Chapter 7 page 1 MATH 105 FUNCTIONS OF SEVERAL VARIABLES

Size: px
Start display at page:

Download "Chapter 7 page 1 MATH 105 FUNCTIONS OF SEVERAL VARIABLES"

Transcription

1 Chapter 7 page 1 MATH 105 FUNCTIONS OF SEVERAL VARIABLES Evaluate each function at the indicated point. 1. f(x,y) = x 2 xy + y 3 a) f(2,1) = b) f(1, 2) = 2. g(x,y,z) = 2x y + 5z a) g(2, 0, 1) = b) g(3, -2, 4) = 3. F(t,w) = 4w 2 t 2 F(3, -1) = 4. f ( x,y) = xe y + ln x f (e 2,ln2) = 5. A population that grows exponentially satisfies P(A,k,t) = Ae kt, where P is the population at time t, A is the initial population (when t=0) and k is the relative (per capita) growth rate. The population of a certain county is currently 5 million people and is growing at the rate of 3% per year. What will be the population in 7 years? P(,, ) =

2 Chapter 7 page 2 6. The Cobb-Douglas production function states that x units of labor and y units of capital will produce f(x, y) items where f(x, y) = k x n y 1 n, k and n are constants. If f(x, y) = 5x 0.7 y 0.3, how many units are produced using 8 units of labor and 10 units of capital? 7. A company produces and sells x pounds of chocolate at $p a pound and y pounds of fudge at $q a pound according to the demand functions: p = 20-3x + y q = 15 + x - 2y If the total cost C(x, y) = x +4y, find a) the Revenue function R( x, y) b) the Profit function P(x, y)

3 Chapter 7 page 3 FUNCTIONS OF SEVERAL VARIABLES A cigarette company promotes its product through magazine ads and by sponsoring sports events. The company estimates that if it spends x thousand dollars on magazines and y thousand dollars on sports events throughout the year, the company would expect to sell N thousand cartons of cigarettes per day, where N(x, y) = 25, x x 0.03y 2 +15y 1. If they are currently spending $10,000 on magazines and $20,000 on sports, what is their sales figure for N? (let x = 10 and y = 20) N( 10, 20) = 25, (10) (10) 0.03(20) 2 +15(20) = 25,768 so they expect to sell 25,768,000 cartons of cigarettes. 2. If they have an extra $1000 to put into either magazines or sports, where does this thousand do the most good? (in magazines or sports?) Spending the extra one thousand for magazines, the cigarette sales would be: N( 11, 20) = Spending the extra one thousand for sports, the cigarette sales would be: N( 10, 21) = This gives us two types of change in the number of cartons, N : * N(11,20) - N(10,20) = - =, which is the actual change in N when x increases by one, and y remains constant * N(10, 21) - N(10,20) = - =, which is the actual change in N when y increases by one, and x remains constant Where is the extra best spent? * NOTE: We can approximate and predict these changes using calculus >>>>>>>> >>>>>>>>>>>>>> turn this page over>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

4 Chapter 7 page 4 We can approximate and predict these changes using calculus: N(11,20) - N(10,20) = 45.8 can be approximated by: ΔN Δx PARTIAL DERIVATIVE of N with respect to x : notation: D x (N(x,y)) = N x (x,y) = N x = which is the Is the change in N as x increases by one and y remains constant They all mean : 1. The derivative of N with respect to x 2. The rate of change of N with respect to x 3. An estimate of the effect of a change of one unit in x on N 4. The marginal on N with respect to x. SO...N(11,20) - N(10,20) can be approximated by N x = -0.4x + 50 SO... N x (x, y) = 0.4x + 50 = N x (10, 20) = 0.4(10) + 50 = 46 thousand or 46,000 cartons N(10,21) - N(10,20) = can be approximated by: ΔN Δy PARTIAL DERIVATIVE of N with respect to x : notation: D y (N(x,y)) = N y (x, y) = N y = which is the Is the change in N as y increases by one and x remains constant They all mean : 1. The derivative of N with respect to y 2. The rate of change of N with respect to y 3. An estimate of the effect of a change of one unit in y on N 4. The marginal on N with respect to y. SO...N(10,21) - N(10,20) can be approximated by N y = -0.06y+15 SO... N y (x, y) = 0.06y +15 = N y (10, 20) = 0.06(20) +15 =13.8 thousand or13,800 cartons

5 Chapter 7 page PARTIAL DERIVATIVES part I 1. For z = 9 5x + 3y 2, find a) f x (x, y) = b) f x (3, 2) = c) f y (x,y) = d) f y (3, 2) = 2. For f(x,y) = x 3 2xy + y 2 + x 4y + 3, find a) f x = b) f x (3, 2) = c) f y = d) f y (2, 1) = 3. For C( x, y, ) = 2x 2 + 2xy + 3y 2 16x 18y + 54 find values of x and y for which both C x (x, y) = 0 and C y (x, y) = 0 4. If z = f(x,y) = 9 x 2 y 2, then a) f x (x, y) = b) f x (1,2) = c) f y (x,y) = d) f y (1,2) = 5. If f (x, y) = xe 2xy then find a) f x (x, y) = b) f y (x,y) = 6. f(x,y) = ln(5x 4y) a) f x (x,y) = b) f y (x,y) =

6 Chapter 7 page SEE PAGE 561: two paragraphs and illustration 3x 6y 7. f(x,y) = e a) f x (x,y) = b) f y (x,y) = 8. A company produces x standard items selling at $p each and y luxury items selling at $q each according to the demand functions p = 100-3x +y q = 80 + x - 2y with total cost function C(x,y) = x + 10y a) Find Revenue R(x,y) = b) Find R x (5,10) and R y (5,10) and interpret the results. c) Find Profit P(x,y) = d) Find P x (5,10) and P y (5,10) and interpret the results 9. A ski manufacturer has weekly production function S = f(x,y) = 250x 0.63 y 0.37 where S = number of pairs of skis produced using x units of labor and y units of capital. a) Find the marginal productivity of labor, S x = and the marginal productivity of capital, S y = b) Find f x (10, 20)= and f y (10, 20) = c) To increase productivity faster, should labor or capital be increased?

