COS 702 Spring 2012 Assignment 1. Radial Basis Functions University of Southern Mississippi Tyler Reese

Size: px
Start display at page:

Download "COS 702 Spring 2012 Assignment 1. Radial Basis Functions University of Southern Mississippi Tyler Reese"

Transcription

1 COS 702 Spring 2012 Assignment 1 Radial Basis Functions University of Southern Mississippi Tyler Reese

2 The Problem COS 702, Assignment 1: Consider the following test function (Franke s function) f(x, y) = 4 3 e 1 4 ((9x 2)2 +(9y 2) 2) e 1 49 (9x+1) (9y+1) e 1 4 ((9x 7)2 +(9y 3) 2) 1 5 e ((9x 4)2 +(9y 7) 2 ) Reconstruct the above function using three basis functions in the region [0,1] 2 : Inverse MQ (1/ r 2 c 2 + 1) where c is the shape parameter r 5 Gaussian e cr2 Choose 225 points as the center of the radial basis function (RBF) and another 100 random points as the test points using Halton quasi-random points random points uniform mesh points (15x15 mesh points) Maximum error = Max 1 k 100 f(x k, y k ) s(x k, y k ) RMSE = (f(x k, y k ) s(x k, y k )) k=1 Study the effect of shape parameter c and compare the results of using these basis functions and RBF centers. 1

3 Methods Overview Using the functions defined in the provided matlab files (DistanceMatrix.m, testfunction.m, hatonseq.m), six matlab scripts were developed to address this problem. The main procedure is to reconstruct a surface using radial basis functions (RBFs) is to use known data (i.e. the value of f(x,y)) to generate distance matrix with each element representing its cumulative distance in the x-y plane from the rest of the set. The elements from this distance matrix are then used to calculate the corresponding interpolation matrix with each element in the interpolation matrix equal to the value of the RBF evaluated at the value of the distance matrix. Appropriately setting the product of the interpolation matrix and a vector of unknown coefficients equal to the vector comprised of the values for f(x,y) leads to the solutions for the unknown coefficients. With these coefficients, the surface can be reconstructed over a set of known test points and the validity of the model confirmed using a similar procedure with the exception that now the coefficients are known and the values for f(x,y) are being calculated and compared to the known values. The Inverse MQ and the Gaussian RBFs both include the shape parameter, c. To study the effect of this shape parameter and to get an estimate of what the optimal value is under each scenario (Halton, Random, and Mesh), three of the scripts developed for this assignment evaluate the RMSE of the 100 random test points using values of the shape parameter ranging from 0.5 to 10.5 in increments of These scripts identify the value for the shape parameter that minimizes the RMSE and also generates a plot for each type of RBF to illustrate the effect that varying the shape parameter has on the RMSE. These scripts are based on the RBFeff.m script povided with modifications made to accomplished the desired goals and are named RBFeffHaltonFindC.m, RBFeffRandomFindC.m, and RBFeffMeshFindC.m. Once the values for the corresponding shape parameters were determined, they were incorporated into the scripts titled RBFeffHalton.m, RBFeffRandom.m, and RBFeffMesh.m which evaluate each RBF over a given set of data points and test points to evaluate the performance of each method. These scripts are again based on the method outlined in the RBFeff. script provided with modifications made to display the max error and RMSE based on 100 random test points and then plot the reconstructed surface and error mesh over a uniform mesh grid. 2

4 Results Finding the Shape Parameter Below in Figures 1, 2, 3, 4, 5, and 6 are the plots illustrating the effect of varying the value of the shape parameter on the RMSE. These plots employ a log scale on the vertical axis and help simultaneously indicate the strong effect the shape parameter has while allowing for a visual approximation for the optimum value of the shape parameter. Figure 1: Effect of Shape Parameter on RMSE for Inverse MQ RBFs on Halton Quasi-Random Points. Figure 2: Effect of Shape Parameter on RMSE for Gaussian RBFs on Halton Quasi-Random Points. 3

5 Figure 3: Effect of Shape Parameter on RMSE for Inverse MQ RBFs on Random Points. Figure 4: Effect of Shape Parameter on RMSE for Gaussian RBFs on Random Points. 4

6 Figure 5: Effect of Shape Parameter on RMSE for Inverse MQ RBFs on Uniform Mesh. Figure 6: Effect of Shape Parameter on RMSE forgaussian RBFs on Uniform Mesh. 5

