Future directions in computer vision. Larry Davis Computer Vision Laboratory University of Maryland College Park MD USA

Size: px
Start display at page:

Download "Future directions in computer vision. Larry Davis Computer Vision Laboratory University of Maryland College Park MD USA"

Transcription

1 Future directions in computer vision Larry Davis Computer Vision Laboratory University of Maryland College Park MD USA

2 Presentation overview Future Directions Workshop on Computer Vision Object detection using CNN s without object proposals Incorporating context onto detection Scale dependent pooling to detect small object instances Resolving referring expressions using context Summary

3 Strategic Directions Workshop on Visual Commonsense Nov in D.C. Sponsored by OSTP in the US Poggio, Malik, Zhu, Berg (Alex), Kohli, Hoeim, Grauman, Zitnick, Gupta, Fox, Tellex, Oliva, Scholl (absent), Domingos, Daume. Organized by me, Fei Fei Li and Devi Parikh

4 The computer vision landscape Breakthroughs in CV (and AI generally) would clearly be disruptive. This has been known forever. Our field has more than doubled in size in less than a decade and there are currently more than 175 startups in computer vision worldwide according to chrunchbase. Feeding frenzy in self driving cars So, has the field finally progressed to the point where real vision problems can be solved?

5 So, what has changed? Deep learning

6 So, what has changed? Deep learning SFM and stereo

7 So, what has changed? Deep learning SFM and stereo Human pose estimation and tracking

8 So, what has changed? Deep learning SFM and stereo Human pose estimation and tracking Computing infrastructure Big Data Crowd sourcing GPU s Cloud computing and free storage

9 So, what has changed? Deep learning SFM and stereo Human pose estimation and tracking Computing infrastructure Big Data Crowd sourcing GPU s Cloud computing and free storage Open source software

10 Commercial indicators Image search Tineye, Clarifai Face recognition under the hood at social media companies Google self driving cars 1.5 M miles and going Driving aids and autonomous driving - Mobileye

11 And what about the next 10? So what do you think the future of the field is? Here are some of the workshop recommendations.

12 Workshop recommendations Develop the field of social perception Understand the internal state of people as they interact with each other and with the world Crucial for human robot interaction Perceptual Robotics and testbeds for measurement of progress in situated vision research. Visual Search intelligent sampling of the visual world Acquisition and Representation of Visual Commonsense from Observation and Interaction Vision and Language

13 Many useful challenges Where to look to answer a question? How to relate existing detectors, pose estimators, attribute classifiers, etc. to this task? How to combine general knowledge with Language and vision - How to test ability to accumulate and integrate knowledge? VQA Dataset

14 Workshop recommendations Structured prediction Relationship between parts, objects and scenes The hierarchical structure of human behavior- movement, goals, actions and events Explainable perception. Don t just classify, explain your answer

15 Workshop recommendations Deep learning. Why/when does it work? Why are all local minima created equal? Visual learning with minimal (no) supervision Developmental learning (NEIL)

16 Are object proposals necessarily the answer? G-CNN an iterative grid based object detector Mahyar Najibi and Mohammad Rastegari CVPR 2016

17 Object detection Localization bounding box, segmentation masks Classification

18 In your camera sliding window detection Sliding Window horse = 0.6 person = 0.3 Extracted Boxes horse = 0.0 person = 0.5 Multi class Classifier horse = 0.0 person = 0.8 horse = 0.5 person = 0.9 horse = 0.9 person = 0.0

19 Object proposals Sliding windows are slow scale, orientation,.. Object proposals are (learning-based) multi- segmentation algorithms that generate fewer regions for classification (typically boxes). Consensus is that region proposals are crucial to SOA detection systems whether they are given to the network or constructed by the network However localization is poor, so (class-dependent) post-processing is typically employed Regressor

20 Object proposals and CNN s R-CNN - push each proposal through the CNN; slow because the network is run multiple times. SPP-Net [1] computes filter responses only once for each image and pools from them to form features for the proposals. Fast R-CNN [2] builds on this and packs all stages of the system except the region proposal into one CNN. Fast R-CNN 1. He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional networks for visual recognition." Computer Vision ECCV Springer International Publishing, Girshick, Ross. "Fast R-CNN." ICCV (2015).

21 Region Proposal Stage These methods use an external object proposal stage (e.g. selective search with ~2K proposals/image) In Fast R-CNN, computing object proposals is the bottleneck, taking around 2 sec/image time. Faster R-CNN [3] increases efficiency by reducing the number of proposed bounding boxes. Jointly learns proposal generator and features Fast and accurate 3. Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." NIPS (2015).

22 G-CNN Training Network Structure

23 G-CNN: Training Training set for step 1

24 G-CNN: Training Added samples for step 2

25 G-CNN Detection Iteratively update the position of the initial bounding boxes with the regressor corresponding to the class with the highest score. Car Regressor Car Regressor Car Regressor *The highest scoring class is car. *The highest scoring class is car. *The highest scoring class is car *The highest scoring class is car.

26 G-CNN structure in detection time To reduce detection time, the G-CNN network is divided into two parts: The global part is called only once for each image. The regression part is called S test times, one for each step.