7 Chapter 7 page SECOND ORDER PARTIAL DERIVATIVES part II If z = f ( x, y ), then f xx = f xx (x, y) = 2 z x 2 = x ( z x ) f yy = f yy ( x, y) = 2 z y 2 = y ( z y ) Mixed Partial Derivatives: f xy = f xy (x, y) = 2 z y x = y ( z x ) First differentiate with respect to x, holding y constant. Then differentiate with respect to y, holding x constant f yx = f yx (x, y) = 2 z x y = y ( z y ) First differentiate with respect to y, holding x constant. Then differentiate with respect to x, holding y constant. 1. Find f xx, f xy, f yx,, and f yy for each function. a) f (x, y) = y 4 2xy 2 + 5x 2 +15x 8y b) f (x, y) = y x x y 2

8 Chapter 7 page SECOND PARTIAL DERIVATIVE TEST FOR EXTREMA OF f(x,y) 2nd Derivative Test for Local Extrema STEPS: 1. Find f x (x, y) and f y (x,y). 2. Set both = 0 and solve to find all critical points, (a,b). 3. Find all second partials: f xx, f yy, and f xy. 4. Plug in all critical values, one point at a time For each critical point, evaluate D = AC B 2 where A = f xx (a, b) B = f xy (a, b) C = f yy (a, b) I If D > 0 and A < 0, then f(a,b) is a RELATIVE MAXIMUM II If D > 0 and A > 0, then f(a,b) is a RELATIVE MINIMUM III If D < 0, the f(a,b) is a SADDLE POINT IV If D = 0, no information Most of the work in this extrema test is usually in the algebra needed to find the critical points. Some techniques occur frequently; a) If each partial contains only one variable: factor and solve. (see ex.1) b) If both partials are linear, use the addition (or elimination) method. (see ex.2) c) If one or both partials are nonlinear, use substitution from the easier partial into the harder one. (see ex.3) Examples: Classify all critical points of 1) f(x,y) = 2x 3 + y 2 9x 2 10y +12x 2 C.P. f xx = f yy = f xy = D conclusion

9 Chapter 7 page f(x,y) = x 2 + xy + y 2 4x 5y C.P. f xx = f yy = f xy = D conclusion 3. f(x,y) = 2x 3 6xy + 3y 2 + 6x 18y C.P. f xx = f yy = f xy = D conclusion

10 Chapter 7 page Applications of the Extrema Test 1. A company manufactures x ten-speed bicycles selling at $p and y three-speed bicycles selling at $q. The weekly demand and costs equations are p = 230-9x + y q = x - 4y C(x,y) = x + 30y a) What is the selling price for each bicycle when 10 ten-speed and 20 three-speed bicycles are sold? b) How many of each type of bicycle should be sold to maximize the weekly profit? c) What is the Maximum profit? MAYBE: A store sells two brands of color print film. The store pays $2 per roll of Brand A film and sells it for $p per roll. The store pays $3 per roll of Brand B film and sells it for $q per roll. The store sells x rolls of Brand A and y rolls of Brand B film each day according to the demand equations x = 75-40p + 25q y = p - 30q a) Determine the demands x and y when p = $4 and q = $5. b) How should the store price each brand to maximize the daily profit? c) What is the maximum profit?

11 Chapter 7 page MAXIMA AND MINIMA USING LAGRANGE MULTIPLIERS In the previous section we optimized functions of several variables. However, in many practical optimization problems, we must maximize or minimize a function in which the independent variable are subjected to certain further constraints. These extremum of a function f is called a constrained relative extremum of f. We will use a method called the Method of Lagrange Multipliers, named for Joseph Lagrange, a French mathematician. EXAMPLE: The Acrosonic Company manufactures a bookshelf loudspeaker system that may be bought fully assembled or in a kit. The total weekly profit (in dollars) that Acrosonic Company realized in producing and selling bookshelf loudspeaker systems is given by the profit function P(x,y) = 1 4 x2 3 8 y2 1 xy +120x + 100y where x denotes the number of fully assembled units and y denotes the number of kits produced and sold per week. Acrosonic s management decides the production of these loudspeaker systems should be restricted to a total of exactly 230 units per week. Under this condition, how many kits should be produced per week to maximize their weekly profit? ` The problem is equivalent to maximizing the function P(x,y) subject to the constraint x+y=230 To find this constrained relative maximum of P(x,y): we use the Method of Lagrange Multipliers: step1: Write the problem in the form Maximize (or minimize) z = f(x,y) P(x,y) = 1 4 x2 3 8 y2 1 xy +120x + 100y Subject to the constraint: g(x,y) =k g(x,y) = x + y = 230 The method of Lagrange multipliers uses the fact that any relative extremum of the function f(x,y)subject to the constraint f(x, y) = k must occur at a critical point (a, b) of the function F(x, y) = f (x, y) λ g(x, y) k [ ] where the new variable, λ, ( lambda, in honor of Lagrange) is called the Lagrange Multiplier step 2: Find the critical points for F by first finding its partial derivatives: F x = f x λg x F y = f y λg y F λ = (g k) step 3: Solve the equations F x = 0, F y = 0, and F λ = 0 simultaneously F x = f x λg x = 0 or f x = λg x F y = f y λg y = 0 or f y = λg y F λ = (g k) = 0 or g = k step 4: Evaluate f(a,b) at each critical point (a,b) of F

