Justin Solomon MIT, Spring Numerical Geometry of Nonrigid Shapes

Size: px
Start display at page:

Download "Justin Solomon MIT, Spring Numerical Geometry of Nonrigid Shapes"

Transcription

1 Justin Solomon MIT, Spring 2017 Numerical Geometry of Nonrigid Shapes

2 Intrinsically far Extrinsically close

3 Geodesic distance [jee-uh-des-ik dis-tuh-ns]: Length of the shortest path, constrained not to leave the manifold.

4 Local minima Straightest Geodesics on Polyhedral Surfaces (Polthier and Schmies)

5 Not OK OK Computationally expensive Extrinsic may suffice for near vs. far

6 Locally OK Single source Multi-source All-pairs

7 Approximate geodesics as paths along edges Meshes are graphs

8

9

10

11

12 Asymmetric Anisotropic May not improve under refinement

13 Graph shortest-path does not converge to geodesic distance.

14 Geodesic distances are need special discretization. So, we need to understand the theory! \begin{math}

15 Globally shortest path Local minimizer of length Locally straight path

16

17 Equality exactly when parameterized by arc length. Proof on board.

18 Lemma. Let γ t : a, b S be a family of curves with fixed endpoints in surface S; assume γ is parameterized by arc length at t=0. Then, Corollary. γ: a, b S is a geodesic iff

19 The only acceleration is out of the surface No steering wheel!

20 Boundary value problem Given: γ 0, γ(1) Initial value problem (ODE) Given: γ 0, γ (0)

21 γ v 1 where γ v is (unique) geodesic from p with velocity v.

22 Locally minimizing distance is not enough to be a shortest path!

23 Cut point: Point where geodesic ceases to be minimizing Set of cut points from a source p

24

25 \end{math}

26 Graph shortest path algorithms are well-understood. Can we use them (carefully) to compute geodesics?

27 Shortest path had to come from somewhere. All pieces of a shortest path are optimal.

28 Initialization:

29 Iteration k: During each iteration, S remains optimal.

30 CS 468, 2009

31

32 Dijkstra s algorithm, modified to approximate geodesic distances.

33

34

35

36 Given: ~x 2 ~n Find: ~x 1 Derivation from Bronstein et al., Numerical Geometry of Nonrigid Shapes

37

38 Quadratic equation for p Find:

39 Bronstein et al., Numerical Geometry of Nonrigid Shapes Two orientations for the normal

40 Bronstein et al., Numerical Geometry of Nonrigid Shapes Two orientations for the normal

41 Update should be from a different triangle! Bronstein et al., Numerical Geometry of Nonrigid Shapes Front from outside the triangle

42 Bronstein et al., Numerical Geometry of Nonrigid Shapes Front from outside the triangle

43 Bronstein et al., Numerical Geometry of Nonrigid Shapes Must reach x 3 after x 1 and x 2

44 Alternative edge-based update: Add connections as needed [Kimmel and Sethian 1998]

45 Bronstein, Numerical Geometry of Nonrigid Shapes

46 Modified update step Update all triangles adjacent to a given vertex

47 Greek: Image Solutions are geodesic distance

48 STILL AN APPROXIMATION

49 [Novotni and Klein 2002]: Circular wavefront

50 Raster scan and/or parallelize Bronstein, Numerical Geometry of Nonrigid Shapes Grids and parameterized surfaces

51 Crane, Weischedel, and Wardetzky. Geodesics in Heat. TOG 2013.

52 Trace gradient of distance function

53 Equal left and right angles Polthier and Schmies. Shortest Geodesics on Polyhedral Surfaces. SIGGRAPH course notes Trace a single geodesic exactly

54

55 Surazhsky et al. Fast Exact and Approximate Geodesics on Meshes. SIGGRAPH Dijkstra-style front with windows explaining source.