7 While these plots are adequate for visually referencing the effect and optimum shape parameter, the scripts were developed to also display the shape parameter that corresponded to the minimum value of RMSE. The table below provides the values generated and abbreviated Halton as H., Random as R., Mesh as M., Inverse MQ as IMQ, and Gaussian as G. Table 1: Shape parameter and corresponding MSRE Conditions Shape Parameter RMSE H. IMQ x10 5 R. IMQ x10 4 M. IMQ x10 5 H. G x10 4 R. G x10 4 M. G x10 4 Reconstructing the Surface and Comparing the Values As was previously discussed, these shape parameters were then incorporated into the scripts tasked with yielding the main results for this assignment. The sequence of figures shown below illustrates the following for each of the Halton Quasi-Random, Random, and Uniform Mesh points: The first pair of plots indicates the points generated to function as the centers and build the interpolation matrix, and the follow three pairs of plots show the recreated surface and a mesh grid indicating the error for each grid point. These are on a relatively tight grid with increment size equal to Following the plots is a table providing a summary of the numerical comparison of the max error and RMSE for each set of RBFs based on the performance of the reconstruction over 100 random test points. 6

8 Figure 7: Halton Quasi-Random Points used to define the TestFunction. Figure 8: Resulting Reconstructed surface and error using Inverse MQ RBFs from Halton Quasi-Random Points. 7

9 Figure 9: Resulting Reconstructed surface and error using r 5 RBFs from Halton Quasi-Random Points. Figure 10: Resulting Reconstructed surface and error using Gaussian RBFs from Halton Quasi-Random Points. 8

10 Figure 11: Random Points used to define the TestFunction. Figure 12: Resulting Reconstructed surface and error using Inverse MQ RBFs from Random points. 9

11 Figure 13: Resulting Reconstructed surface and error using r 5 RBFs from Random points.. Figure 14: Resulting Reconstructed surface and error using Gaussian RBFs from Random points. 10

12 Figure 15: Uniform Mesh Points used to define the TestFunction. Figure 16: Resulting Reconstructed surface and error using Inverse MQ RBFs from Uniform Mesh points. 11

13 Figure 17: Resulting Reconstructed surface and error using r 5 RBFs from Uniform Mesh points. Figure 18: Resulting Reconstructed surface and error using Gaussian RBFs from Uniform Mesh points. 12

14 Table 2: RMSE and MaxError corresponding to each RBF under each set of different starting data points and evaluated over 100 random test points Conditions RMSE Max Error H. IMQ 8.693x R. IMQ 4.334x M. IMQ 7.859x H. r x R. r x M. r x H. G 2.173x R. G 9.584x M. G 4.254x Conclusions Given the values shown in Table 2, it can be seen that in every case, starting with random data points to build the subsequent distance matrix and interpolation matrix results in the largest RMSE as well as the largest Max Error regardless of the RBF utilized. It can also be seen that relative to each different set of starting points the Inverse MQ RBFs yielded smaller RMSE and Max Error than either the r 5 and the Gaussian RBFs with the only exception being that the r 5 for the Halton Quasi-Random points had a Max Error slightly lower than the Max Error resulting from the use of the Inverse MQ RBF. The largest Max Error occurred using the r 5 RBF on the Random starting points. In general, each set of RBFs performed relatively well, but if they were to be ranked according to the overall performance on this task from best to worst, the ranking would be the following: Inverse MQ, Gaussian, and then r 5. It should be noted that the values do fluctuate slightly from one execution of the script to the next as they are tested on a random set of 100 test points (though the same 100 test points are used for each evaluation of Halton, Random, and Mesh respectively). 13

15 References [1] C.S.Chen,Y.C.Hon,R.A.Schaback Scientific Computing with Radial Basis Functions. Department of Mathematics, University of Southern Mississippi, USA. [2] Gregory E. Fasshauer, Meshfree Approximation Methods with Matlab. World Scientific,

Determining optimal value of the shape parameter c in RBF for unequal distances topographical points by Cross-Validation algorithm

Determining optimal value of the shape parameter c in RBF for unequal distances topographical points by Cross-Validation algorithm Journal of Mathematical Modeling Vol. 5, No. 1, 2017, pp. 53-60 JMM Determining optimal value of the shape parameter c in RBF for unequal distances topographical points by Cross-Validation algorithm Mohammadreza

More information

A Random Variable Shape Parameter Strategy for Radial Basis Function Approximation Methods

A Random Variable Shape Parameter Strategy for Radial Basis Function Approximation Methods A Random Variable Shape Parameter Strategy for Radial Basis Function Approximation Methods Scott A. Sarra, Derek Sturgill Marshall University, Department of Mathematics, One John Marshall Drive, Huntington

More information

Radial Basis Functions and Application in Edge Detection

Radial Basis Functions and Application in Edge Detection Radial Basis Functions and Application in Edge Detection Tian Jiang Department of Mathematics Student University of Massachusetts Dartmouth Advisor: Sigal Gottlieb, Saeja Kim Department of Mathematics

More information

A Comparative Study of LOWESS and RBF Approximations for Visualization

A Comparative Study of LOWESS and RBF Approximations for Visualization A Comparative Study of LOWESS and RBF Approximations for Visualization Michal Smolik, Vaclav Skala and Ondrej Nedved Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, CZ 364 Plzen,