12 Chapter 7 page back to step 2: use the partial derivatives f x = f y = g x = g y = (step 3) to get the three Lagrange equations f x = λg x f y = λg y g = k Solving: The required constrained relative maximum of P occurs at the critical point (180, 50). Thus Acrosonic s profit is maximized by producing 180 assembled and 50 kit versions of their loudspeaker systems. The maximum weekly profit is P(180, 50) = $10, NOTE: If there had been more than one critical point, we would evaluate the Profit function for each critical point to determine the largest value. FOOTNOTE: λ = the number of additional units of the objective function for each additional additional unit of the constraint function or ΔP Δg

13 Chapter 7 page EXAMPLE 2: The total monthly profit of Robertson Controls Company in manufacturing and selling x hundred of its standard mechanical setback thermostats and y hundred of its deluxe electronic setback thermostats per month is given by the total profit function P(x,y) = 1 8 x2 1 2 y2 1 xy +13x + 40y where P is in hundreds of dollars. If the production of setback thermostats is to be restricted to a total of exactly 40 per month: a) how many of each model should the company manufacture in order to maximize its monthly profits? b) what is the maximum monthly profit?

MATH 142 Business Mathematics II

MATH 142 Business Mathematics II MATH 142 Business Mathematics II Summer, 2016, WEEK 5 JoungDong Kim Week 5: 8.1, 8.2, 8.3 Chapter 8 Functions of Several Variables Section 8.1 Functions of several Variables Definition. An equation of

More information

Comprehensive Practice Handout MATH 1325 entire semester

Comprehensive Practice Handout MATH 1325 entire semester 1 Comprehensive Practice Handout MATH 1325 entire semester Test 1 material Use the graph of f(x) below to answer the following 6 questions. 7 1. Find the value of lim x + f(x) 2. Find the value of lim

More information

1. Show that the rectangle of maximum area that has a given perimeter p is a square.

1. Show that the rectangle of maximum area that has a given perimeter p is a square. Constrained Optimization - Examples - 1 Unit #23 : Goals: Lagrange Multipliers To study constrained optimization; that is, the maximizing or minimizing of a function subject to a constraint (or side condition).

More information

Lagrange Multipliers

Lagrange Multipliers Lagrange Multipliers Christopher Croke University of Pennsylvania Math 115 How to deal with constrained optimization. How to deal with constrained optimization. Let s revisit the problem of finding the

More information

Exam 3 Review (Sections Covered: , 6.7topic and )

Exam 3 Review (Sections Covered: , 6.7topic and ) Exam 3 Review (Sections Covered: 6.1-6.6, 6.7topic and 8.1-8.2) 1. Find the most general antiderivative of the following functions. (Use C for the constant of integration. Remember to use absolute values

More information

Answer sheet: Second Midterm for Math 2339

Answer sheet: Second Midterm for Math 2339 Answer sheet: Second Midterm for Math 2339 March 31, 2009 Problem 1. Let (a) f(x,y,z) = ln(z x 2 y 2 ). Evaluate f(1, 1, 2 + e). f(1, 1, 2 + e) = ln(2 + e 1 1) = lne = 1 (b) Find the domain of f. dom(f)

More information

Name: ID: Discussion Section:

Name: ID: Discussion Section: Name: ID: Discussion Section: This exam has 16 questions: 14 multiple choice worth 5 points each. 2 hand graded worth 15 points each. Important: No graphing calculators! For the multiple choice questions,

More information

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables Math 1314 Lesson 4 Maxima and Minima o Functions o Several Variables We learned to ind the maxima and minima o a unction o a single variable earlier in the course. We had a second derivative test to determine

More information

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution 13 Functions of Several Variables 13.1 Introduction to Functions of Several Variables Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Objectives Understand

More information

Math 1314 Test 2 Review Material covered is from Lessons 7 15

Math 1314 Test 2 Review Material covered is from Lessons 7 15 Math 1314 Test 2 Review Material covered is from Lessons 7 15 1. The total weekly cost of manufacturing x cameras is given by the cost function: 3 2 C( x) 0.0001x 0.4x 800x 3,000. Use the marginal cost

More information

Lagrange Multipliers. Joseph Louis Lagrange was born in Turin, Italy in Beginning

Lagrange Multipliers. Joseph Louis Lagrange was born in Turin, Italy in Beginning Andrew Roberts 5/4/2017 Honors Contract Lagrange Multipliers Joseph Louis Lagrange was born in Turin, Italy in 1736. Beginning at age 16, Lagrange studied mathematics and was hired as a professor by age

More information

Constrained Optimization and Lagrange Multipliers

Constrained Optimization and Lagrange Multipliers Constrained Optimization and Lagrange Multipliers MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Constrained Optimization In the previous section we found the local or absolute

More information

Math 1314 Test 3 Review Material covered is from Lessons 9 15

Math 1314 Test 3 Review Material covered is from Lessons 9 15 Math 1314 Test 3 Review Material covered is from Lessons 9 15 1. The total weekly cost of manufacturing x cameras is given by the cost function: 3 2 Cx ( ) 0.0001x 0.4x 800x 3, 000. Use the marginal cost

More information

Section 2.1 Graphs. The Coordinate Plane

Section 2.1 Graphs. The Coordinate Plane Section 2.1 Graphs The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of numbers to form

More information

Math 142 Week-in-Review #7 (Exam 2 Review: Sections and )

Math 142 Week-in-Review #7 (Exam 2 Review: Sections and ) Math 142 WIR, copyright Angie Allen, Spring 2013 1 Math 142 Week-in-Review #7 (Exam 2 Review: Sections 4.1-4.5 and 5.1-5.6) Note: This collection of questions is intended to be a brief overview of the

More information

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided.