56

57 Cut point: Point where geodesic ceases to be minimizing Set of cut points from a source p

58 Function on surface expressing difference in triangle inequality Intersection by pointwise multiplication Sun, Chen, Funkhouser. Fuzzy geodesics and consistent sparse correspondences for deformable shapes. CGF2010. Stable version of geodesic distance

59 Morphological operators to fill holes rather than remeshing Campen and Kobbelt. Walking On Broken Mesh: Defect-Tolerant Geodesic Distances and Parameterizations. Eurographics 2011.

60 Sample points Geodesic field Triangulate (Delaunay) Fix edges Query (planar embedding) Xin, Ying, and He. Constant-time all-pairs geodesic distance query on triangle meshes. I3D 2012.

61 From Geodesic Methods in Computer Vision and Graphics (Peyré et al., FnT 2010)

62 Heeren et al. Time-discrete geodesics in the space of shells. SGP 2012.

63

64

65 Justin Solomon MIT, Spring 2017 Numerical Geometry of Nonrigid Shapes

Numerical Geometry of Nonrigid Shapes. CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher

Numerical Geometry of Nonrigid Shapes. CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher Numerical Geometry of Nonrigid Shapes CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher Intrinsically far Extrinsically close Straightest Geodesics on Polyhedral

More information

Justin Solomon MIT, Spring

Justin Solomon MIT, Spring Justin Solomon MIT, Spring 2017 http://www.gogeometry.com Instructor: Justin Solomon Email: jsolomon@mit.edu Office: 32-D460 Office hours: Wednesdays, 1pm-3pm Geometric Data Processing

More information

Fast marching methods

Fast marching methods 1 Fast marching methods Lecture 3 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Metric discretization 2 Approach I:

More information

Invariant shape similarity. Invariant shape similarity. Invariant similarity. Equivalence. Equivalence. Equivalence. Equal SIMILARITY TRANSFORMATION

Invariant shape similarity. Invariant shape similarity. Invariant similarity. Equivalence. Equivalence. Equivalence. Equal SIMILARITY TRANSFORMATION 1 Invariant shape similarity Alexer & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book 2 Invariant shape similarity 048921 Advanced topics in vision Processing Analysis

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany A Primer on Laplacians Max Wardetzky Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany Warm-up: Euclidean case Warm-up The Euclidean case Chladni s vibrating plates

More information

Geodesic Paths on Triangular Meshes

Geodesic Paths on Triangular Meshes Geodesic Paths on Triangular Meshes Dimas Martínez Luiz Velho Paulo Cezar Carvalho IMPA Instituto Nacional de Matemática Pura e Aplicada Estrada Dona Castorina, 110, 22460-320 Rio de Janeiro, RJ, Brasil

More information

Geodesic Paths on Triangular Meshes

Geodesic Paths on Triangular Meshes Geodesic Paths on Triangular Meshes DIMAS MARTÍNEZ, LUIZ VELHO, PAULO CEZAR CARVALHO IMPA Instituto Nacional de Matemática Pura e Aplicada - Estrada Dona Castorina, 110, 22460-320 Rio de Janeiro, RJ, Brasil

More information

Constraint shortest path computation on polyhedral surfaces

Constraint shortest path computation on polyhedral surfaces Constraint shortest path computation on polyhedral surfaces Synave Rémi UMR 5800, LaBRI Université Bordeaux 1, France synave@labri.fr Desbarats Pascal UMR 5800, LaBRI Université Bordeaux 1, France desbarats@labri.fr

More information

Shortest Path Approximation on Triangulated Meshes. By Annie Luan

Shortest Path Approximation on Triangulated Meshes. By Annie Luan Shortest Path Approximation on Triangulated Meshes By Annie Luan Introduction Shortest Path Problem Some Interesting Applications Popular Algorithms Combining Existing Algorithms Shortest Path Problem

More information

How Much Geometry Lies in The Laplacian?

