Author: Hannu Eloranta, Pixact Ltd 1 Introduction Particle Image Velocimetry (PIV) is a non-intrusive optical technique to measure instantaneous

More information

Spectral fatigue for FPSO conversion.

Spectral fatigue for FPSO conversion. Spectral fatigue for FPSO conversion. Vincent Bonniol, Introduction The required time to build a new FPSO leads to more and more conversions from existing tankers. On demand of several oil companies has

More information

Comparison of open-source code Nemoh with Wamit for cargo ship motions in shallow water

Comparison of open-source code Nemoh with Wamit for cargo ship motions in shallow water Comparison of open-source code Nemoh with Wamit for cargo ship motions in shallow water G.Parisella 1 and T.P.Gourlay 2 Centre for Marine Science and Technology, Curtin University Research report 2016-23,

More information

FLOW VISUALISATION AROUND A SOLID SPHERE ON A ROUGH BED UNDER REGULAR WAVES

FLOW VISUALISATION AROUND A SOLID SPHERE ON A ROUGH BED UNDER REGULAR WAVES FLOW VISUALISATION AROUND A SOLID SPHERE ON A ROUGH BED UNDER REGULAR WAVES H.P.V.Vithana 1, Richard Simons 2 and Martin Hyde 3 Flow visualization using Volumetric Three-component Velocimetry (V3V) was

More information

Direct simulation of zigzag maneuver for fully appended ship

Direct simulation of zigzag maneuver for fully appended ship Direct simulation of zigzag maneuver for fully appended ship Jianhua Wang, Decheng Wan * State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines 7.5 - Page 1 of 11 Table of Contents Simulation Models.... 2 1. PURPOSE OF PROCEDURE... 2 2. INTRODUCTION... 2 3. DOCUMENTATION OF A MANOEUVRING SIMULATION MODEL... 3 3.1 Ship Particulars... 3 3.2 Prediction

More information

ITTC Recommended Procedures Testing and Extrapolation Methods Manoeuvrability Validation of Manoeuvring Simulation Models

ITTC Recommended Procedures Testing and Extrapolation Methods Manoeuvrability Validation of Manoeuvring Simulation Models Page 1 of 11 CONTENTS 1 PURPOSE OF PROCEDURE 2 INTRODUCTION 3 PROCEDURE FOR VALIDATION OF A MANOEUVRING SIMULATION MODEL 3.1 The Report 3.2 Prediction of Forces 3.3 Modelling of Forces in the Mathematical

More information

Interaction between a tethered sphere and a free surface flow

Interaction between a tethered sphere and a free surface flow Fluid Structure Interaction and Moving Boundary Problems 205 Interaction between a tethered sphere and a free surface flow M. Greco 1, S. Malavasi 2 & D. Mirauda 1 1 Department I.F.A., Basilicata University,

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean 1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. A Direct Simulation-Based Study of Radiance in a Dynamic Ocean LONG-TERM GOALS Dick K.P. Yue Center for Ocean Engineering

More information

EFFECTS OF COUPLED HYDRODYNAMIC IN THE PERFORMANCE OF A DP BARGE OPERATING CLOSE TO A FPSO

EFFECTS OF COUPLED HYDRODYNAMIC IN THE PERFORMANCE OF A DP BARGE OPERATING CLOSE TO A FPSO Proceedings of the ASME 3th International Conference on Ocean, Offshore and Arctic Engineering OMAE June 9-4,, Rotterdam, The Netherlands OMAE- EFFECTS OF COUPLED HYDRODYNAMIC IN THE PERFORMANCE OF A DP

More information

HALF YEARLY EXAMINATIONS 2015/2016. Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal places.

HALF YEARLY EXAMINATIONS 2015/2016. Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal places. Track 3 GIRLS SECONDARY, MRIEHEL HALF YEARLY EXAMINATIONS 2015/2016 FORM: 4 PHYSICS Time: 1½ hrs Name: Class: Answer ALL questions showing your working Where necessary give your answers correct to 2 decimal

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean A Direct Simulation-Based Study of Radiance in a Dynamic Ocean Lian Shen Department of Civil Engineering Johns Hopkins University Baltimore, MD 21218 phone: (410) 516-5033 fax: (410) 516-7473 email: LianShen@jhu.edu

