Topics. Projections. Review Filtered Backprojection Fan Beam Spiral CT Applications. Bioengineering 280A Principles of Biomedical Imaging

Size: px
Start display at page:

Download "Topics. Projections. Review Filtered Backprojection Fan Beam Spiral CT Applications. Bioengineering 280A Principles of Biomedical Imaging"

Transcription

1 Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 24 X-Rays/CT Lecture 2 Topics Review Filtered Backprojection Fan Beam Spiral CT Applications s I θ (r) = I exp µ(x, y)ds Lr,θ = I exp µ(rcosθ ssinθ,rsinθ + scosθ)ds Lr,θ

2 s I θ (r) = I exp Lr,θ µ(rcosθ ssinθ,rsinθ + scosθ)ds p θ (r) = ln I θ (r) I = µ(rcosθ ssinθ,rsinθ + scosθ)ds Lr,θ Sinogram Sinogram µ 3 µ 4 p 2 µ µ 2 p p 3 p 4 Direct Inverse Approach p = µ + µ 2 p 2 = µ 3 + µ 4 p 3 = µ + µ 3 p 4 = µ 2 + µ 4 4 equations, 4 unknowns. Are these the correct equations to use? p µ p 2 = µ 2 p 3 µ 3 p 4 µ 4 No, equations are not linearly independent. p 4 = p + p 2 - p 3 Matrix is not full rank. 2

3 µ 3 µ 4 p 2 µ µ 2 p p 3 p 4 Direct Inverse Approach p 5 p = µ + µ 2 p 2 = µ 3 + µ 4 p 3 = µ + µ 3 p 5 = µ + µ 4 p µ p 2 = µ 2 p 3 µ 3 p 4 µ 4 4 equations, 4 unknowns. These are linearly independent now. In general for a NxN image, N 2 unknowns, N 2 equations. This requires the inversion of a N 2 xn 2 matrix For a high-resolution 52x52 image, N 2 =26244 equations. Requires inversion of a 26244x26244 matrix! Inversion process sensitive to measurement errors. Iterative Inverse Approach Algebraic Reconstruction Technique (ART) Backprojection

4 y Backprojection b(x, y) = B{ p( r,θ) } π = p(x cosθ + y sinθ,θ)dθ x x b(x, y) = p( r,θ = )Δθ = p(x )Δθ r Backprojection b(x, y) = B{ p( r,θ) } π = p(x cosθ + y sinθ,θ)dθ Backprojection π b(x, y) = B{ p( r,θ) } = p(x cosθ + y sinθ,θ)dθ 4

5 Theorem [ ] U(k x,k y ) = µ(x, y)e j 2π (k x x +k y y) dxdy = F 2D µ(x, y) U(k x,k y ) = P(k,θ) k x = k cosθ k y = k sinθ k = k 2 2 x + k y F P(k,θ) = p θ (r)e j 2πkr dr Fourier Reconstruction F Interpolate onto Cartesian grid then take inverse transform Fourier Interpretation N Density circumference N 2π k Low frequencies are oversampled. So to compensate for this, multiply the k-space data by k before inverse transforming. Kak and Slaney; 5

6 Polar Version of Inverse FT µ(x, y) = 2π π U(k x,k y )e j 2π (k xx +k y y ) dk x dk y = U(k,θ)e j 2π (k cosθx +k sinθy) kdkdθ = U(k,θ)e j 2π (xk cosθ +yk sinθ ) k dkdθ µ(x, y) = Filtered Backprojection π π π U(k,θ)e j 2π (xk cosθ +yk sinθ ) k dkdθ = k U(k,θ)e j 2πkr dkdθ = u (r,θ)dθ where r = x cosθ + y sinθ u (r,θ) = k U(k,θ)e j 2πkr dk = u(r,θ) F k = u(r,θ) q(r) [ ] Backproject a filtered projection Reconstruction Path F x F - Filtered Back- Project 6

7 Ram-Lak Filter q(r) = F k Ram-Lak Filter k q(r) = F k rect 2k max = [ ] = k e j 2πkr dk Not a realistic convolution kernel. k max k max k e j 2πkr dk k max =/Δs Reconstruction Path F x F - Filtered Back- Project Reconstruction Path * Filtered Back- Project 7