How Much Geometry Lies in The Laplacian? How Much Geometry Lies in The Laplacian? Encoding and recovering the discrete metric on triangle meshes Distance Geometry Workshop in Bad Honnef, November 23, 2017 Maks Ovsjanikov Joint with: E. Corman,

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

Justin Solomon MIT, Spring 2017

Justin Solomon MIT, Spring 2017 http://www.alvinomassage.com/images/knot.jpg Justin Solomon MIT, Spring 2017 Some materials from Stanford CS 468, spring 2013 (Butscher & Solomon) What is a curve? A function? Not a curve Jams on accelerator

More information

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov Shape Matching & Correspondence CS 468 Geometry Processing Algorithms Maks Ovsjanikov Wednesday, October 27 th 2010 Overall Goal Given two shapes, find correspondences between them. Overall Goal Given

More information

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011 CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell 2/15/2011 1 Motivation Geometry processing: understand geometric characteristics,

More information

Greedy Routing with Guaranteed Delivery Using Ricci Flow

Greedy Routing with Guaranteed Delivery Using Ricci Flow Greedy Routing with Guaranteed Delivery Using Ricci Flow Jie Gao Stony Brook University Joint work with Rik Sarkar, Xiaotian Yin, Wei Zeng, Feng Luo, Xianfeng David Gu Greedy Routing Assign coordinatesto

More information

Topology-Invariant Similarity and Diffusion Geometry

Topology-Invariant Similarity and Diffusion Geometry 1 Topology-Invariant Similarity and Diffusion Geometry Lecture 7 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Intrinsic

More information

Mesh Processing Pipeline

Mesh Processing Pipeline Mesh Smoothing 1 Mesh Processing Pipeline... Scan Reconstruct Clean Remesh 2 Mesh Quality Visual inspection of sensitive attributes Specular shading Flat Shading Gouraud Shading Phong Shading 3 Mesh Quality

More information

Cut-and-Paste Editing of Multiresolution Surfaces

Cut-and-Paste Editing of Multiresolution Surfaces Cut-and-Paste Editing of Multiresolution Surfaces Henning Biermann, Ioana Martin, Fausto Bernardini, Denis Zorin NYU Media Research Lab IBM T. J. Watson Research Center Surface Pasting Transfer geometry

More information

Voronoi Diagram. Xiao-Ming Fu

Voronoi Diagram. Xiao-Ming Fu Voronoi Diagram Xiao-Ming Fu Outlines Introduction Post Office Problem Voronoi Diagram Duality: Delaunay triangulation Centroidal Voronoi tessellations (CVT) Definition Applications Algorithms Outlines

More information

Geodesics in heat: A new approach to computing distance

Geodesics in heat: A new approach to computing distance Geodesics in heat: A new approach to computing distance based on heat flow Diana Papyan Faculty of Informatics - Technische Universität München Abstract In this report we are going to introduce new method

More information

Medial Residues of Piecewise Linear Manifolds

Medial Residues of Piecewise Linear Manifolds Medial Residues of Piecewise Linear Manifolds Erin W. Chambers Tao Ju David Letscher Abstract Skeleton structures of objects are used in a wide variety of applications such as shape analysis and path planning.

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link)

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link) Advanced Computer Graphics (Spring 03) CS 83, Lecture 7: Subdivision Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs83/sp3 Slides courtesy of Szymon Rusinkiewicz, James O Brien with material from Denis

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

Accurate Computation of Geodesic Distance Fields for Polygonal Curves on Triangle Meshes

Accurate Computation of Geodesic Distance Fields for Polygonal Curves on Triangle Meshes Accurate Computation of Geodesic Distance Fields for Polygonal Curves on Triangle Meshes David Bommes, Leif Kobbelt Computer Graphics Group, RWTH Aachen Email: {bommes,kobbelt}@cs.rwth-aachen.de Abstract

More information

(Discrete) Differential Geometry

(Discrete) Differential Geometry (Discrete) Differential Geometry Motivation Understand the structure of the surface Properties: smoothness, curviness, important directions How to modify the surface to change these properties What properties