27 Experimental Setup Experiments are performed on VOC 2007 and VOC 2012 datasets. G-CNN is trained with S=3 steps over an initial grid with three scales [2,5,10] and overlaps [0.9,0.8,0.7] at each scale. At test time, use a coarser grid with overlaps [0.7,0.5,0.0] (around 180 initial boxes) after 5 iterations achieves the same map as Fast R-CNN with around 2K bounding boxes.

28 VOC2012 using VGG16

29 How effective are the regressors? IoU histogram of the best overlapping boxes to ground truth boxes at each iteration.

30

31 How can a neural network learn and utilize context? Mahyar Najibi, Mohammad Rastegari, Abhinav Gupta, Ali Farhadi Deep Saccadic Detectors

32 Top choices of FRCNN are very accurate

33 Detection with GTS Methods are trained on VOC2007 trainval. AlexNet is employed as the CNN structure. Method Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow FRCNN SS FRCNN SS+GT FRCNN GT Dining table Dog Horse Motorbike Person Potted Plant Sheep Sofa Train TV Monitor Average FRCNN SS: Fast RCNN using selective search proposals. FRCNN SS+GT: GT boxes are added to SS boxes. FRCNN GT: Only GT boxes are used.

34 Sequential detection This suggests a simple strategy for detection Commit to the most confident detection Use it as context for determining the next most confident detection, And so on All integrated into one CNN architecture

35 Concat Linear (h1) ReLU Linear (h2) ReLU Active Selector Classifier Classification Output ROI Pooling Linear (fc6) ReLU Linear (fc7) ReLU Regressor Class-based output Deep Sequential Detection Input Convolutional Layers ROI info Active select input Hidden State Selector Hidden select input MAX NMS

36 Pascal VOC Classes ~10K images Pascal VOC Classes ~15K images MSCOCO (2015) 80 Classes ~300K images Datasets

37 VOC 2012

38 MSCOCO Precision and Recall Methods are trained on the train-set and evaluated on the validationset. Top 2K selective search proposals are used for the methods. Class-based Relative Improvement

39 Scale dependent pooling Fan Yang (CVPR 2016) Goal - detect (even small) objects effectively and efficiently using CNNs + object proposals scale variance huge number of proposals 61

40 Scale-dependent pooling Pool proposals of different scales from different conv layers: n-branch structure Small instances of objects are well represented using features pooled from lower conv layers

41 Scale-dependent pooling Divide proposals into groups based on their size Pool small proposals at lower conv layers and larger ones at higher conv layers Train the entire system end-to-end Pooling Pooling small proposal s large proposal s

42 KITTI (map) Experiments Inner-city (map)

43 Detection as a function of size - Kitti Car Pedestrian Cyclist map Methods Inputs S1 S2 S3 S4 S S1 S2 S3 S4 S S1 S2 S3 S4 S S FRCNN+AlexN et (400) FRCNN+VGG (500) (800) (400) SDP 1 (500) (800) SDP+CRC 1 (500) SDP+CRC ft (500)

44 Modeling Context between Objects for Understanding Referring Expressions Varun Nagaraja, Vlad Morariu, Larry Davis ECCV 2016

45 Referring Expressions Descriptions that identify a particular object instance Man sitting on the left holding a game controller Woman in the middle sitting on the bed Man wearing a red jacket and blue jeans sitting on the right

46 Referring expressions rely on attributes and context Person riding a blue motorcycle Blonde fluffy dog Giraffe bending down Tan colored sofa Plant on the right side of the TV

47 Problem Formulation Input Output Sentence:Girl wearing a red jacket Image I

48 Solution Framework Hypothesize a set of region candidates Generation and Comprehension of Unambiguous Object Descriptions J. Mao et al., CVPR 2016

49 Solution Framework Pick the region candidate with the highest probability of generating the query referring expression Generation and Comprehension of Unambiguous Object Descriptions J. Mao et al., CVPR 2016

50 Baseline Method Modeling referring expression probability using an LSTM Girl wearing a red jacket <EOS> LST M unit LST M unit LST M unit LST M unit LST M unit LST M unit Region CNN features Image CNN features Bounding box features Word embedding <BOS> Girl wearing a red jacket Generation and Comprehension of Unambiguous Object Descriptions J. Mao et al., CVPR 2016

51 Max-margin Method The baseline method can be improved by training the model to have lower probability for negative regions Girl wearing a red jacket Referred region Negative regions Generation and Comprehension of Unambiguous Object Descriptions J. Mao et al., CVPR 2016

52 Modeling Context Previous methods do not model locations of contextual objects The plant on the right side of the TV

53 Modeling Context Baseline and Max-margin architecture Word Embedding Region CNN features Region BBox Image features LSTM

54 Modeling Context Context model architecture Word Embedding Region CNN features Region BBox Context region features Context region BBox LSTM

55 Modeling Context Word Embedding Region1 CNN features Region1 BBox Region2 CNN features Region2 BBox LSTM Region2 Region1

56 Modeling Context Word Embedding Region1 CNN features Region1 BBox Region3 CNN features Region3 BBox LSTM Region1 Region3

57 Modeling Context Word Embedding Region1 CNN features Region1 BBox Region4 CNN features Region4 BBox LSTM Region4 Region1

58 Modeling Context Pooling context from multiple pairs of regions

59 Modeling Context We can also use noisy-or pooling which is more robust Noisy-or Noisy-or

60 Training the Context Model The challenge is that there are no annotations available for context objects The plant on the right side of the TV