More information

Long time integrations of a convective PDE on the sphere by RBF collocation

Long time integrations of a convective PDE on the sphere by RBF collocation Long time integrations of a convective PDE on the sphere by RBF collocation Bengt Fornberg and Natasha Flyer University of Colorado NCAR Department of Applied Mathematics Institute for Mathematics Applied

More information

Partition of unity algorithm for two-dimensional interpolation using compactly supported radial basis functions

Partition of unity algorithm for two-dimensional interpolation using compactly supported radial basis functions Communications in Applied and Industrial Mathematics, ISSN 2038-0909, e-431 DOI: 10.1685/journal.caim.431 Partition of unity algorithm for two-dimensional interpolation using compactly supported radial

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 12: Interpolation with Compactly Supported RBFs in MATLAB Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 12: Interpolation with Compactly Supported RBFs in MATLAB Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu

More information

Image Reconstruction from Multiple Projections ECE 6258 Class project

Image Reconstruction from Multiple Projections ECE 6258 Class project Image Reconstruction from Multiple Projections ECE 658 Class project Introduction: The ability to reconstruct an object from multiple angular projections is a powerful tool. What this procedure gives people

More information

Approximation of a Fuzzy Function by Using Radial Basis Functions Interpolation

Approximation of a Fuzzy Function by Using Radial Basis Functions Interpolation International Journal of Mathematical Modelling & Computations Vol. 07, No. 03, Summer 2017, 299-307 Approximation of a Fuzzy Function by Using Radial Basis Functions Interpolation R. Firouzdor a and M.

More information

Webinar Parameter Identification with optislang. Dynardo GmbH

Webinar Parameter Identification with optislang. Dynardo GmbH Webinar Parameter Identification with optislang Dynardo GmbH 1 Outline Theoretical background Process Integration Sensitivity analysis Least squares minimization Example: Identification of material parameters

More information

Digital Geometry Processing

Digital Geometry Processing Digital Geometry Processing Spring 2011 physical model acquired point cloud reconstructed model 2 Digital Michelangelo Project Range Scanning Systems Passive: Stereo Matching Find and match features in

More information

Adaptive Node Selection in Periodic Radial Basis Function Interpolations

Adaptive Node Selection in Periodic Radial Basis Function Interpolations Adaptive Node Selection in Periodic Radial Basis Function Interpolations Muhammad Shams Dept. of Mathematics UMass Dartmouth Dartmouth MA 02747 Email: mshams@umassd.edu December 19, 2011 Abstract In RBFs,

More information

Fluid structure interaction analysis: vortex shedding induced vibrations

Fluid structure interaction analysis: vortex shedding induced vibrations Fluid structure interaction analysis: vortex shedding induced vibrations N. Di Domenico, M. E. * University of Rome «Tor Vergata», Department of Enterprise Engineering «Mario Lucertini» A. Wade, T. Berg,

More information

CHAPTER 6 IMPLEMENTATION OF RADIAL BASIS FUNCTION NEURAL NETWORK FOR STEGANALYSIS

CHAPTER 6 IMPLEMENTATION OF RADIAL BASIS FUNCTION NEURAL NETWORK FOR STEGANALYSIS 95 CHAPTER 6 IMPLEMENTATION OF RADIAL BASIS FUNCTION NEURAL NETWORK FOR STEGANALYSIS 6.1 INTRODUCTION The concept of distance measure is used to associate the input and output pattern values. RBFs use

More information

Fast Radial Basis Functions for Engineering Applications. Prof. Marco Evangelos Biancolini University of Rome Tor Vergata

Fast Radial Basis Functions for Engineering Applications. Prof. Marco Evangelos Biancolini University of Rome Tor Vergata Fast Radial Basis Functions for Engineering Applications Prof. Marco Evangelos Biancolini University of Rome Tor Vergata Outline 2 RBF background Fast RBF on HPC Engineering Applications Mesh morphing

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Post-Processing Radial Basis Function Approximations: A Hybrid Method

Post-Processing Radial Basis Function Approximations: A Hybrid Method Post-Processing Radial Basis Function Approximations: A Hybrid Method Muhammad Shams Dept. of Mathematics UMass Dartmouth Dartmouth MA 02747 Email: mshams@umassd.edu August 4th 2011 Abstract With the use

More information

Numerical Quadrature over the Surface of a Sphere

Numerical Quadrature over the Surface of a Sphere Numerical Quadrature over the Surface of a Sphere Bengt Fornberg University of Colorado at Boulder Department of Applied Mathematics in collaboration with: Jonah Reeger Air Force Institute of Technology,

More information

An advanced RBF Morph application: coupled CFD-CSM Aeroelastic Analysis of a Full Aircraft Model and Comparison to Experimental Data

An advanced RBF Morph application: coupled CFD-CSM Aeroelastic Analysis of a Full Aircraft Model and Comparison to Experimental Data An advanced RBF Morph application: coupled CFD-CSM Aeroelastic Analysis of a Full Aircraft Model and Comparison to Experimental Data Dr. Marco Evangelos Biancolini Tor Vergata University, Rome, Italy Dr.