More information

M4G - A Surface Representation for Adaptive CPU-GPU Computation

M4G - A Surface Representation for Adaptive CPU-GPU Computation M4G - A Surface Representation for Adaptive CPU-GPU Computation Vision and Graphics Lab Institute of Pure and Applied Mathematics Trimester Program on Computational Manifolds and Applications November

More information

CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher

CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher http://alice.loria.fr/index.php/publications.html?redirect=0&paper=vsdm@2011&author=levy CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher µ R 3 µ R 2 http://upload.wikimedia.org/wikipedia/commons/b/bc/double_torus_illustration.png

More information

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2009 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2009 3/4/2009 Recap Differential Geometry of Curves Andrew Nealen, Rutgers, 2009 3/4/2009

More information

Real-Time Shape Editing using Radial Basis Functions

Real-Time Shape Editing using Radial Basis Functions Real-Time Shape Editing using Radial Basis Functions, Leif Kobbelt RWTH Aachen Boundary Constraint Modeling Prescribe irregular constraints Vertex positions Constrained energy minimization Optimal fairness

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Anna Porazilová THE SHORTEST PATH. 1 Introduction 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE

Anna Porazilová THE SHORTEST PATH. 1 Introduction 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Anna Porazilová THE SHORTEST PATH Abstract This paper describes the shortest path problem, its classification and the best known algorithms. A new algorithm

More information

Parameterization of Meshes

Parameterization of Meshes 2-Manifold Parameterization of Meshes What makes for a smooth manifold? locally looks like Euclidian space collection of charts mutually compatible on their overlaps form an atlas Parameterizations are

More information

Potato Theory. (Following Bangert, Franks, Hingston and J. Danforth Quayle)

Potato Theory. (Following Bangert, Franks, Hingston and J. Danforth Quayle) Potato Theory (Following Bangert, Franks, Hingston and J. Danforth Quayle) Ben McKay [27-Feb-2001] (Following Bangert, Franks, Hingston and J. Danforth Quayle) Shine a laser on a thin curved layer of glass

More information

Registration of Deformable Objects

Registration of Deformable Objects Registration of Deformable Objects Christopher DeCoro Includes content from: Consistent Mesh Parameterizations, Praun et. al, Siggraph 2001 The Space of Human Body Shapes, Allen et. al, Siggraph 2003 Shape-based

More information

Cross-Parameterization and Compatible Remeshing of 3D Models

Cross-Parameterization and Compatible Remeshing of 3D Models Cross-Parameterization and Compatible Remeshing of 3D Models Vladislav Kraevoy Alla Sheffer University of British Columbia Authors Vladislav Kraevoy Ph.D. Student Alla Sheffer Assistant Professor Outline

More information

Shortest Non-trivial Cycles in Directed and Undirected Surface Graphs

Shortest Non-trivial Cycles in Directed and Undirected Surface Graphs Shortest Non-trivial Cycles in Directed and Undirected Surface Graphs Kyle Fox University of Illinois at Urbana-Champaign Surfaces 2-manifolds (with boundary) genus g: max # of disjoint simple cycles whose

More information

Computing geodesics on triangular meshes $

Computing geodesics on triangular meshes $ Computers & Graphics 29 (2005) 667 675 www.elsevier.com/locate/cag Computing geodesics on triangular meshes $ Dimas Martı nez a,b,, Luiz Velho a, Paulo C. Carvalho a a IMPA Instituto Nacional de Matemática

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 15 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Mesh Repairing and Simplification. Gianpaolo Palma

Mesh Repairing and Simplification. Gianpaolo Palma Mesh Repairing and Simplification Gianpaolo Palma Mesh Repairing Removal of artifacts from geometric model such that it becomes suitable for further processing Input: a generic 3D model Output: (hopefully)a

More information

The Quality Of 3D Models

The Quality Of 3D Models The Quality Of 3D Models Problems and Solutions for Applications Post-Design Fathi El-Yafi Senior Product Engineer Product Department of EXA Corporation 1 : Overview Status Problems Identified Defect Sources