More information

Lecture # 11: Particle image velocimetry

Lecture # 11: Particle image velocimetry AerE 344 Lecture Notes Lecture # 11: Particle image velocimetry Dr. Hui Hu Dr. Rye M Waldman Department of Aerospace Engineering Iowa State University Ames, Iowa 50011, U.S.A Sources/ Further reading:

More information

KCS Resistance Calculation

KCS Resistance Calculation KCS Resistance Calculation Author: Ludwig Kerner Last update: 19-09-2014 Reviewed by : Jonathan Brunel Date of Review : 19-09-2014 1 Content 0 Executive Summary 1 3 Computations 4 Test Case Description

More information

Particle Image Velocimetry Part - 1

Particle Image Velocimetry Part - 1 AerE 545X class notes #23 Particle Image Velocimetry Part - 1 Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A Announcement Room 1058, Sweeney Hall for Lab#4 (LDV

More information

Direct Measurements of Reynolds Stresses and Turbulence in the Bottom Boundary Layer

Direct Measurements of Reynolds Stresses and Turbulence in the Bottom Boundary Layer LONG-TERM GOALS Direct Measurements of Reynolds Stresses and Turbulence in the Bottom Boundary Layer Joseph Katz Department of Mechanical Engineering The Johns Hopkins University Baltimore, MD 21218 katz@titan.me.jhu.edu

More information

Airgap Prediction from Second-Order Diffraction and Stokes Theory

Airgap Prediction from Second-Order Diffraction and Stokes Theory IJOPE JC-29 Airgap Prediction from Second-Order Diffraction and Stokes Theory Bert Sweetman and Steven R. Winterstein Civil and Environmental Engineering Stanford University, USA Trond Stokka Meling Statoil

More information

Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) 30-31,December, 2014, Ernakulam, India

Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) 30-31,December, 2014, Ernakulam, India INTERNATIONAL JOURNAL OF DESIGN AND MANUFACTURING TECHNOLOGY (IJDMT) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6995 (Print) ISSN

More information

Estimation of Hydrodynamic Forces and Motion Characteristics of a Trimaran Light Aboard Ship using Finite Element Method

Estimation of Hydrodynamic Forces and Motion Characteristics of a Trimaran Light Aboard Ship using Finite Element Method Estimation of Hydrodynamic Forces and Motion Characteristics of a Trimaran Light Aboard Ship using Finite Element Method A K D Velayudhan Department of Mechanical Engineering, Muthoot Institute of Technology

More information

Laser-based metrology for Hexapods Symétrie

Laser-based metrology for Hexapods Symétrie Laser-based metrology for Symétrie Automated Precision Europe GmbH Im Breitspiel 17 69126 Heidelberg Tel: +49 (0) 6221 729 805 0 Fax: +49 (0) 6221 729 805 23 HEXAPODS The six feet for special applications

More information

VALIDATION METHODOLOGY FOR SIMULATION SOFTWARE OF SHIP BEHAVIOUR IN EXTREME SEAS

VALIDATION METHODOLOGY FOR SIMULATION SOFTWARE OF SHIP BEHAVIOUR IN EXTREME SEAS 10 th International Conference 409 VALIDATION METHODOLOGY FOR SIMULATION SOFTWARE OF SHIP BEHAVIOUR IN EXTREME SEAS Stefan Grochowalski, Polish Register of Shipping, S.Grochowalski@prs.pl Jan Jankowski,

More information

FLOW STRUCTURE AROUND A HORIZONTAL CYLINDER AT DIFFERENT ELEVATIONS IN SHALLOW WATER

FLOW STRUCTURE AROUND A HORIZONTAL CYLINDER AT DIFFERENT ELEVATIONS IN SHALLOW WATER FLOW STRUCTURE AROUND A HORIZONTAL CYLINDER AT DIFFERENT ELEVATIONS IN SHALLOW WATER 1 N.Filiz OZDIL, * 2 Huseyin AKILLI 1 Department of Mechanical Engineering, Adana Science and Technology University,

More information

Simulation Technology for Offshore and Marine Hydrodynamics Status Review and Emerging Capabilities

Simulation Technology for Offshore and Marine Hydrodynamics Status Review and Emerging Capabilities Simulation Technology for Offshore and Marine Hydrodynamics Status Review and Emerging Capabilities Lee Sing-Kwan and Seah Ah Kuan American Bureau of Shipping Presented at the 2 nd International MTEC 2007