8 Example Kak and Slaney Additional Filtering k max =/Δs Sampling Requirements How many detectors do we need? How many angular views do we need? 8

9 Aliasing Kak and Slaney Artifacts Object Effect of Noise Aliasing due to insufficient number of detectors Aliasing due to insufficient number of views Aliasing Kak and Slaney 9

10 Aliasing Aliased Image Alias Component (aliased image)- (alias component) Kak and Slaney Alias components Kak and Slaney Sampling Requirements Beam Width 2/(Δs) W= 2/(Δs) δ=/w= Δs/2 Smoothed

11 Sampling Requirements Smoothed Detectors Δr Δs/2 Sampled Smooth Detector Sampling Requirements Beamwidth of detector Δs Sampling interval Δr Requirement is Δr Δs/2 View Aliasing Kak and Slaney

12 View Sampling Requirements View Sampling -- how many views? Basic idea is that to make the maximum angular sampling the same as the projection sampling. πfov N views = Δr N views,36 = πfov Δr = πn proj (for 36 degrees) N views,8 = πn proj 2 (for 8 degrees) CT System Generations 5 minutes/slice 2 seconds /slice.5 seconds /slice CT System 2

13 Fan Beam θ =α + β r = Rsinα r Fan Beam θ =α + β r = Rsinα β = r α max r π α max θ Spiral CT Nearest Neighbor Interpolation Linear Interpolation From 3

14 Longitudinal Aliasing in Spiral CT From Multislice CT CT Applications 4

15 Virtual Colonoscopy 5

Topics. Review Filtered Backprojection Fan Beam Spiral CT Applications. Bioengineering 280A Principles of Biomedical Imaging

Topics. Review Filtered Backprojection Fan Beam Spiral CT Applications. Bioengineering 280A Principles of Biomedical Imaging Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 24 X-Rays/CT Lecture 2 Topics Review Filtered Backprojection Fan Beam Spiral CT Applications Projections I θ (r) = I exp Lr,θ µ(x,y)ds =

More information

Topics. View Aliasing. CT Sampling Requirements. Sampling Requirements in CT Sampling Theory Aliasing

Topics. View Aliasing. CT Sampling Requirements. Sampling Requirements in CT Sampling Theory Aliasing Topics Bioengineering 280A Principles of Biomedical Imaging Sampling Requirements in CT Sampling Theory Aliasing Fall Quarter 2010 CT/Fourier Lecture 5 CT Sampling Requirements View Aliasing What should

More information

Introduction to Medical Imaging. Lecture 6: X-Ray Computed Tomography. CT number (in HU) = Overview. Klaus Mueller

Introduction to Medical Imaging. Lecture 6: X-Ray Computed Tomography. CT number (in HU) = Overview. Klaus Mueller Overview Introduction to Medical Imaging Lecture 6: X-Ray Computed Tomography Scanning: rotate source-detector pair around the patient Klaus Mueller data Computer Science Department Stony Brook University

More information

Central Slice Theorem

Central Slice Theorem Central Slice Theorem Incident X-rays y f(x,y) R x r x Detected p(, x ) The thick line is described by xcos +ysin =R Properties of Fourier Transform F [ f ( x a)] F [ f ( x)] e j 2 a Spatial Domain Spatial

More information

Computed Tomography (Part 2)

Computed Tomography (Part 2) EL-GY 6813 / BE-GY 603 / G16.446 Medical Imaging Computed Tomography (Part ) Yao Wang Polytechnic School of Engineering New York University, Brooklyn, NY 1101 Based on Prince and Links, Medical Imaging

More information

Image Reconstruction from Projection

Image Reconstruction from Projection Image Reconstruction from Projection Reconstruct an image from a series of projections X-ray computed tomography (CT) Computed tomography is a medical imaging method employing tomography where digital

More information

Steen Moeller Center for Magnetic Resonance research University of Minnesota

Steen Moeller Center for Magnetic Resonance research University of Minnesota Steen Moeller Center for Magnetic Resonance research University of Minnesota moeller@cmrr.umn.edu Lot of material is from a talk by Douglas C. Noll Department of Biomedical Engineering Functional MRI Laboratory

More information

Medical Image Reconstruction Term II 2012 Topic 6: Tomography

Medical Image Reconstruction Term II 2012 Topic 6: Tomography Medical Image Reconstruction Term II 2012 Topic 6: Tomography Professor Yasser Mostafa Kadah Tomography The Greek word tomos means a section, a slice, or a cut. Tomography is the process of imaging a cross

More information

Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D.

Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D. Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D. Applied Science Laboratory, GE Healthcare Technologies 1 Image Generation Reconstruction of images from projections. textbook reconstruction advanced

More information

9. Computed Tomography (CT) 9.1 Absorption of X-ray

9. Computed Tomography (CT) 9.1 Absorption of X-ray Absorption of X-ray 9. 9.1 Absorption of X-ray X-ray radiography Object I κ Incident Transmitted d I(y) = I e κ(y)d κ : attenuation coefficient In the case of X-ray, it depends on the atomic number. (Heavy

More information

X-ray tomography. X-ray tomography. Applications in Science. X-Rays. Notes. Notes. Notes. Notes

X-ray tomography. X-ray tomography. Applications in Science. X-Rays. Notes. Notes. Notes. Notes X-ray tomography Important application of the Fast Fourier transform: X-ray tomography. Also referred to as CAT scan (Computerized Axial Tomography) X-ray tomography This has revolutionized medical diagnosis.

More information

Chapter6 Image Reconstruction

Chapter6 Image Reconstruction Chapter6 Image Reconstruction Preview 61I 6.1 Introduction 6.2 Reconstruction by Fourier Inversion 6.3 Reconstruction by convolution and backprojection 6.4 Finite series-expansion 1 Preview Reconstruction

More information

2D Fan Beam Reconstruction 3D Cone Beam Reconstruction

2D Fan Beam Reconstruction 3D Cone Beam Reconstruction 2D Fan Beam Reconstruction 3D Cone Beam Reconstruction Mario Koerner March 17, 2006 1 2D Fan Beam Reconstruction Two-dimensional objects can be reconstructed from projections that were acquired using parallel

More information

Index. aliasing artifacts and noise in CT images, 200 measurement of projection data, nondiffracting

Index. aliasing artifacts and noise in CT images, 200 measurement of projection data, nondiffracting Index Algebraic equations solution by Kaczmarz method, 278 Algebraic reconstruction techniques, 283-84 sequential, 289, 293 simultaneous, 285-92 Algebraic techniques reconstruction algorithms, 275-96 Algorithms

More information

FOV. ] are the gradient waveforms. The reconstruction of this signal proceeds by an inverse Fourier Transform as:. [2] ( ) ( )

FOV. ] are the gradient waveforms. The reconstruction of this signal proceeds by an inverse Fourier Transform as:. [2] ( ) ( ) Gridding Procedures for Non-Cartesian K-space Trajectories Douglas C. Noll and Bradley P. Sutton Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA 1. Introduction The data collected

More information

Radon Transform and Filtered Backprojection

Radon Transform and Filtered Backprojection Radon Transform and Filtered Backprojection Jørgen Arendt Jensen October 13, 2016 Center for Fast Ultrasound Imaging, Build 349 Department of Electrical Engineering Center for Fast Ultrasound Imaging Department

More information

MEDICAL IMAGING 2nd Part Computed Tomography

MEDICAL IMAGING 2nd Part Computed Tomography MEDICAL IMAGING 2nd Part Computed Tomography Introduction 2 In the last 30 years X-ray Computed Tomography development produced a great change in the role of diagnostic imaging in medicine. In convetional

More information

Joint ICTP-TWAS Workshop on Portable X-ray Analytical Instruments for Cultural Heritage. 29 April - 3 May, 2013

Joint ICTP-TWAS Workshop on Portable X-ray Analytical Instruments for Cultural Heritage. 29 April - 3 May, 2013 2455-5 Joint ICTP-TWAS Workshop on Portable X-ray Analytical Instruments for Cultural Heritage 29 April - 3 May, 2013 Lecture NoteBasic principles of X-ray Computed Tomography Diego Dreossi Elettra, Trieste

More information

Introduction to Medical Imaging. Cone-Beam CT. Klaus Mueller. Computer Science Department Stony Brook University

Introduction to Medical Imaging. Cone-Beam CT. Klaus Mueller. Computer Science Department Stony Brook University Introduction to Medical Imaging Cone-Beam CT Klaus Mueller Computer Science Department Stony Brook University Introduction Available cone-beam reconstruction methods: exact approximate algebraic Our discussion:

More information

2D Fan Beam Reconstruction 3D Cone Beam Reconstruction. Mario Koerner

2D Fan Beam Reconstruction 3D Cone Beam Reconstruction. Mario Koerner 2D Fan Beam Reconstruction 3D Cone Beam Reconstruction Mario Koerner Moscow-Bavarian Joint Advanced Student School 2006 March 19 2006 to March 29 2006 Overview 2D Fan Beam Reconstruction Shortscan Reconstruction

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Image Restoration and Reconstruction (Image Reconstruction from Projections) Christophoros Nikou cnikou@cs.uoi.gr University of Ioannina - Department of Computer Science and Engineering

More information

Tomography. Forward projectionsp θ (r) are known as a Radon transform. Objective: reverse this process to form the original image

Tomography. Forward projectionsp θ (r) are known as a Radon transform. Objective: reverse this process to form the original image C. A. Bouman: Digital Image Processing - January 9, 217 1 Tomography Many medical imaging systems can only measure projections through an object with density f(x,y). Projections must be collected at every

More information

Reconstruction in CT and relation to other imaging modalities

Reconstruction in CT and relation to other imaging modalities Reconstruction in CT and relation to other imaging modalities Jørgen Arendt Jensen November 16, 2015 Center for Fast Ultrasound Imaging, Build 349 Department of Electrical Engineering Center for Fast Ultrasound

More information

Computed Tomography. Principles, Design, Artifacts, and Recent Advances. Jiang Hsieh THIRD EDITION. SPIE PRESS Bellingham, Washington USA

Computed Tomography. Principles, Design, Artifacts, and Recent Advances. Jiang Hsieh THIRD EDITION. SPIE PRESS Bellingham, Washington USA Computed Tomography Principles, Design, Artifacts, and Recent Advances THIRD EDITION Jiang Hsieh SPIE PRESS Bellingham, Washington USA Table of Contents Preface Nomenclature and Abbreviations xi xv 1 Introduction

More information

GE s Revolution CT MATLAB III: CT. Kathleen Chen March 20, 2018

GE s Revolution CT MATLAB III: CT. Kathleen Chen March 20, 2018 GE s Revolution CT MATLAB III: CT Kathleen Chen chens18@rpi.edu March 20, 2018 https://www.zmescience.com/medicine/inside-human-body-real-time-gifs-demo-power-ct-scan/ Reminders Make sure you have MATLAB

More information

The Non-uniform Fast Fourier Transform. in Computed Tomography (No ) Supervisor: Prof. Mike Davies

The Non-uniform Fast Fourier Transform. in Computed Tomography (No ) Supervisor: Prof. Mike Davies The Non-uniform Fast Fourier Transform in Computed Tomography (No. 2.4.4) Masters Report Supervisor: Prof. Mike Davies Billy Junqi Tang s1408760 AUGEST 12, 2015 UNIVERSITY F EDINBURGH Abstract This project

More information

Nuts & Bolts of Advanced Imaging. Image Reconstruction Parallel Imaging

Nuts & Bolts of Advanced Imaging. Image Reconstruction Parallel Imaging Nuts & Bolts of Advanced Imaging Image Reconstruction Parallel Imaging Michael S. Hansen, PhD Magnetic Resonance Technology Program National Institutes of Health, NHLBI Declaration of Financial Interests

More information

DEVELOPMENT OF CONE BEAM TOMOGRAPHIC RECONSTRUCTION SOFTWARE MODULE

DEVELOPMENT OF CONE BEAM TOMOGRAPHIC RECONSTRUCTION SOFTWARE MODULE Rajesh et al. : Proceedings of the National Seminar & Exhibition on Non-Destructive Evaluation DEVELOPMENT OF CONE BEAM TOMOGRAPHIC RECONSTRUCTION SOFTWARE MODULE Rajesh V Acharya, Umesh Kumar, Gursharan

More information

Implementation of a backprojection algorithm on CELL

Implementation of a backprojection algorithm on CELL Implementation of a backprojection algorithm on CELL Mario Koerner March 17, 2006 1 Introduction X-ray imaging is one of the most important imaging technologies in medical applications. It allows to look