61 Multiple Instance Learning So we use a MIL based technique and use the annotation of the referred object as weak supervision The plant on the right side of the TV

62 Experiments Implemented in Caffe Region and Image features VGG16 fc8 layer - fine-tuned. Bounding box features scaled <xmin, ymin, xmax, ymax, area> Word embedding size 1024 LSTM hidden dimension 1024 Region candidates MCG technique Region filtering process Obtain scores from Fast-RCNN and select regions above a threshold

63 Google RefExp Results A detection is considered true positive if the IOU score is greater than 0.5 All results are from noisy-or pooling Google RefExp Validation Partition Method \ Proposals GT MC G Max Likelihood [Mao et al] Max margin [Mao et al] Ours, Neg. Bag margin Ours, Pos. & Neg. Bag margin

64 Google RefExp Results Groundtruth Image context only Noisy-or pooling The chair closest to the lady A white truck in front of a yellow truck

65 UNC RefExp Results TestB Partition (Object centric) Method \ Proposals GT MCG Max Likelihood [Mao et al] Max margin [Mao et al] Ours, Neg. Bag margin Ours, Pos. & Neg. Bag margin

66 UNC RefExp Results TestB Partition (Object centric) Groundtruth Image context only Noisy-or pooling Elephant towards the back Food on the far back on the plate

67 A few closing observations Success depends on region proposal algorithm including candidates for the correct referred and context objects Much more demanding than just requiring a candidate for the referred object Ameliorated somewhat by having the entire image as a candidate context object Straightforward extension to include additional context objects (language can be deeply nested) intractable (Methodological) would like to evaluate performance restricted to relevant referring expressions, but difficult to specify correct criteria for selection

68 Summary Intellectual landscape of computer vision has changed dramatically over the past decade Many of the future research directions identified by the workshop are already well underway And there are still huge performance shortfalls on basic problems like detection and recognition (compare MSCOCO vs VOC) My favorite future research directions Context sooner or later it has to make a difference Visual search Tasking visual surveillance systems compositional models and video analysis (structured prediction)

Object Detection Based on Deep Learning

Object Detection Based on Deep Learning Object Detection Based on Deep Learning Yurii Pashchenko AI Ukraine 2016, Kharkiv, 2016 Image classification (mostly what you ve seen) http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Presented by Tushar Bansal Objective 1. Get bounding box for all objects

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task

Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task Kyunghee Kim Stanford University 353 Serra Mall Stanford, CA 94305 kyunghee.kim@stanford.edu Abstract We use a

More information

Regionlet Object Detector with Hand-crafted and CNN Feature

Regionlet Object Detector with Hand-crafted and CNN Feature Regionlet Object Detector with Hand-crafted and CNN Feature Xiaoyu Wang Research Xiaoyu Wang Research Ming Yang Horizon Robotics Shenghuo Zhu Alibaba Group Yuanqing Lin Baidu Overview of this section Regionlet

More information

Yiqi Yan. May 10, 2017

Yiqi Yan. May 10, 2017 Yiqi Yan May 10, 2017 P a r t I F u n d a m e n t a l B a c k g r o u n d s Convolution Single Filter Multiple Filters 3 Convolution: case study, 2 filters 4 Convolution: receptive field receptive field

More information

Unified, real-time object detection

Unified, real-time object detection Unified, real-time object detection Final Project Report, Group 02, 8 Nov 2016 Akshat Agarwal (13068), Siddharth Tanwar (13699) CS698N: Recent Advances in Computer Vision, Jul Nov 2016 Instructor: Gaurav

More information

G-CNN: an Iterative Grid Based Object Detector

G-CNN: an Iterative Grid Based Object Detector G-CNN: an Iterative Grid Based Object Detector Mahyar Najibi 1, Mohammad Rastegari 1,2, Larry S. Davis 1 1 University of Maryland, College Park 2 Allen Institute for Artificial Intelligence najibi@cs.umd.edu

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network

Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network Liwen Zheng, Canmiao Fu, Yong Zhao * School of Electronic and Computer Engineering, Shenzhen Graduate School of

More information

Object Detection on Self-Driving Cars in China. Lingyun Li

Object Detection on Self-Driving Cars in China. Lingyun Li Object Detection on Self-Driving Cars in China Lingyun Li Introduction Motivation: Perception is the key of self-driving cars Data set: 10000 images with annotation 2000 images without annotation (not

More information

Object detection with CNNs

Object detection with CNNs Object detection with CNNs 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before CNNs After CNNs 0% 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 year Region proposals

More information

Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs

Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs Raymond Ptucha, Rochester Institute of Technology, USA Tutorial-9 May 19, 218 www.nvidia.com/dli R. Ptucha 18 1 Fair Use Agreement

More information

Object Detection. TA : Young-geun Kim. Biostatistics Lab., Seoul National University. March-June, 2018

Object Detection. TA : Young-geun Kim. Biostatistics Lab., Seoul National University. March-June, 2018 Object Detection TA : Young-geun Kim Biostatistics Lab., Seoul National University March-June, 2018 Seoul National University Deep Learning March-June, 2018 1 / 57 Index 1 Introduction 2 R-CNN 3 YOLO 4

More information

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION Kingsley Kuan 1, Gaurav Manek 1, Jie Lin 1, Yuan Fang 1, Vijay Chandrasekhar 1,2 Institute for Infocomm Research, A*STAR, Singapore 1 Nanyang Technological

More information

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Object Detection CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Problem Description Arguably the most important part of perception Long term goals for object recognition: Generalization

More information

Optimizing Object Detection:

Optimizing Object Detection: Lecture 10: Optimizing Object Detection: A Case Study of R-CNN, Fast R-CNN, and Faster R-CNN Visual Computing Systems Today s task: object detection Image classification: what is the object in this image?