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided. Math 213 Exam 2 Name: Section: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used other than a onepage cheat

More information

Math 1120, Section 4 Calculus Test 2. November 5, 2008 Name. work. 1. (15 points) Consider the function f(x) = (2x + 3) 2 (x 1) 2.

Math 1120, Section 4 Calculus Test 2. November 5, 2008 Name. work. 1. (15 points) Consider the function f(x) = (2x + 3) 2 (x 1) 2. November 5, 2008 Name The total number of points available is 139 work Throughout this test, show your 1 (15 points) Consider the function f(x) = (2x + 3) 2 (x 1) 2 (a) Use the product rule to find f (x)

More information

3.1 Graphing Using the First Derivative

3.1 Graphing Using the First Derivative 3.1 Graphing Using the First Derivative Hartfield MATH 2040 Unit 3 Page 1 Recall that a derivative indicates the instantaneous rate of change at an x-value (or other input value) which is related to the

More information

11/1/2017 Second Hourly Practice 11 Math 21a, Fall Name:

11/1/2017 Second Hourly Practice 11 Math 21a, Fall Name: 11/1/217 Second Hourly Practice 11 Math 21a, Fall 217 Name: MWF 9 Jameel Al-Aidroos MWF 9 Dennis Tseng MWF 1 Yu-Wei Fan MWF 1 Koji Shimizu MWF 11 Oliver Knill MWF 11 Chenglong Yu MWF 12 Stepan Paul TTH

More information

Sect 3.1 Quadratic Functions and Models

Sect 3.1 Quadratic Functions and Models Objective 1: Sect.1 Quadratic Functions and Models Polynomial Function In modeling, the most common function used is a polynomial function. A polynomial function has the property that the powers of the

More information

22. LECTURE 22. I can define critical points. I know the difference between local and absolute minimums/maximums.

22. LECTURE 22. I can define critical points. I know the difference between local and absolute minimums/maximums. . LECTURE Objectives I can define critical points. I know the difference between local and absolute minimums/maximums. In many physical problems, we re interested in finding the values (x, y) that maximize

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

Math 115 Second Midterm March 25, 2010

Math 115 Second Midterm March 25, 2010 Math 115 Second Midterm March 25, 2010 Name: Instructor: Section: 1. Do not open this exam until you are told to do so. 2. This exam has 9 pages including this cover. There are 8 problems. Note that the

More information

Worksheet 2.7: Critical Points, Local Extrema, and the Second Derivative Test

Worksheet 2.7: Critical Points, Local Extrema, and the Second Derivative Test Boise State Math 275 (Ultman) Worksheet 2.7: Critical Points, Local Extrema, and the Second Derivative Test From the Toolbox (what you need from previous classes) Algebra: Solving systems of two equations

More information

Lesson 2b Functions and Function Operations

Lesson 2b Functions and Function Operations As we continue to work with more complex functions it is important that we are comfortable with Function Notation, opertions on Functions and opertions involving more than one function. In this lesson,

More information

2.1. Rectangular Coordinates and Graphs. 2.1 Rectangular Coordinates and Graphs 2.2 Circles 2.3 Functions 2.4 Linear Functions. Graphs and Functions

2.1. Rectangular Coordinates and Graphs. 2.1 Rectangular Coordinates and Graphs 2.2 Circles 2.3 Functions 2.4 Linear Functions. Graphs and Functions 2 Graphs and Functions 2 Graphs and Functions 2.1 Rectangular Coordinates and Graphs 2.2 Circles 2.3 Functions 2.4 Linear Functions Sections 2.1 2.4 2008 Pearson Addison-Wesley. All rights reserved Copyright

More information

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) CHAPTER 3: Partial derivatives and differentiation

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) CHAPTER 3: Partial derivatives and differentiation UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES SOLUTIONS ) 3-1. Find, for the following functions: a) fx, y) x cos x sin y. b) fx, y) e xy. c) fx, y) x + y ) lnx + y ). CHAPTER 3: Partial derivatives

More information

Section 4: Extreme Values & Lagrange Multipliers.

Section 4: Extreme Values & Lagrange Multipliers. Section 4: Extreme Values & Lagrange Multipliers. Compiled by Chris Tisdell S1: Motivation S2: What are local maxima & minima? S3: What is a critical point? S4: Second derivative test S5: Maxima and Minima

More information

minimize ½(x 1 + 2x 2 + x 32 ) subject to x 1 + x 2 + x 3 = 5

minimize ½(x 1 + 2x 2 + x 32 ) subject to x 1 + x 2 + x 3 = 5 minimize ½(x 1 2 + 2x 2 2 + x 32 ) subject to x 1 + x 2 + x 3 = 5 In this Chapter We will study a new theory for constrained optimization Local optimality condition Easier to implement Deeper insights

More information

Lagrange multipliers. Contents. Introduction. From Wikipedia, the free encyclopedia

Lagrange multipliers. Contents. Introduction. From Wikipedia, the free encyclopedia Lagrange multipliers From Wikipedia, the free encyclopedia In mathematical optimization problems, Lagrange multipliers, named after Joseph Louis Lagrange, is a method for finding the local extrema of a

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

Bounded, Closed, and Compact Sets

Bounded, Closed, and Compact Sets Bounded, Closed, and Compact Sets Definition Let D be a subset of R n. Then D is said to be bounded if there is a number M > 0 such that x < M for all x D. D is closed if it contains all the boundary points.