More information

Finding Shortest Path on Land Surface

Finding Shortest Path on Land Surface Finding Shortest Path on Land Surface Lian Liu, Raymond Chi-Wing Wong Hong Kong University of Science and Technology June 14th, 211 Introduction Land Surface Land surfaces are modeled as terrains A terrain

More information

Tutorial 9 - Fast Marching Methods

Tutorial 9 - Fast Marching Methods 236861 Numerical Geometry of Images Tutorial 9 Fast Marching Methods c 2012 Why measure distances? Shape analysis Image analysis Registration Morphology Navigation And many other uses.. There are many

More information

Surface Reconstruction. Gianpaolo Palma

Surface Reconstruction. Gianpaolo Palma Surface Reconstruction Gianpaolo Palma Surface reconstruction Input Point cloud With or without normals Examples: multi-view stereo, union of range scan vertices Range scans Each scan is a triangular mesh

More information

Segmentation & Constraints

Segmentation & Constraints Siggraph Course Mesh Parameterization Theory and Practice Segmentation & Constraints Segmentation Necessary for closed and high genus meshes Reduce parametric distortion Chartification Texture Atlas Segmentation

More information

Discrete Geometry Processing

Discrete Geometry Processing Non Convex Boundary Convex boundary creates significant distortion Free boundary is better Some slides from the Mesh Parameterization Course (Siggraph Asia 008) 1 Fixed vs Free Boundary Fixed vs Free Boundary

More information

Approximating Geodesic Distances on 2-Manifolds in R 3

Approximating Geodesic Distances on 2-Manifolds in R 3 CCCG 2011, Toronto ON, August 10 12, 2011 Approximating Geodesic Distances on 2-Manifolds in R 3 Christian Scheffer Jan Vahrenhold Abstract We present an algorithm for approximating geodesic distances

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute (3 pts) How to generate Delaunay Triangulation? (3 pts) Explain the difference

More information

Subdivision overview

Subdivision overview Subdivision overview CS4620 Lecture 16 2018 Steve Marschner 1 Introduction: corner cutting Piecewise linear curve too jagged for you? Lop off the corners! results in a curve with twice as many corners

More information

Mesh Decimation. Mark Pauly

Mesh Decimation. Mark Pauly Mesh Decimation Mark Pauly Applications Oversampled 3D scan data ~150k triangles ~80k triangles Mark Pauly - ETH Zurich 280 Applications Overtessellation: E.g. iso-surface extraction Mark Pauly - ETH Zurich

More information

An algorithm for triangulating multiple 3D polygons

An algorithm for triangulating multiple 3D polygons An algorithm for triangulating multiple 3D polygons Ming Zou 1, Tao Ju 1, Nathan Carr 2 1 Washington University In St. Louis, USA 2 Adobe, USA Eurographics SGP 2013 1 Motivation Curves Surface 2 Motivation

More information

Computational Geometry

Computational Geometry Motivation Motivation Polygons and visibility Visibility in polygons Triangulation Proof of the Art gallery theorem Two points in a simple polygon can see each other if their connecting line segment is

More information

Fast Marching Methods (1) are numerical algorithms for

Fast Marching Methods (1) are numerical algorithms for Fast methods for the Eikonal and related Hamilton Jacobi equations on unstructured meshes J. A. Sethian* and A. Vladimirsky Department of Mathematics, University of California, Berkeley, CA 94720 Communicated

More information

Final Project, Digital Geometry Processing

Final Project, Digital Geometry Processing Final Project, Digital Geometry Processing Shayan Hoshyari Student #: 81382153 December 2016 Introduction In this project an adaptive surface remesher has been developed based on the paper [1]. An algorithm

More information

On a nested refinement of anisotropic tetrahedral grids under Hessian metrics

On a nested refinement of anisotropic tetrahedral grids under Hessian metrics On a nested refinement of anisotropic tetrahedral grids under Hessian metrics Shangyou Zhang Abstract Anisotropic grids, having drastically different grid sizes in different directions, are efficient and

More information

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Per-Olof Persson (persson@mit.edu) Department of Mathematics Massachusetts Institute of Technology http://www.mit.edu/

More information

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9.