More information

OMAE SLOSHING AND SWIRLING IN PARTIALLY LOADED PRISMATIC CHAMFERED TANKS

OMAE SLOSHING AND SWIRLING IN PARTIALLY LOADED PRISMATIC CHAMFERED TANKS Proceedings of the 36 th International Conference on Ocean, Offshore & Arctic Engineering June 25-30, 2017, Trondheim, Norway OMAE2017-61562 SLOSHING AND SWIRLING IN PARTIALLY LOADED PRISMATIC CHAMFERED

More information

CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+

CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+ CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+ by G. J. Grigoropoulos and I..S. Kefallinou 1. Introduction and setup 1. 1 Introduction The

More information

Cloud Cavitating Flow around an Axisymmetric Projectile in the shallow water

Cloud Cavitating Flow around an Axisymmetric Projectile in the shallow water Cloud Cavitating Flow around an Axisymmetric Projectile in the shallow water 1,2 Chang Xu; 1,2 Yiwei Wang*; 1,2 Jian Huang; 1,2 Chenguang Huang 1 Key Laboratory for Mechanics in Fluid Solid Coupling Systems,

More information

Introduction to Modern Measurement Technology

Introduction to Modern Measurement Technology Introduction to Modern Measurement Technology and Applications in Coastal and Ocean Engineering Kuang-An Chang Ocean Engineering Program Department of Civil Engineering Texas A&M University What Do We

More information

Particle Image Velocimetry for Fluid Dynamics Measurements

Particle Image Velocimetry for Fluid Dynamics Measurements Particle Image Velocimetry for Fluid Dynamics Measurements Lyes KADEM, Ph.D; Eng kadem@encs.concordia.ca Laboratory for Cardiovascular Fluid Dynamics MIE Concordia University Presentation - A bit of history

More information

Measurements of Three-Dimensional Velocity Fields Under Breaking Waves

Measurements of Three-Dimensional Velocity Fields Under Breaking Waves The Journal of Undergraduate Research Volume 11 Journal of Undergraduate Research, Volume 11: 2013 Article 3 2013 Measurements of Three-Dimensional Velocity Fields Under Breaking Waves Matthew Auch South

More information

Measurement Techniques. Digital Particle Image Velocimetry

Measurement Techniques. Digital Particle Image Velocimetry Measurement Techniques Digital Particle Image Velocimetry Heat and Mass Transfer Laboratory (LTCM) Sepideh Khodaparast Marco Milan Navid Borhani 1 Content m Introduction m Particle Image Velocimetry features

More information

Human beings are extremely interested in the observation of nature, as this was and still is of utmost importance for their survival.

Human beings are extremely interested in the observation of nature, as this was and still is of utmost importance for their survival. Historical Background Human beings are extremely interested in the observation of nature, as this was and still is of utmost importance for their survival. (www.copyright-free-images.com) 1 Historical

More information

Validation of CFD Simulation for Ship Roll Damping using one Pure Car Carrier and one Standard Model

Validation of CFD Simulation for Ship Roll Damping using one Pure Car Carrier and one Standard Model Proceedings of the 15 th International Ship Stability Workshop, 13-15June 2016, Stockholm, Sweden 1 Validation of CFD Simulation for Ship Roll Damping using one Pure Car Carrier and one Standard Model

More information

EXPERIMENTAL AND CFD SIMULATION OF ROLL MOTION OF SHIP WITH BILGE KEEL

EXPERIMENTAL AND CFD SIMULATION OF ROLL MOTION OF SHIP WITH BILGE KEEL MARHY 14 3-4 December 14, Chennai, India. ABSTRACT EXPERIMENTAL AND SIMULATION OF ROLL MOTION OF SHIP WITH BILGE KEEL Irkal Mohsin A.R., Indian Institute of Technology Madras, India. S. Nallayarasu, Indian

More information

ADVANCED MEASUREMENT TECHNIQUES IN HYDRODYNAMICS. Chittiappa Muthanna

ADVANCED MEASUREMENT TECHNIQUES IN HYDRODYNAMICS. Chittiappa Muthanna ADVANCED MEASUREMENT TECHNIQUES IN HYDRODYNAMICS Chittiappa Muthanna Outline Why use these techniques? Constant temperature anemometry Laser Doppler Velocimetry PIV Measuring Shapes and Deformations 2

More information

Analysis of the Velocities in the Wake of an Azimuthing Thruster, using PIV Measurements and CFD Calculations