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.02 Problem Set 4 Due Thursday

More information

MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #3 - FALL DR. DAVID BRIDGE

MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #3 - FALL DR. DAVID BRIDGE MATH 2053 - CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #3 - FALL 2007 - DR. DAVID BRIDGE MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use a calculator

More information

Math 21a Homework 22 Solutions Spring, 2014

Math 21a Homework 22 Solutions Spring, 2014 Math 1a Homework Solutions Spring, 014 1. Based on Stewart 11.8 #6 ) Consider the function fx, y) = e xy, and the constraint x 3 + y 3 = 16. a) Use Lagrange multipliers to find the coordinates x, y) of

More information

14.5 Directional Derivatives and the Gradient Vector

14.5 Directional Derivatives and the Gradient Vector 14.5 Directional Derivatives and the Gradient Vector 1. Directional Derivatives. Recall z = f (x, y) and the partial derivatives f x and f y are defined as f (x 0 + h, y 0 ) f (x 0, y 0 ) f x (x 0, y 0

More information

Math 210, Exam 2, Spring 2010 Problem 1 Solution

Math 210, Exam 2, Spring 2010 Problem 1 Solution Math, Exam, Spring Problem Solution. Find and classify the critical points of the function f(x,y) x 3 +3xy y 3. Solution: By definition, an interior point (a,b) in the domain of f is a critical point of

More information

Lecture 2 Optimization with equality constraints

Lecture 2 Optimization with equality constraints Lecture 2 Optimization with equality constraints Constrained optimization The idea of constrained optimisation is that the choice of one variable often affects the amount of another variable that can be

More information

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2 (1 Given the following system of linear equations, which depends on a parameter a R, x + 2y 3z = 4 3x y + 5z = 2 4x + y + (a 2 14z = a + 2 (a Classify the system of equations depending on the values of

More information

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers 3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers Prof. Tesler Math 20C Fall 2018 Prof. Tesler 3.3 3.4 Optimization Math 20C / Fall 2018 1 / 56 Optimizing y = f (x) In Math 20A, we

More information

Acknowledgement: BYU-Idaho Economics Department Faculty (Principal authors: Rick Hirschi, Ryan Johnson, Allan Walburger and David Barrus)

Acknowledgement: BYU-Idaho Economics Department Faculty (Principal authors: Rick Hirschi, Ryan Johnson, Allan Walburger and David Barrus) Math Review Acknowledgement: BYU-Idaho Economics Department Faculty (Principal authors: Rick Hirschi, Ryan Johnson, Allan Walburger and David Barrus) Section 1 - Graphing Data Graphs It is said that a

More information

Answer sheet: Second Midterm for Math 2339

Answer sheet: Second Midterm for Math 2339 Answer sheet: Second Midterm for Math 2339 October 26, 2010 Problem 1. True or false: (check one of the box, and briefly explain why) (1) If a twice differentiable f(x,y) satisfies f x (a,b) = f y (a,b)

More information

Unit 2: Linear Functions

Unit 2: Linear Functions Unit 2: Linear Functions 2.1 Functions in General Functions Algebra is the discipline of mathematics that deals with functions. DEF. A function is, essentially, a pattern. This course deals with patterns

More information

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS GRADO EN A.D.E. GRADO EN ECONOMÍA GRADO EN F.Y.C. ACADEMIC YEAR 2011-12 INDEX UNIT 1.- AN INTRODUCCTION TO OPTIMIZATION 2 UNIT 2.- NONLINEAR PROGRAMMING

More information

Minima, Maxima, Saddle points

Minima, Maxima, Saddle points Minima, Maxima, Saddle points Levent Kandiller Industrial Engineering Department Çankaya University, Turkey Minima, Maxima, Saddle points p./9 Scalar Functions Let us remember the properties for maxima,

More information

we wish to minimize this function; to make life easier, we may minimize

we wish to minimize this function; to make life easier, we may minimize Optimization and Lagrange Multipliers We studied single variable optimization problems in Calculus 1; given a function f(x), we found the extremes of f relative to some constraint. Our ability to find

More information

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points.

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. 1. Evaluate the area A of the triangle with the vertices

More information

Linear Programming. You can model sales with the following objective function. Sales 100x 50y. x 0 and y 0. x y 40

Linear Programming. You can model sales with the following objective function. Sales 100x 50y. x 0 and y 0. x y 40 Lesson 9.7 Objectives Solve systems of linear inequalities. Solving Systems of Inequalities Suppose a car dealer nets $500 for each family car (F) sold and $750 for each sports car (S) sold. The dealer

More information

Linear Programming Problems

Linear Programming Problems Linear Programming Problems Linear inequalities are important because we often want to minimize or maximize a quantity (called the objective function) subject to certain constraints (linear inequalities).