More information

Contents. Implementing the QR factorization The algebraic eigenvalue problem. Applied Linear Algebra in Geoscience Using MATLAB

Contents. Implementing the QR factorization The algebraic eigenvalue problem. Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

Assignment 4: Mesh Parametrization

Assignment 4: Mesh Parametrization CSCI-GA.3033-018 - Geometric Modeling Assignment 4: Mesh Parametrization In this exercise you will Familiarize yourself with vector field design on surfaces. Create scalar fields whose gradients align

More information

Data interpolation in pyramid domain

Data interpolation in pyramid domain Data interpolation in pyramid domain Xukai Shen ABSTRACT Pyramid domain is defined as a frequency-space domain with different spatial grids for different frequencies. Data interpolation in pyramid domain

More information

GEMINI 8-M Telescopes Project

GEMINI 8-M Telescopes Project GEMINI 8-M Telescopes Project TN-O-G0003 Effects on Surface Figure Due to Random Error in Support Actuator Forces for an 8-m Primary Mirror Myung K. Cho Optics Group February 22, 1993 ABSTRACT The effects

More information

Shape optimisation using breakthrough technologies

Shape optimisation using breakthrough technologies Shape optimisation using breakthrough technologies Compiled by Mike Slack Ansys Technical Services 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Introduction Shape optimisation technologies

More information

A Study of Different Modeling Choices for Simulating Platelets Within the Immersed Boundary Method

A Study of Different Modeling Choices for Simulating Platelets Within the Immersed Boundary Method Boise State University ScholarWorks Mathematics Faculty Publications and Presentations Department of Mathematics 1-1-2013 A Study of Different Modeling Choices for Simulating Platelets Within the Immersed

More information

Final Exam Assigned: 11/21/02 Due: 12/05/02 at 2:30pm

Final Exam Assigned: 11/21/02 Due: 12/05/02 at 2:30pm 6.801/6.866 Machine Vision Final Exam Assigned: 11/21/02 Due: 12/05/02 at 2:30pm Problem 1 Line Fitting through Segmentation (Matlab) a) Write a Matlab function to generate noisy line segment data with

More information

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong)

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) References: [1] http://homepages.inf.ed.ac.uk/rbf/hipr2/index.htm [2] http://www.cs.wisc.edu/~dyer/cs540/notes/vision.html

More information

Performance Evaluation

Performance Evaluation Chapter 4 Performance Evaluation For testing and comparing the effectiveness of retrieval and classification methods, ways of evaluating the performance are required. This chapter discusses several of

More information

Transforms. COMP 575/770 Spring 2013

Transforms. COMP 575/770 Spring 2013 Transforms COMP 575/770 Spring 2013 Transforming Geometry Given any set of points S Could be a 2D shape, a 3D object A transform is a function T that modifies all points in S: T S S T v v S Different transforms

More information

Spatial Distributions of Precipitation Events from Regional Climate Models

Spatial Distributions of Precipitation Events from Regional Climate Models Spatial Distributions of Precipitation Events from Regional Climate Models N. Lenssen September 2, 2010 1 Scientific Reason The Institute of Mathematics Applied to Geosciences (IMAGe) and the National

More information

Diffuse Optical Tomography, Inverse Problems, and Optimization. Mary Katherine Huffman. Undergraduate Research Fall 2011 Spring 2012

Diffuse Optical Tomography, Inverse Problems, and Optimization. Mary Katherine Huffman. Undergraduate Research Fall 2011 Spring 2012 Diffuse Optical Tomography, Inverse Problems, and Optimization Mary Katherine Huffman Undergraduate Research Fall 11 Spring 12 1. Introduction. This paper discusses research conducted in order to investigate

More information

Scientific Visualization Example exam questions with commented answers

Scientific Visualization Example exam questions with commented answers Scientific Visualization Example exam questions with commented answers The theoretical part of this course is evaluated by means of a multiple- choice exam. The questions cover the material mentioned during

More information

Comparing different interpolation methods on two-dimensional test functions

Comparing different interpolation methods on two-dimensional test functions Comparing different interpolation methods on two-dimensional test functions Thomas Mühlenstädt, Sonja Kuhnt May 28, 2009 Keywords: Interpolation, computer experiment, Kriging, Kernel interpolation, Thin

More information

Radial Basis Function (RBF) Neural Networks Based on the Triple Modular Redundancy Technology (TMR)

Radial Basis Function (RBF) Neural Networks Based on the Triple Modular Redundancy Technology (TMR) Radial Basis Function (RBF) Neural Networks Based on the Triple Modular Redundancy Technology (TMR) Yaobin Qin qinxx143@umn.edu Supervisor: Pro.lilja Department of Electrical and Computer Engineering Abstract