Analysis of the Velocities in the Wake of an Azimuthing Thruster, using PIV Measurements and CFD Calculations Analysis of the Velocities in the Wake of an Azimuthing Thruster, using PIV Measurements and CFD Calculations Hans Cozijn (MARIN) Rink Hallmann, Arjen Koop Presentation Outline Background and Objectives

More information

Measurements using three-dimensional product imaging

Measurements using three-dimensional product imaging ARCHIVES of FOUNDRY ENGINEERING Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 10 Special Issue 3/2010 41 46 7/3 Measurements using

More information

PIV measurements in water waves

PIV measurements in water waves PIV measurements in water waves Atle Jensen University of Oslo PIV, 2003 p.1/37 Outline of talk history results from experiments of Stokes waves (Jensen et al. (2001)) irregular waves (Clamond et al. (2002),

More information

Fluid-structure Interaction by the mixed SPH-FE Method with Application to Aircraft Ditching

Fluid-structure Interaction by the mixed SPH-FE Method with Application to Aircraft Ditching Fluid-structure Interaction by the mixed SPH-FE Method with Application to Aircraft Ditching Paul Groenenboom ESI Group Delft, Netherlands Martin Siemann German Aerospace Center (DLR) Stuttgart, Germany

More information

PARTICLE IMAGE VELOCIMETRY (PIV) AND VOLUMETRIC VELOCIMETRY (V3V) SYSTEMS

PARTICLE IMAGE VELOCIMETRY (PIV) AND VOLUMETRIC VELOCIMETRY (V3V) SYSTEMS PARTICLE IMAGE VELOCIMETRY (PIV) AND VOLUMETRIC VELOCIMETRY (V3V) SYSTEMS VERSATILE, UPGRADEABLE FLUID MECHANICS MEASUREMENT SOLUTIONS UNDERSTANDING, ACCELERATED FULL SPECTRUM OF GLOBAL VELOCITY SYSTEMS

More information

Numerical study on a KVLCC2 model advancing in shallow water

Numerical study on a KVLCC2 model advancing in shallow water Yuan, Zhi-Ming and Kellett, Paula (2015) Numerical study on a KVLCC2 model advancing in shallow water. In: 9th International Workshop on Ship and Marine Hydrodynamics, 2015-08-25-2015-08-28, University

More information

Design and Execution of Model Experiments to Validate Numerical Modelling of 2D Ship Operations in Pack Ice

Design and Execution of Model Experiments to Validate Numerical Modelling of 2D Ship Operations in Pack Ice Design and Execution of Model Experiments to Validate Numerical Modelling of 2D Ship Operations in Pack Ice Roelof C. Dragt Offshore Engineering Faculty of Mechanical, Maritime and Material Engineering

More information

Doppler Global Velocimetry: A Potential Velocity Measurement Method for General Aviation Applications

Doppler Global Velocimetry: A Potential Velocity Measurement Method for General Aviation Applications Doppler Global Velocimetry: A Potential Velocity Measurement Method for General Aviation Applications L. Scott Miller The Wichita State University Wichita, Kansas and James F. Meyers, and Jimmy W. Usry

More information

Basic Waves, Sound & Light Waves, and the E & M Spectrum

Basic Waves, Sound & Light Waves, and the E & M Spectrum Basic Waves, Sound & Light Waves, and the E & M Spectrum 1. What are the amplitude and wavelength of the wave shown below? A) amplitude = 0.10 m, wavelength = 0.30 m B) amplitude = 0.10 m, wavelength =

More information

Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions. Milovan Perić

Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions. Milovan Perić Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions Milovan Perić Contents The need to couple STAR-CCM+ with other theoretical or numerical solutions Coupling approaches: surface and volume

More information

Optimal design of floating platform and substructure for a spar type wind turbine system

Optimal design of floating platform and substructure for a spar type wind turbine system The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Optimal design of floating platform and substructure for a spar type wind

More information

Numerical Simulation of the Self-Propulsion Model Tests

Numerical Simulation of the Self-Propulsion Model Tests Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Numerical Simulation of the Self-Propulsion Model Tests Tomasz Bugalski, Paweł Hoffmann 1 1 Ship Design and Research