More information

Increasing and Decreasing Functions. MATH 1003 Calculus and Linear Algebra (Lecture 20) Increasing and Decreasing Functions

Increasing and Decreasing Functions. MATH 1003 Calculus and Linear Algebra (Lecture 20) Increasing and Decreasing Functions Increasing and Decreasing Functions MATH 1003 Calculus and Linear Algebra (Lecture 20) Maosheng Xiong Department of Mathematics, HKUST Suppose y = f (x). 1. f (x) is increasing on an interval a < x < b,

More information

Determine whether the relation represents a function. If it is a function, state the domain and range. 1)

Determine whether the relation represents a function. If it is a function, state the domain and range. 1) MAT 103 TEST 2 REVIEW NAME Determine whether the relation represents a function. If it is a function, state the domain and range. 1) 3 6 6 12 9 18 12 24 Circle the correct response: Function Not a function

More information

Math 1314 Lesson 2. Continuing with the introduction to GGB

Math 1314 Lesson 2. Continuing with the introduction to GGB Math 1314 Lesson 2 Continuing with the introduction to GGB 2 Example 10: The path of a small rocket is modeled by the function ht ( ) = 16t + 128t+ 12 where initial velocity is 128 feet per section and

More information

MATH 19520/51 Class 10

MATH 19520/51 Class 10 MATH 19520/51 Class 10 Minh-Tam Trinh University of Chicago 2017-10-16 1 Method of Lagrange multipliers. 2 Examples of Lagrange multipliers. The Problem The ingredients: 1 A set of parameters, say x 1,...,

More information

Math 233. Lagrange Multipliers Basics

Math 233. Lagrange Multipliers Basics Math 33. Lagrange Multipliers Basics Optimization problems of the form to optimize a function f(x, y, z) over a constraint g(x, y, z) = k can often be conveniently solved using the method of Lagrange multipliers:

More information

Section 3.1 Variables, Expressions and Order of Operations

Section 3.1 Variables, Expressions and Order of Operations Section.1 Variables, Expressions and Order of Operations A variable is a symbol, usually a letter of the alphabet that represents some varying or undetermined number. An algebraic expression is a mathematical

More information

5 Day 5: Maxima and minima for n variables.

5 Day 5: Maxima and minima for n variables. UNIVERSITAT POMPEU FABRA INTERNATIONAL BUSINESS ECONOMICS MATHEMATICS III. Pelegrí Viader. 2012-201 Updated May 14, 201 5 Day 5: Maxima and minima for n variables. The same kind of first-order and second-order

More information

Math 233. Lagrange Multipliers Basics

Math 233. Lagrange Multipliers Basics Math 233. Lagrange Multipliers Basics Optimization problems of the form to optimize a function f(x, y, z) over a constraint g(x, y, z) = k can often be conveniently solved using the method of Lagrange

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Honors Algebra 1 Semester 2 Final Exam Review Packet Name Date Period SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Solve the equation. 1) 27x = 81

More information

11/6/2012 SECOND HOURLY Math 21a, Fall Name:

11/6/2012 SECOND HOURLY Math 21a, Fall Name: 11/6/2012 SECOND HOURLY Math 21a, Fall 2012 Name: MWF 9 Oliver Knill MWF 10 Hansheng Diao MWF 10 Joe Rabinoff MWF 11 John Hall MWF 11 Meredith Hegg MWF 12 Charmaine Sia TTH 10 Bence Béky TTH 10 Gijs Heuts

More information

x y

x y 10. LECTURE 10 Objectives I understand the difficulty in finding an appropriate function for a data set in general. In some cases, I can define a function type that may fit a data set well. Last time,

More information

The total cost function is linear. The fixed cost is $3482 and the total cost to produce 20 Trinkets is $4004. Find the total cost function.

The total cost function is linear. The fixed cost is $3482 and the total cost to produce 20 Trinkets is $4004. Find the total cost function. 1. Finding the equation of a line. 1. Find two points (x 1, y 1 ), (x 2, y 2 ) and compute the slope m = y 2 y 1 x 2 x 1. 2. The line equation is y = m(x x 1 ) + y 2 (expand to get in the form y = mx +

More information

Common Core Algebra 2. Chapter 1: Linear Functions

Common Core Algebra 2. Chapter 1: Linear Functions Common Core Algebra 2 Chapter 1: Linear Functions 1 1.1 Parent Functions and Transformations Essential Question: What are the characteristics of some of the basic parent functions? What You Will Learn

More information

Alg2H Chapter 4 Review Sheet Date Wk #11. Let

Alg2H Chapter 4 Review Sheet Date Wk #11. Let AlgH Chapter 4 Review Sheet Date Wk # ) x z x y 8 y 9z 4 ) y 0 7y ) 6 7 8 x y 5 4 x y x y z 7 4) x y z 0 f ( x) x 5 Let g( x) 7 h( x) 4 x 5) f (h()) 6) h (g()) 7) f ( f ( )) 8) g ( f ( 5)) h 0) h ( ) )

More information

Step 1. Use a ruler or straight-edge to determine a line of best fit. One example is shown below.

Step 1. Use a ruler or straight-edge to determine a line of best fit. One example is shown below. Linear Models Modeling 1 ESSENTIALS Example Draw a straight line through the scatter plot so that the line represents a best fit approximation to the points. Then determine the equation for the line drawn.