More information

Supplementary Material: Pixelwise Instance Segmentation with a Dynamically Instantiated Network

Supplementary Material: Pixelwise Instance Segmentation with a Dynamically Instantiated Network Supplementary Material: Pixelwise Instance Segmentation with a Dynamically Instantiated Network Anurag Arnab and Philip H.S. Torr University of Oxford {anurag.arnab, philip.torr}@eng.ox.ac.uk 1. Introduction

More information

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation Object detection using Region Proposals (RCNN) Ernest Cheung COMP790-125 Presentation 1 2 Problem to solve Object detection Input: Image Output: Bounding box of the object 3 Object detection using CNN

More information

Deformable Part Models

Deformable Part Models CS 1674: Intro to Computer Vision Deformable Part Models Prof. Adriana Kovashka University of Pittsburgh November 9, 2016 Today: Object category detection Window-based approaches: Last time: Viola-Jones

More information

Lecture 5: Object Detection

Lecture 5: Object Detection Object Detection CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 5: Object Detection Bohyung Han Computer Vision Lab. bhhan@postech.ac.kr 2 Traditional Object Detection Algorithms Region-based

More information

Deep Learning for Object detection & localization

Deep Learning for Object detection & localization Deep Learning for Object detection & localization RCNN, Fast RCNN, Faster RCNN, YOLO, GAP, CAM, MSROI Aaditya Prakash Sep 25, 2018 Image classification Image classification Whole of image is classified

More information

Category-level localization

Category-level localization Category-level localization Cordelia Schmid Recognition Classification Object present/absent in an image Often presence of a significant amount of background clutter Localization / Detection Localize object

More information

Object Recognition II

Object Recognition II Object Recognition II Linda Shapiro EE/CSE 576 with CNN slides from Ross Girshick 1 Outline Object detection the task, evaluation, datasets Convolutional Neural Networks (CNNs) overview and history Region-based

More information

Efficient Segmentation-Aided Text Detection For Intelligent Robots

Efficient Segmentation-Aided Text Detection For Intelligent Robots Efficient Segmentation-Aided Text Detection For Intelligent Robots Junting Zhang, Yuewei Na, Siyang Li, C.-C. Jay Kuo University of Southern California Outline Problem Definition and Motivation Related

More information

Feature-Fused SSD: Fast Detection for Small Objects

Feature-Fused SSD: Fast Detection for Small Objects Feature-Fused SSD: Fast Detection for Small Objects Guimei Cao, Xuemei Xie, Wenzhe Yang, Quan Liao, Guangming Shi, Jinjian Wu School of Electronic Engineering, Xidian University, China xmxie@mail.xidian.edu.cn

More information

Attributes. Computer Vision. James Hays. Many slides from Derek Hoiem

Attributes. Computer Vision. James Hays. Many slides from Derek Hoiem Many slides from Derek Hoiem Attributes Computer Vision James Hays Recap: Human Computation Active Learning: Let the classifier tell you where more annotation is needed. Human-in-the-loop recognition:

More information

3 Object Detection. BVM 2018 Tutorial: Advanced Deep Learning Methods. Paul F. Jaeger, Division of Medical Image Computing

3 Object Detection. BVM 2018 Tutorial: Advanced Deep Learning Methods. Paul F. Jaeger, Division of Medical Image Computing 3 Object Detection BVM 2018 Tutorial: Advanced Deep Learning Methods Paul F. Jaeger, of Medical Image Computing What is object detection? classification segmentation obj. detection (1 label per pixel)

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren Kaiming He Ross Girshick Jian Sun Present by: Yixin Yang Mingdong Wang 1 Object Detection 2 1 Applications Basic

More information

Beyond Sliding Windows: Object Localization by Efficient Subwindow Search

Beyond Sliding Windows: Object Localization by Efficient Subwindow Search Beyond Sliding Windows: Object Localization by Efficient Subwindow Search Christoph H. Lampert, Matthew B. Blaschko, & Thomas Hofmann Max Planck Institute for Biological Cybernetics Tübingen, Germany Google,

More information

Project 3 Q&A. Jonathan Krause

Project 3 Q&A. Jonathan Krause Project 3 Q&A Jonathan Krause 1 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations 2 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations

More information

Classification of objects from Video Data (Group 30)

Classification of objects from Video Data (Group 30) Classification of objects from Video Data (Group 30) Sheallika Singh 12665 Vibhuti Mahajan 12792 Aahitagni Mukherjee 12001 M Arvind 12385 1 Motivation Video surveillance has been employed for a long time

More information

CS 1674: Intro to Computer Vision. Object Recognition. Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018

CS 1674: Intro to Computer Vision. Object Recognition. Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018 CS 1674: Intro to Computer Vision Object Recognition Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018 Different Flavors of Object Recognition Semantic Segmentation Classification + Localization