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9. II.4 Surface Simplification 37 II.4 Surface Simplification In applications it is often necessary to simplify the data or its representation. One reason is measurement noise, which we would like to eliminate,

More information

Multidimensional scaling

Multidimensional scaling Multidimensional scaling Lecture 5 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Cinderella 2.0 2 If it doesn t fit,

More information

Simplicial Hyperbolic Surfaces

Simplicial Hyperbolic Surfaces Simplicial Hyperbolic Surfaces Talk by Ken Bromberg August 21, 2007 1-Lipschitz Surfaces- In this lecture we will discuss geometrically meaningful ways of mapping a surface S into a hyperbolic manifold

More information

Saab. Kyle McDonald. Polygon Meshes

Saab. Kyle McDonald. Polygon Meshes Saab Kyle McDonald Polygon Meshes Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 What is a polygon mesh? Like a point cloud, it is a discrete sampling of a surface... but, it adds linear (flat)

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

Euclidean Shortest Paths in Simple Cube Curves at a Glance

Euclidean Shortest Paths in Simple Cube Curves at a Glance Euclidean Shortest Paths in Simple Cube Curves at a Glance Fajie Li and Reinhard Klette Computer Science Department The University of Auckland, New Zealand Abstract. This paper reports about the development

More information

Chapter 8 Topics in Graph Theory

Chapter 8 Topics in Graph Theory Chapter 8 Topics in Graph Theory Chapter 8: Topics in Graph Theory Section 8.1: Examples {1,2,3} Section 8.2: Examples {1,2,4} Section 8.3: Examples {1} 8.1 Graphs Graph A graph G consists of a finite

More information

CS 532: 3D Computer Vision 14 th Set of Notes

CS 532: 3D Computer Vision 14 th Set of Notes 1 CS 532: 3D Computer Vision 14 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Triangulating

More information

Mesh Quality Tutorial

Mesh Quality Tutorial Mesh Quality Tutorial Figure 1: The MeshQuality model. See Figure 2 for close-up of bottom-right area This tutorial will illustrate the importance of Mesh Quality in PHASE 2. This tutorial will also show

More information

Generalized Higher-Order Voronoi Diagrams on Polyhedral Surfaces

Generalized Higher-Order Voronoi Diagrams on Polyhedral Surfaces Generalized Higher-Order Voronoi Diagrams on Polyhedral Surfaces Marta Fort J. Antoni Sellarès Abstract We present an algorithm for computing exact shortest paths, and consequently distances, from a generalized

More information

The Heat Method for Distance Computation

The Heat Method for Distance Computation research highlights The Heat Method for Distance Computation DOI:10.1145/ 31 3 1 2 8 0 By Keenan Crane, Clarisse Weischedel, and Max Wardetzky Abstract We introduce the heat method for solving the single-

More information

Ma/CS 6b Class 26: Art Galleries and Politicians

Ma/CS 6b Class 26: Art Galleries and Politicians Ma/CS 6b Class 26: Art Galleries and Politicians By Adam Sheffer The Art Gallery Problem Problem. We wish to place security cameras at a gallery, such that they cover it completely. Every camera can cover

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

Lecture 4: Trees and Art Galleries

Lecture 4: Trees and Art Galleries Math 7H: Honors Seminar Professor: Padraic Bartlett Lecture 4: Trees and Art Galleries Week 2 UCSB 2014 1 Prelude: Graph Theory In this talk, we re going to refer frequently to things called graphs and