More information

EC5555 Economics Masters Refresher Course in Mathematics September Lecture 6 Optimization with equality constraints Francesco Feri

EC5555 Economics Masters Refresher Course in Mathematics September Lecture 6 Optimization with equality constraints Francesco Feri EC5555 Economics Masters Refresher Course in Mathematics September 2013 Lecture 6 Optimization with equality constraints Francesco Feri Constrained optimization The idea of constrained optimisation is

More information

Math 112 Spring 2016 Midterm 2 Review Problems Page 1

Math 112 Spring 2016 Midterm 2 Review Problems Page 1 Math Spring Midterm Review Problems Page. Solve the inequality. The solution is: x x,,,,,, (E) None of these. Which one of these equations represents y as a function of x? x y xy x y x y (E) y x 7 Math

More information

2. Solve for x when x < 22. Write your answer in interval notation. 3. Find the distance between the points ( 1, 5) and (4, 3).

2. Solve for x when x < 22. Write your answer in interval notation. 3. Find the distance between the points ( 1, 5) and (4, 3). Math 6 Practice Problems for Final. Find all real solutions x such that 7 3 x = 5 x 3.. Solve for x when 0 4 3x

More information

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ Math 0 Prelim I Solutions Spring 010 1. Let f(x, y) = x3 y for (x, y) (0, 0). x 6 + y (4 pts) (a) Show that the cubic curves y = x 3 are level curves of the function f. Solution. Substituting y = x 3 in

More information

3.2 Graphs of Linear Equations

3.2 Graphs of Linear Equations 3.2 Graphs of Linear Equations Learning Objectives Graph a linear function using an equation. Write equations and graph horizontal and vertical lines. Analyze graphs of linear functions and read conversion

More information

Unit Essential Questions: Does it matter which form of a linear equation that you use?

Unit Essential Questions: Does it matter which form of a linear equation that you use? Unit Essential Questions: Does it matter which form of a linear equation that you use? How do you use transformations to help graph absolute value functions? How can you model data with linear equations?

More information

3.1 Solving Systems Using Tables and Graphs

3.1 Solving Systems Using Tables and Graphs Algebra 2 Chapter 3: Systems of Equations Mrs. Leahy 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system of equations

More information

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;...

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;... Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; 2 Application of Gradient; Tutorial Class V 3-10/10/2012 1 First Order

More information

Algebra II 1 st Trimester Learning Targets

Algebra II 1 st Trimester Learning Targets Algebra II 1 st Trimester Learning Targets Unit 1 - Sequences (Chapter 1) 1a. I can use a recursive formula to write out a sequence Write out the first terms of the following sequences: 1) = 20 = an +

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

Second Midterm Exam Math 212 Fall 2010

Second Midterm Exam Math 212 Fall 2010 Second Midterm Exam Math 22 Fall 2 Instructions: This is a 9 minute exam. You should work alone, without access to any book or notes. No calculators are allowed. Do not discuss this exam with anyone other

More information

1 of 49 11/30/2017, 2:17 PM

1 of 49 11/30/2017, 2:17 PM 1 of 49 11/30/017, :17 PM Student: Date: Instructor: Alfredo Alvarez Course: Math 134 Assignment: math134homework115 1. The given table gives y as a function of x, with y = f(x). Use the table given to

More information

LECTURE 18 - OPTIMIZATION

LECTURE 18 - OPTIMIZATION LECTURE 18 - OPTIMIZATION CHRIS JOHNSON Abstract. In this lecture we ll describe extend the optimization techniques you learned in your first semester calculus class to optimize functions of multiple variables.

More information

Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D.

Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D. Math 165 - Review Chapters 3 and 4 Name Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D. Find the quadratic function satisfying

More information

21-256: Lagrange multipliers

21-256: Lagrange multipliers 21-256: Lagrange multipliers Clive Newstead, Thursday 12th June 2014 Lagrange multipliers give us a means of optimizing multivariate functions subject to a number of constraints on their variables. Problems

More information

7/28/2011 SECOND HOURLY PRACTICE V Maths 21a, O.Knill, Summer 2011

7/28/2011 SECOND HOURLY PRACTICE V Maths 21a, O.Knill, Summer 2011 7/28/2011 SECOND HOURLY PRACTICE V Maths 21a, O.Knill, Summer 2011 Name: Start by printing your name in the above box. Try to answer each question on the same page as the question is asked. If needed,

More information

Polynomial Functions Graphing Investigation Unit 3 Part B Day 1. Graph 1: y = (x 1) Graph 2: y = (x 1)(x + 2) Graph 3: y =(x 1)(x + 2)(x 3)

Polynomial Functions Graphing Investigation Unit 3 Part B Day 1. Graph 1: y = (x 1) Graph 2: y = (x 1)(x + 2) Graph 3: y =(x 1)(x + 2)(x 3) Part I: Polynomial Functions when a = 1 Directions: Polynomial Functions Graphing Investigation Unit 3 Part B Day 1 1. For each set of factors, graph the zeros first, then use your calculator to determine

More information

Section 4.2 selected answers Math 131 Multivariate Calculus D Joyce, Spring 2014

Section 4.2 selected answers Math 131 Multivariate Calculus D Joyce, Spring 2014 4. Determine the nature of the critical points of Section 4. selected answers Math 11 Multivariate Calculus D Joyce, Spring 014 Exercises from section 4.: 6, 1 16.. Determine the nature of the critical

More information

MATH 021 UNIT 2 HOMEWORK ASSIGNMENTS

MATH 021 UNIT 2 HOMEWORK ASSIGNMENTS MATH 021 UNIT 2 HOMEWORK ASSIGNMENTS General Instructions You will notice that most of the homework assignments for a section have more than one part. Usually, the part (A) questions ask for explanations,