More information

Curves and Surfaces Computer Graphics I Lecture 9

Curves and Surfaces Computer Graphics I Lecture 9 15-462 Computer Graphics I Lecture 9 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] February 19, 2002 Frank Pfenning Carnegie

More information

A New Look at Multivariable Interpolation

A New Look at Multivariable Interpolation Page 1 A New Look at Multivariable Interpolation By Namir Shammas Introduction Interpolation using a single independent variable usually involves using legacy algorithm such as the Lagrangian Interpolation,

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Image Warping. Srikumar Ramalingam School of Computing University of Utah. [Slides borrowed from Ross Whitaker] 1

Image Warping. Srikumar Ramalingam School of Computing University of Utah. [Slides borrowed from Ross Whitaker] 1 Image Warping Srikumar Ramalingam School of Computing University of Utah [Slides borrowed from Ross Whitaker] 1 Geom Trans: Distortion From Optics Barrel Distortion Pincushion Distortion Straight lines

More information

Image and Multidimensional Signal Processing

Image and Multidimensional Signal Processing Image and Multidimensional Signal Processing Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ Representation and Description 2 Representation and

More information

Radial Basis Function Networks

Radial Basis Function Networks Radial Basis Function Networks As we have seen, one of the most common types of neural network is the multi-layer perceptron It does, however, have various disadvantages, including the slow speed in learning

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 WRI C225 Lecture 04 130131 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Histogram Equalization Image Filtering Linear

More information

Chapter 1 BACKGROUND

Chapter 1 BACKGROUND Chapter BACKGROUND. Introduction In many areas of mathematics and in applications of mathematics, it is often necessary to be able to infer information about some function using only a limited set of sample

More information

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 2.11] Jernej Barbic University of Southern California Scientific Visualization

More information

Visualization. CSCI 420 Computer Graphics Lecture 26

Visualization. CSCI 420 Computer Graphics Lecture 26 CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 11] Jernej Barbic University of Southern California 1 Scientific Visualization

More information

Digital Image Processing. Image Enhancement - Filtering

Digital Image Processing. Image Enhancement - Filtering Digital Image Processing Image Enhancement - Filtering Derivative Derivative is defined as a rate of change. Discrete Derivative Finite Distance Example Derivatives in 2-dimension Derivatives of Images

More information

Chapter 18. Geometric Operations

Chapter 18. Geometric Operations Chapter 18 Geometric Operations To this point, the image processing operations have computed the gray value (digital count) of the output image pixel based on the gray values of one or more input pixels;

More information

RESPONSE SURFACE METHODOLOGIES - METAMODELS

RESPONSE SURFACE METHODOLOGIES - METAMODELS RESPONSE SURFACE METHODOLOGIES - METAMODELS Metamodels Metamodels (or surrogate models, response surface models - RSM), are analytic models that approximate the multivariate input/output behavior of complex

More information

Reflector profile optimisation using Radiance

Reflector profile optimisation using Radiance Reflector profile optimisation using Radiance 1,4 1,2 1, 8 6 4 2 3. 2.5 2. 1.5 1..5 I csf(1) csf(2). 1 2 3 4 5 6 Giulio ANTONUTTO Krzysztof WANDACHOWICZ page 1 The idea Krzysztof WANDACHOWICZ Giulio ANTONUTTO

More information

Accurate Thermo-Fluid Simulation in Real Time Environments. Silvia Poles, Alberto Deponti, EnginSoft S.p.A. Frank Rhodes, Mentor Graphics

Accurate Thermo-Fluid Simulation in Real Time Environments. Silvia Poles, Alberto Deponti, EnginSoft S.p.A. Frank Rhodes, Mentor Graphics Accurate Thermo-Fluid Simulation in Real Time Environments Silvia Poles, Alberto Deponti, EnginSoft S.p.A. Frank Rhodes, Mentor Graphics M e c h a n i c a l a n a l y s i s W h i t e P a p e r w w w. m

More information

X-ray tomography. X-ray tomography. Applications in Science. X-Rays. Notes. Notes. Notes. Notes

X-ray tomography. X-ray tomography. Applications in Science. X-Rays. Notes. Notes. Notes. Notes X-ray tomography Important application of the Fast Fourier transform: X-ray tomography. Also referred to as CAT scan (Computerized Axial Tomography) X-ray tomography This has revolutionized medical diagnosis.