More information

Optimizing Object Detection:

Optimizing Object Detection: Lecture 10: Optimizing Object Detection: A Case Study of R-CNN, Fast R-CNN, and Faster R-CNN and Single Shot Detection Visual Computing Systems Today s task: object detection Image classification: what

More information

Internet of things that video

Internet of things that video Video recognition from a sentence Cees Snoek Intelligent Sensory Information Systems Lab University of Amsterdam The Netherlands Internet of things that video 45 billion cameras by 2022 [LDV Capital] 2

More information

PASCAL VOC Classification: Local Features vs. Deep Features. Shuicheng YAN, NUS

PASCAL VOC Classification: Local Features vs. Deep Features. Shuicheng YAN, NUS PASCAL VOC Classification: Local Features vs. Deep Features Shuicheng YAN, NUS PASCAL VOC Why valuable? Multi-label, Real Scenarios! Visual Object Recognition Object Classification Object Detection Object

More information

Single-Shot Refinement Neural Network for Object Detection -Supplementary Material-

Single-Shot Refinement Neural Network for Object Detection -Supplementary Material- Single-Shot Refinement Neural Network for Object Detection -Supplementary Material- Shifeng Zhang 1,2, Longyin Wen 3, Xiao Bian 3, Zhen Lei 1,2, Stan Z. Li 4,1,2 1 CBSR & NLPR, Institute of Automation,

More information

arxiv: v1 [cs.cv] 4 Jun 2015

arxiv: v1 [cs.cv] 4 Jun 2015 Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks arxiv:1506.01497v1 [cs.cv] 4 Jun 2015 Shaoqing Ren Kaiming He Ross Girshick Jian Sun Microsoft Research {v-shren, kahe, rbg,

More information

Visual features detection based on deep neural network in autonomous driving tasks

Visual features detection based on deep neural network in autonomous driving tasks 430 Fomin I., Gromoshinskii D., Stepanov D. Visual features detection based on deep neural network in autonomous driving tasks Ivan Fomin, Dmitrii Gromoshinskii, Dmitry Stepanov Computer vision lab Russian

More information

CS6501: Deep Learning for Visual Recognition. Object Detection I: RCNN, Fast-RCNN, Faster-RCNN

CS6501: Deep Learning for Visual Recognition. Object Detection I: RCNN, Fast-RCNN, Faster-RCNN CS6501: Deep Learning for Visual Recognition Object Detection I: RCNN, Fast-RCNN, Faster-RCNN Today s Class Object Detection The RCNN Object Detector (2014) The Fast RCNN Object Detector (2015) The Faster

More information

24 hours of Photo Sharing. installation by Erik Kessels

24 hours of Photo Sharing. installation by Erik Kessels 24 hours of Photo Sharing installation by Erik Kessels And sometimes Internet photos have useful labels Im2gps. Hays and Efros. CVPR 2008 But what if we want more? Image Categorization Training Images

More information

Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab.

Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab. [ICIP 2017] Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab., POSTECH Pedestrian Detection Goal To draw bounding boxes that

More information

OBJECT DETECTION HYUNG IL KOO

OBJECT DETECTION HYUNG IL KOO OBJECT DETECTION HYUNG IL KOO INTRODUCTION Computer Vision Tasks Classification + Localization Classification: C-classes Input: image Output: class label Evaluation metric: accuracy Localization Input:

More information

G-CNN: an Iterative Grid Based Object Detector

G-CNN: an Iterative Grid Based Object Detector G-CNN: an Iterative Grid Based Object Detector Magyar Najibi Univ. Maryland Mohammad Rastegari Univ. Maryland Larry S. Davis Univ. Maryland CVPR, 2016 VGG Reading Group - Sam Albanie Motivation: Proposals

More information

CPSC340. State-of-the-art Neural Networks. Nando de Freitas November, 2012 University of British Columbia

CPSC340. State-of-the-art Neural Networks. Nando de Freitas November, 2012 University of British Columbia CPSC340 State-of-the-art Neural Networks Nando de Freitas November, 2012 University of British Columbia Outline of the lecture This lecture provides an overview of two state-of-the-art neural networks:

More information

Semantic Pooling for Image Categorization using Multiple Kernel Learning

Semantic Pooling for Image Categorization using Multiple Kernel Learning Semantic Pooling for Image Categorization using Multiple Kernel Learning Thibaut Durand (1,2), Nicolas Thome (1), Matthieu Cord (1), David Picard (2) (1) Sorbonne Universités, UPMC Univ Paris 06, UMR 7606,

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation BY; ROSS GIRSHICK, JEFF DONAHUE, TREVOR DARRELL AND JITENDRA MALIK PRESENTER; MUHAMMAD OSAMA Object detection vs. classification

More information

Automatic detection of books based on Faster R-CNN

Automatic detection of books based on Faster R-CNN Automatic detection of books based on Faster R-CNN Beibei Zhu, Xiaoyu Wu, Lei Yang, Yinghua Shen School of Information Engineering, Communication University of China Beijing, China e-mail: zhubeibei@cuc.edu.cn,

More information

Cascade Region Regression for Robust Object Detection

Cascade Region Regression for Robust Object Detection Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Cascade Region Regression for Robust Object Detection Jiankang Deng, Shaoli Huang, Jing Yang, Hui Shuai, Zhengbo Yu, Zongguang Lu, Qiang Ma, Yali