More information

SECTION 1.2 (e-book 2.3) Functions: Graphs & Properties

SECTION 1.2 (e-book 2.3) Functions: Graphs & Properties SECTION 1.2 (e-book 2.3) Functions: Graphs & Properties Definition (Graph Form): A function f can be defined by a graph in the xy-plane. In this case the output can be obtained by drawing vertical line

More information

Worksheet 2.2: Partial Derivatives

Worksheet 2.2: Partial Derivatives Boise State Math 275 (Ultman) Worksheet 2.2: Partial Derivatives From the Toolbox (what you need from previous classes) Be familiar with the definition of a derivative as the slope of a tangent line (the

More information

Chapter 1 Polynomials and Modeling

Chapter 1 Polynomials and Modeling Chapter 1 Polynomials and Modeling 1.1 Linear Functions Recall that a line is a function of the form y = mx+ b, where m is the slope of the line (how steep the line is) and b gives the y-intercept (where

More information

Mat 241 Homework Set 7 Due Professor David Schultz

Mat 241 Homework Set 7 Due Professor David Schultz Mat 41 Homework Set 7 Due Professor David Schultz Directions: Show all algebraic steps neatly and concisely using proper mathematical symbolism When graphs and technology are to be implemented, do so appropriately

More information

Exam 1 Review. MATH Intuitive Calculus Fall Name:. Show your reasoning. Use standard notation correctly.

Exam 1 Review. MATH Intuitive Calculus Fall Name:. Show your reasoning. Use standard notation correctly. MATH 11012 Intuitive Calculus Fall 2012 Name:. Exam 1 Review Show your reasoning. Use standard notation correctly. 1. Consider the function f depicted below. y 1 1 x (a) Find each of the following (or

More information

Daily WeBWorK, #1. This means the two planes normal vectors must be multiples of each other.

Daily WeBWorK, #1. This means the two planes normal vectors must be multiples of each other. Daily WeBWorK, #1 Consider the ellipsoid x 2 + 3y 2 + z 2 = 11. Find all the points where the tangent plane to this ellipsoid is parallel to the plane 2x + 3y + 2z = 0. In order for the plane tangent to

More information

Section 4.2 Combining Functions; Composite Functions... 1 Section 4.3 Inverse Functions... 4

Section 4.2 Combining Functions; Composite Functions... 1 Section 4.3 Inverse Functions... 4 Property: T. Hrubik-Vulanovic e-mail: thrubik@kent.edu Chapter 4 Additional Topics with Functions Content: Section 4.2 Combining Functions; Composite Functions... 1 Section 4. Inverse Functions... 4 Section

More information

QEM Optimization, WS 2017/18 Part 4. Constrained optimization

QEM Optimization, WS 2017/18 Part 4. Constrained optimization QEM Optimization, WS 2017/18 Part 4 Constrained optimization (about 4 Lectures) Supporting Literature: Angel de la Fuente, Mathematical Methods and Models for Economists, Chapter 7 Contents 4 Constrained

More information

You used set notation to denote elements, subsets, and complements. (Lesson 0-1)

You used set notation to denote elements, subsets, and complements. (Lesson 0-1) You used set notation to denote elements, subsets, and complements. (Lesson 0-1) Describe subsets of real numbers. Identify and evaluate functions and state their domains. set-builder notation interval

More information

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables 302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.8 Chapter Review 3.8.1 Concepts to Know You should have an understanding of, and be able to explain the concepts listed below. 1. Boundary and interior points

More information

Chapter 4.1 & 4.2 (Part 1) Practice Problems

Chapter 4.1 & 4.2 (Part 1) Practice Problems Chapter 4. & 4. Part Practice Problems EXPECTED SKILLS: Understand how the signs of the first and second derivatives of a function are related to the behavior of the function. Know how to use the first

More information

LINEAR ALGEBRA AND VECTOR ANALYSIS MATH 22A

LINEAR ALGEBRA AND VECTOR ANALYSIS MATH 22A 1 2 3 4 Name: 5 6 7 LINEAR ALGEBRA AND VECTOR ANALYSIS 8 9 1 MATH 22A Total : Unit 28: Second Hourly Welcome to the second hourly. Please don t get started yet. We start all together at 9: AM. You can

More information

MATH NATION SECTION 4 H.M.H. RESOURCES

MATH NATION SECTION 4 H.M.H. RESOURCES MATH NATION SECTION 4 H.M.H. RESOURCES SPECIAL NOTE: These resources were assembled to assist in student readiness for their upcoming Algebra 1 EOC. Although these resources have been compiled for your

More information

2.1 Solutions to Exercises

2.1 Solutions to Exercises Last edited 9/6/17.1 Solutions to Exercises 1. P(t) = 1700t + 45,000. D(t) = t + 10 5. Timmy will have the amount A(n) given by the linear equation A(n) = 40 n. 7. From the equation, we see that the slope

More information

11/1/2011 SECOND HOURLY PRACTICE IV Math 21a, Fall Name:

11/1/2011 SECOND HOURLY PRACTICE IV Math 21a, Fall Name: 11/1/211 SECOND HOURLY PRACTICE IV Math 21a, Fall 211 Name: MWF 9 Chao Li MWF 9 Thanos Papaïoannou MWF 1 Emily Riehl MWF 1 Jameel Al-Aidroos MWF 11 Oliver Knill MWF 11 Tatyana Kobylyatskaya MWF 12 Tatyana

More information

September 10- September 15

September 10- September 15 September 10- September 15 You will be given a sheet of paper to write your bell work on. If you need more room you may use an extra sheet of paper, but be sure to staple the scratch paper to the Bell

More information