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

CFD Application in Offshore Structures Design at PETROBRAS

CFD Application in Offshore Structures Design at PETROBRAS CFD Application in Offshore Structures Design at PETROBRAS Marcus Reis ESSS CFD Director Mooring System Design of Floating Production Systems; Current and Wind Loads; Wave Induced Drag Coefficients. Case

More information

Simulation of Sloshing Dynamics in a Tank by an Improved Volume-of-Fluid Method

Simulation of Sloshing Dynamics in a Tank by an Improved Volume-of-Fluid Method Proceedings of the Nineteenth (2009) International Offshore and Polar Engineering Conference Osaka, Japan, June 21-26, 2009 Copyright 2009 by The International Society of Offshore and Polar Engineers (ISOPE)

More information

Gyroscope based floating LIDAR design for getting stable offshore wind velocity profiles

Gyroscope based floating LIDAR design for getting stable offshore wind velocity profiles Gyroscope based floating LIDAR design for getting stable offshore wind velocity profiles Kameswara Sridhar Vepa a, Thomas Duffey b, and Wim Van Paepegem a a Mechanics of Materials and Structures, Ghent

More information

Numerical propusion test for a tug boat using a RANS solver

Numerical propusion test for a tug boat using a RANS solver Numerical propusion test for a tug boat using a RANS solver R. Broglia, A. Di Mascio, D. Calcagni & F. Salvatore INSEAN, Italian Ship Model Basin, Rome, Italy ABSTRACT: This paper deals with the analysis

More information

CFD Analysis of a Novel Hull Design for an Offshore Wind Farm Service Vessel

CFD Analysis of a Novel Hull Design for an Offshore Wind Farm Service Vessel CFD Analysis of a Novel Hull Design for an Offshore Wind Farm Service Vessel M. Shanley 1, J. Murphy 1, and P. Molloy 2 1 Hydraulics and Maritime, Civil and Environmental Engineering University College

More information

Characterization of the Flow Field around a Transonic Wing by PIV.

Characterization of the Flow Field around a Transonic Wing by PIV. Characterization of the Flow Field around a Transonic Wing by PIV. A. Gilliot 1, J.C. Monnier 1, A. Arnott 2, J. Agocs 2 and C. Fatien 1 1 ONERA Lille,5 Bd Paul Painlevé, 59 045 Lille cedex France. 2 DLR

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean A Direct Simulation-Based Study of Radiance in a Dynamic Ocean Dick K.P. Yue Center for Ocean Engineering Massachusetts Institute of Technology Room 5-321, 77 Massachusetts Ave, Cambridge, MA 02139 phone:

More information

Numerical Study of Propeller Ventilation

Numerical Study of Propeller Ventilation Fifth International Symposium on Marine Propulsors smp 17, Espoo, Finland, June 2017 Numerical Study of Propeller Ventilation Camille Yvin 1, Pol Muller 1, Kourosh Koushan 2 1 DCNS RESEARCH/SIREHNA, Nantes,

More information

Computational Fluid Dynamics PRODUCT SHEET

Computational Fluid Dynamics PRODUCT SHEET TM 2014 Computational Fluid Dynamics PRODUCT SHEET 1 Breaking Limitations The Challenge of Traditional CFD In the traditional mesh-based approach, the reliability highly depends on the quality of the mesh,

More information

Enabling the Prediction of Manoeuvring Characteristics of a Submarine Operating Near the Free Surface

Enabling the Prediction of Manoeuvring Characteristics of a Submarine Operating Near the Free Surface Enabling the Prediction of Manoeuvring Characteristics of a Submarine Operating Near the Free Surface ABSTRACT C Polis 1, D Ranmuthugala 1, J Duffy 1, M Renilson 1,2 1. Australian Maritime College, 2.

More information

SHIP S GENERAL DYNAMICS PRIORITY RESEARCH DIRECTION IN THE XXI CENTURY. CFD APPLICATIONS

SHIP S GENERAL DYNAMICS PRIORITY RESEARCH DIRECTION IN THE XXI CENTURY. CFD APPLICATIONS SHIP S GENERAL DYNAMICS PRIORITY RESEARCH DIRECTION IN THE XXI CENTURY. CFD APPLICATIONS Iordan NOVAC 1 Catalin FAITAR 2 1 Associate Professor Eng., Constanta Maritime University 2 Eng., Constanta Maritime