More information

Graphical Presentation of Data

Graphical Presentation of Data Graphical Presentation of Data Dr Steve Woodhead Supporting your argument Introducing Matlab Graph plotting in Matlab Matlab demonstrations Lecture Overview Lab two The assignment part two Next week Lecture

More information

An iterative adaptive multiquadric radial basis function method for the detection of local jump discontinuities

An iterative adaptive multiquadric radial basis function method for the detection of local jump discontinuities * Manuscript An iterative adaptive multiquadric radial basis function method for the detection of local jump discontinuities Vincent R. Durante a, Jae-Hun Jung b a Department of Mathematics, University

More information

Submodularity Reading Group. Matroid Polytopes, Polymatroid. M. Pawan Kumar

Submodularity Reading Group. Matroid Polytopes, Polymatroid. M. Pawan Kumar Submodularity Reading Group Matroid Polytopes, Polymatroid M. Pawan Kumar http://www.robots.ox.ac.uk/~oval/ Outline Linear Programming Matroid Polytopes Polymatroid Polyhedron Ax b A : m x n matrix b:

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

Computer Graphics: Geometric Transformations

Computer Graphics: Geometric Transformations Computer Graphics: Geometric Transformations Geometric 2D transformations By: A. H. Abdul Hafez Abdul.hafez@hku.edu.tr, 1 Outlines 1. Basic 2D transformations 2. Matrix Representation of 2D transformations

More information

Parametric. Practices. Patrick Cunningham. CAE Associates Inc. and ANSYS Inc. Proprietary 2012 CAE Associates Inc. and ANSYS Inc. All rights reserved.

Parametric. Practices. Patrick Cunningham. CAE Associates Inc. and ANSYS Inc. Proprietary 2012 CAE Associates Inc. and ANSYS Inc. All rights reserved. Parametric Modeling Best Practices Patrick Cunningham July, 2012 CAE Associates Inc. and ANSYS Inc. Proprietary 2012 CAE Associates Inc. and ANSYS Inc. All rights reserved. E-Learning Webinar Series This

More information

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Vol. 12, Issue 1/2016, 63-68 DOI: 10.1515/cee-2016-0009 MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Juraj MUŽÍK 1,* 1 Department of Geotechnics, Faculty of Civil Engineering, University

More information

Improved Detector Response Characterization Method in ISOCS and LabSOCS

Improved Detector Response Characterization Method in ISOCS and LabSOCS P Improved Detector Response Characterization Method in ISOCS and LabSOCS *1 1 1 1 1 R. VenkataramanP P, F. BronsonP P, V. AtrashkevichP P, M. FieldP P, and B.M. YoungP P. 1 PCanberra Industries, 800 Research

More information

New Basis Functions and Their Applications to PDEs

New Basis Functions and Their Applications to PDEs Copyright c 2007 ICCES ICCES, vol.3, no.4, pp.169-175, 2007 New Basis Functions and Their Applications to PDEs Haiyan Tian 1, Sergiy Reustkiy 2 and C.S. Chen 1 Summary We introduce a new type of basis

More information

Homework #6 Brief Solutions 2012

Homework #6 Brief Solutions 2012 Homework #6 Brief Solutions %page 95 problem 4 data=[-,;-,;,;4,] data = - - 4 xk=data(:,);yk=data(:,);s=csfit(xk,yk,-,) %Using the program to find the coefficients S =.456 -.456 -.. -.5.9 -.5484. -.58.87.

More information

CoE4TN4 Image Processing. Chapter 5 Image Restoration and Reconstruction

CoE4TN4 Image Processing. Chapter 5 Image Restoration and Reconstruction CoE4TN4 Image Processing Chapter 5 Image Restoration and Reconstruction Image Restoration Similar to image enhancement, the ultimate goal of restoration techniques is to improve an image Restoration: a

More information

Outline. follows the structure of the report

Outline. follows the structure of the report Outline follows the structure of the report Introduction Mesh-based Modeling of Cuts Finite Element Simulation for Virtual Cutting Numerical Solvers Meshfree Methods Summary & Application Study Discussion

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not.

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not. AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 2: Spline Approximations Dianne P O Leary c 2001, 2002, 2007 Piecewise polynomial interpolation Piecewise polynomial interpolation Read: Chapter 3 Skip:

More information

Points Lines Connected points X-Y Scatter. X-Y Matrix Star Plot Histogram Box Plot. Bar Group Bar Stacked H-Bar Grouped H-Bar Stacked

Points Lines Connected points X-Y Scatter. X-Y Matrix Star Plot Histogram Box Plot. Bar Group Bar Stacked H-Bar Grouped H-Bar Stacked Plotting Menu: QCExpert Plotting Module graphs offers various tools for visualization of uni- and multivariate data. Settings and options in different types of graphs allow for modifications and customizations

More information

Matlab Tutorial. The value assigned to a variable can be checked by simply typing in the variable name:

Matlab Tutorial. The value assigned to a variable can be checked by simply typing in the variable name: 1 Matlab Tutorial 1- What is Matlab? Matlab is a powerful tool for almost any kind of mathematical application. It enables one to develop programs with a high degree of functionality. The user can write

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 15, 2003 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University 15-462 Computer Graphics I Lecture 21 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Example 24 Spring-back