More information

Manipulating the Boundary Mesh

Manipulating the Boundary Mesh Chapter 7. Manipulating the Boundary Mesh The first step in producing an unstructured grid is to define the shape of the domain boundaries. Using a preprocessor (GAMBIT or a third-party CAD package) you

More information

Surfaces, meshes, and topology

Surfaces, meshes, and topology Surfaces from Point Samples Surfaces, meshes, and topology A surface is a 2-manifold embedded in 3- dimensional Euclidean space Such surfaces are often approximated by triangle meshes 2 1 Triangle mesh

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 17 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Face-based Estimations of Curvatures on Triangle Meshes

Face-based Estimations of Curvatures on Triangle Meshes Journal for Geometry and Graphics Volume 12 (2008), No. 1, 63 73. Face-based Estimations of Curvatures on Triangle Meshes Márta Szilvási-Nagy Dept. of Geometry, Budapest University of Technology and Economics

More information

Professor: Padraic Bartlett. Lecture 9: Trees and Art Galleries. Week 10 UCSB 2015

Professor: Padraic Bartlett. Lecture 9: Trees and Art Galleries. Week 10 UCSB 2015 Math 7H Professor: Padraic Bartlett Lecture 9: Trees and Art Galleries Week 10 UCSB 2015 1 Prelude: Graph Theory This talk uses the mathematical concepts of graphs from our previous class. In particular,

More information

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2011 2/22/2011 Differential Geometry of Surfaces Continuous and Discrete Motivation Smoothness

More information

Shortest-path calculation of first arrival traveltimes by expanding wavefronts

Shortest-path calculation of first arrival traveltimes by expanding wavefronts Stanford Exploration Project, Report 82, May 11, 2001, pages 1 144 Shortest-path calculation of first arrival traveltimes by expanding wavefronts Hector Urdaneta and Biondo Biondi 1 ABSTRACT A new approach

More information

arxiv: v1 [cs.gr] 7 May 2013

arxiv: v1 [cs.gr] 7 May 2013 Parallel Chen-Han (PCH) Algorithm for Discrete Geodesics Xiang Ying Shi-Qing Xin Ying He Nanyang Technological University arxiv:1305.1293v1 [cs.gr] 7 May 2013 Abstract In many graphics applications, the

More information

Lecture notes: Object modeling

Lecture notes: Object modeling Lecture notes: Object modeling One of the classic problems in computer vision is to construct a model of an object from an image of the object. An object model has the following general principles: Compact

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

Surfaces: notes on Geometry & Topology

Surfaces: notes on Geometry & Topology Surfaces: notes on Geometry & Topology 1 Surfaces A 2-dimensional region of 3D space A portion of space having length and breadth but no thickness 2 Defining Surfaces Analytically... Parametric surfaces

More information

SHORTEST PATHS ON SURFACES GEODESICS IN HEAT

SHORTEST PATHS ON SURFACES GEODESICS IN HEAT SHORTEST PATHS ON SURFACES GEODESICS IN HEAT INF555 Digital Representation and Analysis of Shapes 28 novembre 2015 Ruoqi He & Chia-Man Hung 1 INTRODUCTION In this project we present the algorithm of a

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I Instructor: Shaddin Dughmi Announcements Posted solutions to HW1 Today: Combinatorial problems

More information

Fast Marching and Geodesic Methods. Some Applications

Fast Marching and Geodesic Methods. Some Applications Fast Marching and Geodesic Methods. Some Applications Laurent D. COHEN Directeur de Recherche CNRS CEREMADE, UMR CNRS 7534 Université Paris-9 Dauphine Place du Maréchal de Lattre de Tassigny 75016 Paris,

More information

Discrete Differential Geometry: An Applied Introduction

Discrete Differential Geometry: An Applied Introduction Discrete Differential Geometry: An Applied Introduction Eitan Grinspun with Mathieu Desbrun, Konrad Polthier, Peter Schröder, & Ari Stern 1 Differential Geometry Why do we care? geometry of surfaces Springborn