More information

LEARNING OBJECT SEGMENTATION USING A MULTI NETWORK SEGMENT CLASSIFICATION APPROACH

LEARNING OBJECT SEGMENTATION USING A MULTI NETWORK SEGMENT CLASSIFICATION APPROACH Università degli Studi dell'insubria Varese, Italy LEARNING OBJECT SEGMENTATION USING A MULTI NETWORK SEGMENT CLASSIFICATION APPROACH Simone Albertini Ignazio Gallo, Angelo Nodari, Marco Vanetti albertini.simone@gmail.com

More information

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell Constrained Convolutional Neural Networks for Weakly Supervised Segmentation Deepak Pathak, Philipp Krähenbühl and Trevor Darrell 1 Multi-class Image Segmentation Assign a class label to each pixel in

More information

Instance-aware Semantic Segmentation via Multi-task Network Cascades

Instance-aware Semantic Segmentation via Multi-task Network Cascades Instance-aware Semantic Segmentation via Multi-task Network Cascades Jifeng Dai, Kaiming He, Jian Sun Microsoft research 2016 Yotam Gil Amit Nativ Agenda Introduction Highlights Implementation Further

More information

YOLO9000: Better, Faster, Stronger

YOLO9000: Better, Faster, Stronger YOLO9000: Better, Faster, Stronger Date: January 24, 2018 Prepared by Haris Khan (University of Toronto) Haris Khan CSC2548: Machine Learning in Computer Vision 1 Overview 1. Motivation for one-shot object

More information

Volume 6, Issue 12, December 2018 International Journal of Advance Research in Computer Science and Management Studies

Volume 6, Issue 12, December 2018 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) e-isjn: A4372-3114 Impact Factor: 7.327 Volume 6, Issue 12, December 2018 International Journal of Advance Research in Computer Science and Management Studies Research Article

More information

Semantic image search using queries

Semantic image search using queries Semantic image search using queries Shabaz Basheer Patel, Anand Sampat Department of Electrical Engineering Stanford University CA 94305 shabaz@stanford.edu,asampat@stanford.edu Abstract Previous work,

More information

Multi-View 3D Object Detection Network for Autonomous Driving

Multi-View 3D Object Detection Network for Autonomous Driving Multi-View 3D Object Detection Network for Autonomous Driving Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, Tian Xia CVPR 2017 (Spotlight) Presented By: Jason Ku Overview Motivation Dataset Network Architecture

More information

Deep condolence to Professor Mark Everingham

Deep condolence to Professor Mark Everingham Deep condolence to Professor Mark Everingham Towards VOC2012 Object Classification Challenge Generalized Hierarchical Matching for Sub-category Aware Object Classification National University of Singapore

More information

arxiv: v1 [cs.cv] 1 Apr 2017

arxiv: v1 [cs.cv] 1 Apr 2017 Multiple Instance Detection Network with Online Instance Classifier Refinement Peng Tang Xinggang Wang Xiang Bai Wenyu Liu School of EIC, Huazhong University of Science and Technology {pengtang,xgwang,xbai,liuwy}@hust.edu.cn

More information

Towards Large-Scale Semantic Representations for Actionable Exploitation. Prof. Trevor Darrell UC Berkeley

Towards Large-Scale Semantic Representations for Actionable Exploitation. Prof. Trevor Darrell UC Berkeley Towards Large-Scale Semantic Representations for Actionable Exploitation Prof. Trevor Darrell UC Berkeley traditional surveillance sensor emerging crowd sensor Desired capabilities: spatio-temporal reconstruction

More information

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN Background Related Work Architecture Experiment Mask R-CNN Background Related Work Architecture Experiment Background From left

More information

An Object Detection Algorithm based on Deformable Part Models with Bing Features Chunwei Li1, a and Youjun Bu1, b

An Object Detection Algorithm based on Deformable Part Models with Bing Features Chunwei Li1, a and Youjun Bu1, b 5th International Conference on Advanced Materials and Computer Science (ICAMCS 2016) An Object Detection Algorithm based on Deformable Part Models with Bing Features Chunwei Li1, a and Youjun Bu1, b 1

More information

Joint Object Detection and Viewpoint Estimation using CNN features

Joint Object Detection and Viewpoint Estimation using CNN features Joint Object Detection and Viewpoint Estimation using CNN features Carlos Guindel, David Martín and José M. Armingol cguindel@ing.uc3m.es Intelligent Systems Laboratory Universidad Carlos III de Madrid

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

Segmenting Objects in Weakly Labeled Videos

Segmenting Objects in Weakly Labeled Videos Segmenting Objects in Weakly Labeled Videos Mrigank Rochan, Shafin Rahman, Neil D.B. Bruce, Yang Wang Department of Computer Science University of Manitoba Winnipeg, Canada {mrochan, shafin12, bruce, ywang}@cs.umanitoba.ca

More information

Linear combinations of simple classifiers for the PASCAL challenge

Linear combinations of simple classifiers for the PASCAL challenge Linear combinations of simple classifiers for the PASCAL challenge Nik A. Melchior and David Lee 16 721 Advanced Perception The Robotics Institute Carnegie Mellon University Email: melchior@cmu.edu, dlee1@andrew.cmu.edu