Example 24 Spring-back Example 24 Spring-back Summary The spring-back simulation of sheet metal bent into a hat-shape is studied. The problem is one of the famous tests from the Numisheet 93. As spring-back is generally a quasi-static

More information

C =

C = file:///c:/documents20and20settings/ravindra/desktop/html/exercis... 1 of 5 10/3/2008 3:17 PM Lab Exercise 2 - Matrices Hyd 510L, Fall, 2008, NM Tech Programmed by J.L. Wilson, Sept, 2008 Problem 2.1 Create

More information

ON THE INVERSE RADON TRANSFORM

ON THE INVERSE RADON TRANSFORM ON THE INVERSE RADON TRANSFORM F Chvála Institute of Thermomechanics AS CR, vvi Abstract A reconstruction of an image by application of the discrete inverse Radon transform realized by the function iradon

More information

Geostatistics 2D GMS 7.0 TUTORIALS. 1 Introduction. 1.1 Contents

Geostatistics 2D GMS 7.0 TUTORIALS. 1 Introduction. 1.1 Contents GMS 7.0 TUTORIALS 1 Introduction Two-dimensional geostatistics (interpolation) can be performed in GMS using the 2D Scatter Point module. The module is used to interpolate from sets of 2D scatter points

More information

Estimating basis functions for spectral sensitivity of digital cameras

Estimating basis functions for spectral sensitivity of digital cameras (MIRU2009) 2009 7 Estimating basis functions for spectral sensitivity of digital cameras Abstract Hongxun ZHAO, Rei KAWAKAMI, Robby T.TAN, and Katsushi IKEUCHI Institute of Industrial Science, The University

More information

Image warping , , Computational Photography Fall 2017, Lecture 10

Image warping , , Computational Photography Fall 2017, Lecture 10 Image warping http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 10 Course announcements Second make-up lecture on Friday, October 6 th, noon-1:30

More information

Camera model and multiple view geometry

Camera model and multiple view geometry Chapter Camera model and multiple view geometry Before discussing how D information can be obtained from images it is important to know how images are formed First the camera model is introduced and then

More information

The Rectangular Coordinate System and Equations of Lines. College Algebra

The Rectangular Coordinate System and Equations of Lines. College Algebra The Rectangular Coordinate System and Equations of Lines College Algebra Cartesian Coordinate System A grid system based on a two-dimensional plane with perpendicular axes: horizontal axis is the x-axis

More information

Tutorial on Range and Bearing Estimation

Tutorial on Range and Bearing Estimation Tutorial on Range and Bearing Estimation Basia Korel (bkorel@cs.brown.edu) October 30, 2009 1 Introduction Estimating the range and bearing from the robot to a landmark object is a necessary component

More information

given B-spline surface. As described earlier, if the points at which curvature minimas or

given B-spline surface. As described earlier, if the points at which curvature minimas or 7.0 Results The objective of this research is to optimize the procedure of geometric trimming of any given B-spline surface. As described earlier, if the points at which curvature minimas or maximas occur

More information

The interpolation of a 3-D data set by a pair of 2-D filters

The interpolation of a 3-D data set by a pair of 2-D filters Stanford Exploration Project, Report 84, May 9, 2001, pages 1 275 The interpolation of a 3-D data set by a pair of 2-D filters Matthias Schwab and Jon F. Claerbout 1 ABSTRACT Seismic 3-D field data is

More information

Curves and Surfaces Computer Graphics I Lecture 10

Curves and Surfaces Computer Graphics I Lecture 10 15-462 Computer Graphics I Lecture 10 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] September 30, 2003 Doug James Carnegie

More information

Geometric Modeling of Curves

Geometric Modeling of Curves Curves Locus of a point moving with one degree of freedom Locus of a one-dimensional parameter family of point Mathematically defined using: Explicit equations Implicit equations Parametric equations (Hermite,

More information

Specification and Computation of Warping and Morphing Transformations. Bruno Costa da Silva Microsoft Corp.

Specification and Computation of Warping and Morphing Transformations. Bruno Costa da Silva Microsoft Corp. Specification and Computation of Warping and Morphing Transformations Bruno Costa da Silva Microsoft Corp. Morphing Transformations Representation of Transformations Specification of Transformations Specification

More information

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles Mesh Simplification Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2 Applications Overtessellation: E.g. iso-surface extraction 3 Applications Multi-resolution hierarchies for efficient

More information

Basics of Multivariate Modelling and Data Analysis

Basics of Multivariate Modelling and Data Analysis Basics of Multivariate Modelling and Data Analysis Kurt-Erik Häggblom 9. Linear regression with latent variables 9.1 Principal component regression (PCR) 9.2 Partial least-squares regression (PLS) [ mostly

More information

Outline. Visualization Discretization Sampling Quantization Representation Continuous Discrete. Noise