More information

Effects of Bow Flare on Parametric Roll Characteristics of Surface Combatant

Effects of Bow Flare on Parametric Roll Characteristics of Surface Combatant Effects of Bow Flare on Parametric Roll Characteristics of Surface Combatant Woei-Min Lin, Kenneth M. Weems, and Sheguang Zhang Advanced Systems and Technology Division Science Applications International

More information

Coupled Simulation of Flow and Body Motion Using Overset Grids. Eberhard Schreck & Milovan Perić

Coupled Simulation of Flow and Body Motion Using Overset Grids. Eberhard Schreck & Milovan Perić Coupled Simulation of Flow and Body Motion Using Overset Grids Eberhard Schreck & Milovan Perić Contents Dynamic Fluid-Body Interaction (DFBI) model in STAR-CCM+ Overset grids method in STAR-CCM+ Advantages

More information

Application of Hydrodynamics and Dynamics Models for Efficient Operation of Modular Mini-AUVs in Shallow and Very-Shallow Waters

Application of Hydrodynamics and Dynamics Models for Efficient Operation of Modular Mini-AUVs in Shallow and Very-Shallow Waters Application of Hydrodynamics and Dynamics Models for Efficient Operation of Modular Mini-AUVs in Shallow and Very-Shallow Waters P. Ananthakrishnan Department of Ocean Engineering Florida Atlantic University

More information

Aurélien Thinat Stéphane Cordier 1, François Cany

Aurélien Thinat Stéphane Cordier 1, François Cany SimHydro 2012:New trends in simulation - Hydroinformatics and 3D modeling, 12-14 September 2012, Nice Aurélien Thinat, Stéphane Cordier, François Cany Application of OpenFOAM to the study of wave loads

More information

RANS Based Analysis of Roll Damping Moments at Bilge Keels

RANS Based Analysis of Roll Damping Moments at Bilge Keels RANS Based Analysis of Roll Damping Moments at Bilge Keels Florian Kluwe (kluwe@tu-harburg.de), Daniel Schmode, Gerhard Jensen Introduction The simulation of ship motions in seaways gets increasing relevance

More information

Application of Hydrodynamics and Dynamics Models for Efficient Operation of Modular Mini-AUVs in Shallow and Very Shallow Waters

Application of Hydrodynamics and Dynamics Models for Efficient Operation of Modular Mini-AUVs in Shallow and Very Shallow Waters Application of Hydrodynamics and Dynamics Models for Efficient Operation of Modular Mini-AUVs in Shallow and Very Shallow Waters P. Ananthakrishnan Department of Ocean Engineering Florida Atlantic University

More information

Particle Velocimetry Data from COMSOL Model of Micro-channels

Particle Velocimetry Data from COMSOL Model of Micro-channels Particle Velocimetry Data from COMSOL Model of Micro-channels P.Mahanti *,1, M.Keebaugh 1, N.Weiss 1, P.Jones 1, M.Hayes 1, T.Taylor 1 Arizona State University, Tempe, Arizona *Corresponding author: GWC

More information

INVESTIGATION OF FLOW BEHAVIOR PASSING OVER A CURVETURE STEP WITH AID OF PIV SYSTEM

INVESTIGATION OF FLOW BEHAVIOR PASSING OVER A CURVETURE STEP WITH AID OF PIV SYSTEM INVESTIGATION OF FLOW BEHAVIOR PASSING OVER A CURVETURE STEP WITH AID OF PIV SYSTEM Noor Y. Abbas Department of Mechanical Engineering, Al Nahrain University, Baghdad, Iraq E-Mail: noor13131979@gmail.com

More information

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement Lian Shen Department of Mechanical Engineering

More information

ESD.77 Multidisciplinary System Design Optimization Spring Barge Design Optimization

ESD.77 Multidisciplinary System Design Optimization Spring Barge Design Optimization ESD.77 Multidisciplinary System Design Optimization Spring 2010 Barge Design Optimization Anonymous MIT Students What is a barge? Flat bottomed vessel, typically non selfpropelled, used to carry low value,

More information

DAMAGE INSPECTION AND EVALUATION IN THE WHOLE VIEW FIELD USING LASER

DAMAGE INSPECTION AND EVALUATION IN THE WHOLE VIEW FIELD USING LASER DAMAGE INSPECTION AND EVALUATION IN THE WHOLE VIEW FIELD USING LASER A. Kato and T. A. Moe Department of Mechanical Engineering Chubu University Kasugai, Aichi 487-8501, Japan ABSTRACT In this study, we