More information

R-FCN: Object Detection with Really - Friggin Convolutional Networks

R-FCN: Object Detection with Really - Friggin Convolutional Networks R-FCN: Object Detection with Really - Friggin Convolutional Networks Jifeng Dai Microsoft Research Li Yi Tsinghua Univ. Kaiming He FAIR Jian Sun Microsoft Research NIPS, 2016 Or Region-based Fully Convolutional

More information

YOLO: You Only Look Once Unified Real-Time Object Detection. Presenter: Liyang Zhong Quan Zou

YOLO: You Only Look Once Unified Real-Time Object Detection. Presenter: Liyang Zhong Quan Zou YOLO: You Only Look Once Unified Real-Time Object Detection Presenter: Liyang Zhong Quan Zou Outline 1. Review: R-CNN 2. YOLO: -- Detection Procedure -- Network Design -- Training Part -- Experiments Rich

More information

Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation

Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation Md Atiqur Rahman and Yang Wang Department of Computer Science, University of Manitoba, Canada {atique, ywang}@cs.umanitoba.ca

More information

Large-Scale Live Active Learning: Training Object Detectors with Crawled Data and Crowds

Large-Scale Live Active Learning: Training Object Detectors with Crawled Data and Crowds Large-Scale Live Active Learning: Training Object Detectors with Crawled Data and Crowds Sudheendra Vijayanarasimhan Kristen Grauman Department of Computer Science University of Texas at Austin Austin,

More information

Deep Residual Learning

Deep Residual Learning Deep Residual Learning MSRA @ ILSVRC & COCO 2015 competitions Kaiming He with Xiangyu Zhang, Shaoqing Ren, Jifeng Dai, & Jian Sun Microsoft Research Asia (MSRA) MSRA @ ILSVRC & COCO 2015 Competitions 1st

More information

Final Report: Smart Trash Net: Waste Localization and Classification

Final Report: Smart Trash Net: Waste Localization and Classification Final Report: Smart Trash Net: Waste Localization and Classification Oluwasanya Awe oawe@stanford.edu Robel Mengistu robel@stanford.edu December 15, 2017 Vikram Sreedhar vsreed@stanford.edu Abstract Given

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik Presented by Pandian Raju and Jialin Wu Last class SGD for Document

More information

Class 5: Attributes and Semantic Features

Class 5: Attributes and Semantic Features Class 5: Attributes and Semantic Features Rogerio Feris, Feb 21, 2013 EECS 6890 Topics in Information Processing Spring 2013, Columbia University http://rogerioferis.com/visualrecognitionandsearch Project

More information

Fully Convolutional Networks for Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation Fully Convolutional Networks for Semantic Segmentation Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley Chaim Ginzburg for Deep Learning seminar 1 Semantic Segmentation Define a pixel-wise labeling

More information

Creating Affordable and Reliable Autonomous Vehicle Systems

Creating Affordable and Reliable Autonomous Vehicle Systems Creating Affordable and Reliable Autonomous Vehicle Systems Shaoshan Liu shaoshan.liu@perceptin.io Autonomous Driving Localization Most crucial task of autonomous driving Solutions: GNSS but withvariations,

More information

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS Zhao Chen Machine Learning Intern, NVIDIA ABOUT ME 5th year PhD student in physics @ Stanford by day, deep learning computer vision scientist

More information

Detection III: Analyzing and Debugging Detection Methods

Detection III: Analyzing and Debugging Detection Methods CS 1699: Intro to Computer Vision Detection III: Analyzing and Debugging Detection Methods Prof. Adriana Kovashka University of Pittsburgh November 17, 2015 Today Review: Deformable part models How can

More information

CAP 6412 Advanced Computer Vision

CAP 6412 Advanced Computer Vision CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong April 21st, 2016 Today Administrivia Free parameters in an approach, model, or algorithm? Egocentric videos by Aisha

More information

CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm

CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm Instructions This is an individual assignment. Individual means each student must hand in their

More information

AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015)

AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015) AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015) Donggeun Yoo, Sunggyun Park, Joon-Young Lee, Anthony Paek, In So Kweon. State-of-the-art frameworks for object

More information

Martian lava field, NASA, Wikipedia

Martian lava field, NASA, Wikipedia Martian lava field, NASA, Wikipedia Old Man of the Mountain, Franconia, New Hampshire Pareidolia http://smrt.ccel.ca/203/2/6/pareidolia/ Reddit for more : ) https://www.reddit.com/r/pareidolia/top/ Pareidolia

More information

Detection and Localization with Multi-scale Models

Detection and Localization with Multi-scale Models Detection and Localization with Multi-scale Models Eshed Ohn-Bar and Mohan M. Trivedi Computer Vision and Robotics Research Laboratory University of California San Diego {eohnbar, mtrivedi}@ucsd.edu Abstract

More information

EFFECTIVE OBJECT DETECTION FROM TRAFFIC CAMERA VIDEOS. Honghui Shi, Zhichao Liu*, Yuchen Fan, Xinchao Wang, Thomas Huang

EFFECTIVE OBJECT DETECTION FROM TRAFFIC CAMERA VIDEOS. Honghui Shi, Zhichao Liu*, Yuchen Fan, Xinchao Wang, Thomas Huang EFFECTIVE OBJECT DETECTION FROM TRAFFIC CAMERA VIDEOS Honghui Shi, Zhichao Liu*, Yuchen Fan, Xinchao Wang, Thomas Huang Image Formation and Processing (IFP) Group, University of Illinois at Urbana-Champaign