Outline. Visualization Discretization Sampling Quantization Representation Continuous Discrete. Noise Fundamentals Data Outline Visualization Discretization Sampling Quantization Representation Continuous Discrete Noise 2 Data Data : Function dependent on one or more variables. Example Audio (1D) - depends

More information

Boundary descriptors. Representation REPRESENTATION & DESCRIPTION. Descriptors. Moore boundary tracking

Boundary descriptors. Representation REPRESENTATION & DESCRIPTION. Descriptors. Moore boundary tracking Representation REPRESENTATION & DESCRIPTION After image segmentation the resulting collection of regions is usually represented and described in a form suitable for higher level processing. Most important

More information

Locally Weighted Least Squares Regression for Image Denoising, Reconstruction and Up-sampling

Locally Weighted Least Squares Regression for Image Denoising, Reconstruction and Up-sampling Locally Weighted Least Squares Regression for Image Denoising, Reconstruction and Up-sampling Moritz Baecher May 15, 29 1 Introduction Edge-preserving smoothing and super-resolution are classic and important

More information

Kinematics of the Stewart Platform (Reality Check 1: page 67)

Kinematics of the Stewart Platform (Reality Check 1: page 67) MATH 5: Computer Project # - Due on September 7, Kinematics of the Stewart Platform (Reality Check : page 7) A Stewart platform consists of six variable length struts, or prismatic joints, supporting a

More information

Computational QC Geometry: A tool for Medical Morphometry, Computer Graphics & Vision

Computational QC Geometry: A tool for Medical Morphometry, Computer Graphics & Vision Computational QC Geometry: A tool for Medical Morphometry, Computer Graphics & Vision Part II of the sequel of 2 talks. Computation C/QC geometry was presented by Tony F. Chan Ronald Lok Ming Lui Department

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometry and Camera Calibration 3D Coordinate Systems Right-handed vs. left-handed x x y z z y 2D Coordinate Systems 3D Geometry Basics y axis up vs. y axis down Origin at center vs. corner Will often

More information

Abstract. Introduction. Kevin Todisco

Abstract. Introduction. Kevin Todisco - Kevin Todisco Figure 1: A large scale example of the simulation. The leftmost image shows the beginning of the test case, and shows how the fluid refracts the environment around it. The middle image

More information

Data Representation in Visualisation

Data Representation in Visualisation Data Representation in Visualisation Visualisation Lecture 4 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Taku Komura Data Representation 1 Data Representation We have

More information

CFD Post-Processing of Rampressor Rotor Compressor

CFD Post-Processing of Rampressor Rotor Compressor Gas Turbine Industrial Fellowship Program 2006 CFD Post-Processing of Rampressor Rotor Compressor Curtis Memory, Brigham Young niversity Ramgen Power Systems Mentor: Rob Steele I. Introduction Recent movements

More information

Can be put into the matrix form of Ax=b in this way:

Can be put into the matrix form of Ax=b in this way: Pre-Lab 0 Not for Grade! Getting Started with Matlab Introduction In EE311, a significant part of the class involves solving simultaneous equations. The most time efficient way to do this is through the

More information

EECS490: Digital Image Processing. Lecture #22

EECS490: Digital Image Processing. Lecture #22 Lecture #22 Gold Standard project images Otsu thresholding Local thresholding Region segmentation Watershed segmentation Frequency-domain techniques Project Images 1 Project Images 2 Project Images 3 Project

More information

HeatWave Three-dimensional steady-state and dynamic thermal transport with temperature-dependent materials

HeatWave Three-dimensional steady-state and dynamic thermal transport with temperature-dependent materials HeatWave Three-dimensional steady-state and dynamic thermal transport with temperature-dependent materials Field Precision Copyright 2001 Internet: www.fieldp.com E Mail: techninfo@fieldp.com PO Box 13595,

More information

Visualization. Images are used to aid in understanding of data. Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26]

Visualization. Images are used to aid in understanding of data. Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26] Visualization Images are used to aid in understanding of data Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26] Tumor SCI, Utah Scientific Visualization Visualize large

More information

Geometric Modeling. Mesh Decimation. Mesh Decimation. Applications. Copyright 2010 Gotsman, Pauly Page 1. Oversampled 3D scan data

Geometric Modeling. Mesh Decimation. Mesh Decimation. Applications. Copyright 2010 Gotsman, Pauly Page 1. Oversampled 3D scan data Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2 Copyright 2010 Gotsman, Pauly Page 1 Applications Overtessellation: E.g. iso-surface extraction 3 Applications Multi-resolution hierarchies

More information

A Novel Triangle-based Method for Scattered Data Interpolation

A Novel Triangle-based Method for Scattered Data Interpolation Applied Mathematical Sciences Vol. 8, 24, no. 34, 677-6724 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ams.24.49686 A Novel Triangle-based Method for Scattered Data Interpolation Salvatore Cuomo,

More information