More information

On reconstruction of non-rigid shapes with intrinsic regularization

On reconstruction of non-rigid shapes with intrinsic regularization On reconstruction of non-rigid shapes with intrinsic regularization Yohai S. Devir Guy Rosman Alexander M. Bronstein Michael M. Bronstein Ron Kimmel {yd rosman bron mbron ron}@cs.technion.ac.il Department

More information

Isotopy classes of crossing arcs in hyperbolic alternating links

Isotopy classes of crossing arcs in hyperbolic alternating links Anastasiia Tsvietkova (Rutgers Isotopy University, Newark) classes of crossing arcs in hyperbolic 1 altern / 21 Isotopy classes of crossing arcs in hyperbolic alternating links Anastasiia Tsvietkova Rutgers

More information

GEOMETRY MODELING & GRID GENERATION

GEOMETRY MODELING & GRID GENERATION GEOMETRY MODELING & GRID GENERATION Dr.D.Prakash Senior Assistant Professor School of Mechanical Engineering SASTRA University, Thanjavur OBJECTIVE The objectives of this discussion are to relate experiences

More information

Ph.D. Student Vintescu Ana-Maria

Ph.D. Student Vintescu Ana-Maria Ph.D. Student Vintescu Ana-Maria Context Background Problem Statement Strategy Metric Distortion Conformal parameterization techniques Cone singularities Our algorithm Experiments Perspectives Digital

More information

Efficient regularization of functional map computations

Efficient regularization of functional map computations Efficient regularization of functional map computations Flows, mappings and shapes VMVW03 Workshop December 12 th, 2017 Maks Ovsjanikov Joint with: E. Corman, D. Nogneng, R. Huang, M. Ben-Chen, J. Solomon,

More information

Topology-Free Cut-and-Paste Editing over Meshes

Topology-Free Cut-and-Paste Editing over Meshes Topology-Free Cut-and-Paste Editing over Meshes Hongbo Fu, Chiew-Lan Tai, Hongxin Zhang Department of Computer Science Hong Kong University of Science and Technology Abstract Existing cut-and-paste editing

More information

Differential Geometry: Circle Packings. [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson]

Differential Geometry: Circle Packings. [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson] Differential Geometry: Circle Packings [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson] Conformal Maps Recall: Given a domain Ω R 2, the map F:Ω R 2 is conformal if it

More information

Computing and Processing Correspondences with Functional Maps

Computing and Processing Correspondences with Functional Maps Computing and Processing Correspondences with Functional Maps SIGGRAPH 2017 course Maks Ovsjanikov, Etienne Corman, Michael Bronstein, Emanuele Rodolà, Mirela Ben-Chen, Leonidas Guibas, Frederic Chazal,

More information

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger For Inverse Obstacle Problems Martin Burger Outline Introduction Optimal Geometries Inverse Obstacle Problems & Shape Optimization Sensitivity Analysis based on Gradient Flows Numerical Methods University

More information

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662 Geometry Processing & Geometric Queries Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: fans,

More information

1 Exercise: Heat equation in 2-D with FE

1 Exercise: Heat equation in 2-D with FE 1 Exercise: Heat equation in 2-D with FE Reading Hughes (2000, sec. 2.3-2.6 Dabrowski et al. (2008, sec. 1-3, 4.1.1, 4.1.3, 4.2.1 This FE exercise and most of the following ones are based on the MILAMIN

More information

Topological Issues in Hexahedral Meshing

Topological Issues in Hexahedral Meshing Topological Issues in Hexahedral Meshing David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science Outline I. What is meshing? Problem statement Types of mesh Quality issues

More information

Convex Polygon Generation

Convex Polygon Generation Convex Polygon Generation critterai.org /projects/nmgen_study/polygen.html This page describes the forth stage in building a navigation mesh, the generation of convex polygons from the simple polygons

More information

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS DR. ANDREW SCHWARTZ, PH.D. 10.1 Graphs and Graph Models (1) A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes)

More information