More information

NUMERICAL SIMULATION OF SHALLOW WATERS EFFECTS ON SAILING SHIP "MIRCEA" HULL

NUMERICAL SIMULATION OF SHALLOW WATERS EFFECTS ON SAILING SHIP MIRCEA HULL NUMERICAL SIMULATION OF SHALLOW WATERS EFFECTS ON SAILING SHIP "MIRCEA" HULL Petru Sergiu ȘERBAN 1 1 PhD Student, Department of Navigation and Naval Transport, Mircea cel Batran Naval Academy, Constanța,

More information

SAFEHULL-DYNAMIC LOADING APPROACH FOR CONTAINER CARRIERS

SAFEHULL-DYNAMIC LOADING APPROACH FOR CONTAINER CARRIERS GUIDANCE NOTES ON SAFEHULL-DYNAMIC LOADING APPROACH FOR CONTAINER CARRIERS (FOR THE SH-DLA CLASSIFICATION NOTATION) APRIL 2005 American Bureau of Shipping Incorporated by Act of Legislature of the State

More information

An Approach to the Validation of Ship Flooding Simulation Models

An Approach to the Validation of Ship Flooding Simulation Models An Approach to the Validation of Ship Flooding Simulation Models Egbert L. Ypma MARIN, the Netherlands Terry Turner Defence Science & Technology Organisation (DSTO), Australia ABSTRACT A methodology has

More information

Use of STAR-CCM+ in Marine and Off-Shore Engineering - Key Features and Future Developments - M. Perić, F. Schäfer, E. Schreck & J.

Use of STAR-CCM+ in Marine and Off-Shore Engineering - Key Features and Future Developments - M. Perić, F. Schäfer, E. Schreck & J. Use of STAR-CCM+ in Marine and Off-Shore Engineering - Key Features and Future Developments - M. Perić, F. Schäfer, E. Schreck & J. Singh Contents Main features of STAR-CCM+ relevant for marine and offshore

More information

SESAM USER MANUAL WADAM. Wave Analysis by Diffraction and Morison theory. Valid from program version 9.3 SAFER, SMARTER, GREENER

SESAM USER MANUAL WADAM. Wave Analysis by Diffraction and Morison theory. Valid from program version 9.3 SAFER, SMARTER, GREENER SESAM USER MANUAL WADAM Wave Analysis by Diffraction and Morison theory Valid from program version 9.3 SAFER, SMARTER, GREENER Sesam User Manual Wadam Date: March/2017 Valid from program version 9.3 Prepared

More information

Milovan Perić CD-adapco. Use of STAR-CCM+ in Marine and Offshore Engineering and Future Trends

Milovan Perić CD-adapco. Use of STAR-CCM+ in Marine and Offshore Engineering and Future Trends Milovan Perić CD-adapco Use of STAR-CCM+ in Marine and Offshore Engineering and Future Trends Introduction CD-adapco is developing simulation capabilities in STAR-CCM+ specifically for marine and offshore

More information

S T A S P M A P R O G R A M F O R S T A T I C A N A L Y S I S O F S I N G L E P O I N T M O O R E D V E S S E L S U S E R M A N U A L A N D

S T A S P M A P R O G R A M F O R S T A T I C A N A L Y S I S O F S I N G L E P O I N T M O O R E D V E S S E L S U S E R M A N U A L A N D STA SPM Single Point Mooring Analysis Revision 1 Page i S T A S P M A P R O G R A M F O R S T A T I C A N A L Y S I S O F S I N G L E P O I N T M O O R E D V E S S E L S U S E R M A N U A L A N D T E C

More information

Measurement of droplets temperature by using a global rainbow technique with a pulse laser

Measurement of droplets temperature by using a global rainbow technique with a pulse laser , 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, September 2010 Measurement of droplets temperature by using a global rainbow technique with a pulse laser S. Saengkaew,

More information

DYNAMIC POSITIONING. September 1, Hans Cozijn

DYNAMIC POSITIONING. September 1, Hans Cozijn DYNAMIC POSITIONING MARIN SOFTWARE SEMINAR SINGAPORE September 1, 2015 Hans Cozijn Senior Project Manager Offshore STATIONKEEPING USING DYNAMIC POSITIONING 2 PRESENTATION OUTLINE Dynamic Positioning Tools

More information