More information

Content-Based Image Recovery

Content-Based Image Recovery Content-Based Image Recovery Hong-Yu Zhou and Jianxin Wu National Key Laboratory for Novel Software Technology Nanjing University, China zhouhy@lamda.nju.edu.cn wujx2001@nju.edu.cn Abstract. We propose

More information

Lecture 7: Semantic Segmentation

Lecture 7: Semantic Segmentation Semantic Segmentation CSED703R: Deep Learning for Visual Recognition (207F) Segmenting images based on its semantic notion Lecture 7: Semantic Segmentation Bohyung Han Computer Vision Lab. bhhanpostech.ac.kr

More information

arxiv: v2 [cs.cv] 28 Jul 2017

arxiv: v2 [cs.cv] 28 Jul 2017 Exploiting Web Images for Weakly Supervised Object Detection Qingyi Tao Hao Yang Jianfei Cai Nanyang Technological University, Singapore arxiv:1707.08721v2 [cs.cv] 28 Jul 2017 Abstract In recent years,

More information

Object Detection by 3D Aspectlets and Occlusion Reasoning

Object Detection by 3D Aspectlets and Occlusion Reasoning Object Detection by 3D Aspectlets and Occlusion Reasoning Yu Xiang University of Michigan Silvio Savarese Stanford University In the 4th International IEEE Workshop on 3D Representation and Recognition

More information

Abandoned Luggage Detection

Abandoned Luggage Detection Abandoned Luggage Detection Using deep neural networks to detect and track abandoned luggage in video By Evan Miller and Eli Selkin For CS519 instructed by Dr. Hao Ji At California State Polytechnic University,

More information

Rich feature hierarchies for accurate object detection and semant

Rich feature hierarchies for accurate object detection and semant Rich feature hierarchies for accurate object detection and semantic segmentation Speaker: Yucong Shen 4/5/2018 Develop of Object Detection 1 DPM (Deformable parts models) 2 R-CNN 3 Fast R-CNN 4 Faster

More information

Find that! Visual Object Detection Primer

Find that! Visual Object Detection Primer Find that! Visual Object Detection Primer SkTech/MIT Innovation Workshop August 16, 2012 Dr. Tomasz Malisiewicz tomasz@csail.mit.edu Find that! Your Goals...imagine one such system that drives information

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Announcements Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Seminar registration period starts on Friday We will offer a lab course in the summer semester Deep Robot Learning Topic:

More information

Weakly Supervised Object Recognition with Convolutional Neural Networks

Weakly Supervised Object Recognition with Convolutional Neural Networks GDR-ISIS, Paris March 20, 2015 Weakly Supervised Object Recognition with Convolutional Neural Networks Ivan Laptev ivan.laptev@inria.fr WILLOW, INRIA/ENS/CNRS, Paris Joint work with: Maxime Oquab Leon

More information

ECCV Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016

ECCV Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016 ECCV 2016 Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016 Fundamental Question What is a good vector representation of an object? Something that can be easily predicted from 2D

More information

Learning Representations for Visual Object Class Recognition

Learning Representations for Visual Object Class Recognition Learning Representations for Visual Object Class Recognition Marcin Marszałek Cordelia Schmid Hedi Harzallah Joost van de Weijer LEAR, INRIA Grenoble, Rhône-Alpes, France October 15th, 2007 Bag-of-Features

More information

Ranking Figure-Ground Hypotheses for Object Segmentation

Ranking Figure-Ground Hypotheses for Object Segmentation Ranking Figure-Ground Hypotheses for Object Segmentation João Carreira, Fuxin Li, Cristian Sminchisescu Faculty of Mathematics and Natural Science, INS, University of Bonn http://sminchisescu.ins.uni-bonn.de/

More information

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs Zhipeng Yan, Moyuan Huang, Hao Jiang 5/1/2017 1 Outline Background semantic segmentation Objective,

More information

Using Machine Learning for Classification of Cancer Cells

Using Machine Learning for Classification of Cancer Cells Using Machine Learning for Classification of Cancer Cells Camille Biscarrat University of California, Berkeley I Introduction Cell screening is a commonly used technique in the development of new drugs.

More information

segdeepm: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection

segdeepm: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection : Exploiting Segmentation and Context in Deep Neural Networks for Object Detection Yukun Zhu Raquel Urtasun Ruslan Salakhutdinov Sanja Fidler University of Toronto {yukun,urtasun,rsalakhu,fidler}@cs.toronto.edu

More information

[Supplementary Material] Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors

[Supplementary Material] Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors [Supplementary Material] Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors Junhyug Noh Soochan Lee Beomsu Kim Gunhee Kim Department of Computer Science and Engineering

More information

3D Object Recognition and Scene Understanding from RGB-D Videos. Yu Xiang Postdoctoral Researcher University of Washington

3D Object Recognition and Scene Understanding from RGB-D Videos. Yu Xiang Postdoctoral Researcher University of Washington 3D Object Recognition and Scene Understanding from RGB-D Videos Yu Xiang Postdoctoral Researcher University of Washington 1 2 Act in the 3D World Sensing & Understanding Acting Intelligent System 3D World

More information