More information

Modern CT system generations Measurement of attenuation

Modern CT system generations Measurement of attenuation CT reconstruction repetition & hints Reconstruction in CT and hints to the assignments Jørgen Arendt Jensen October 4, 16 Center for Fast Ultrasound Imaging, Build 349 Department of Electrical Engineering

More information

Reconstruction in CT and hints to the assignments

Reconstruction in CT and hints to the assignments Reconstruction in CT and hints to the assignments Jørgen Arendt Jensen October 24, 2016 Center for Fast Ultrasound Imaging, Build 349 Department of Electrical Engineering Center for Fast Ultrasound Imaging

More information

Enhancement Image Quality of CT Using Single Slice Spiral Technique

Enhancement Image Quality of CT Using Single Slice Spiral Technique Enhancement Image Quality of CT Using Single Slice Spiral Technique Doaa. N. Al Sheack 1 and Dr.Mohammed H. Ali Al Hayani 2 1 2 Electronic and Communications Engineering Department College of Engineering,

More information

Principles of Computerized Tomographic Imaging

Principles of Computerized Tomographic Imaging Principles of Computerized Tomographic Imaging Parallel CT, Fanbeam CT, Helical CT and Multislice CT Marjolein van der Glas August 29, 2000 Abstract The total attenuation suffered by one beam of x-rays

More information

ELEG404/604: Digital Imaging & Photography

ELEG404/604: Digital Imaging & Photography : Digital Imaging & Photography Gonzalo R. Arce Department of Electrical and Computer Engineering University of Delaware Chapter VIII History X-Ray discovery In 1895 Wilhelm Rontgen discovered the X-rays,

More information

First CT Scanner. How it Works. Contemporary CT. Before and After CT. Computer Tomography: How It Works. Medical Imaging and Pattern Recognition

First CT Scanner. How it Works. Contemporary CT. Before and After CT. Computer Tomography: How It Works. Medical Imaging and Pattern Recognition Computer Tomography: How t Works Medical maging and Pattern Recognition Lecture 7 Computed Tomography Oleh Tretiak Only one plane is illuminated. Source-subject motion provides added information. 2 How

More information

EECS490: Digital Image Processing. Lecture #16

EECS490: Digital Image Processing. Lecture #16 Lecture #16 Wiener Filters Constrained Least Squares Filter Computed Tomography Basics Reconstruction and the Radon Transform Fourier Slice Theorem Filtered Backprojections Fan Beams Motion Blurring Model

More information

Reconstruction in CT and relation to other imaging modalities

Reconstruction in CT and relation to other imaging modalities Reconstruction in CT and relation to other imaging modalities Jørgen Arendt Jensen November 1, 2017 Center for Fast Ultrasound Imaging, Build 349 Department of Electrical Engineering Center for Fast Ultrasound

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/887/48289 holds various files of this Leiden University dissertation Author: Plantagie, L. Title: Algebraic filters for filtered backprojection Issue Date: 207-04-3

More information

A practical software platform of integrated reconstruction algorithms and forward algorithms for 2D industrial CT

A practical software platform of integrated reconstruction algorithms and forward algorithms for 2D industrial CT Journal of X-Ray Science and Technology 13 (2005) 9 21 9 IOS Press A practical software platform of integrated reconstruction algorithms and forward algorithms for 2D industrial CT Hui Li a, Zhaotian Zhang

More information

Spiral ASSR Std p = 1.0. Spiral EPBP Std. 256 slices (0/300) Kachelrieß et al., Med. Phys. 31(6): , 2004

Spiral ASSR Std p = 1.0. Spiral EPBP Std. 256 slices (0/300) Kachelrieß et al., Med. Phys. 31(6): , 2004 Spiral ASSR Std p = 1.0 Spiral EPBP Std p = 1.0 Kachelrieß et al., Med. Phys. 31(6): 1623-1641, 2004 256 slices (0/300) Advantages of Cone-Beam Spiral CT Image quality nearly independent of pitch Increase

More information

Application of optimal sampling lattices on CT image reconstruction and segmentation or three dimensional printing

Application of optimal sampling lattices on CT image reconstruction and segmentation or three dimensional printing Application of optimal sampling lattices on CT image reconstruction and segmentation or three dimensional printing XIQIANG ZHENG Division of Health and Natural Sciences, Voorhees College, Denmark, SC 29042

More information

Advanced Imaging Trajectories

Advanced Imaging Trajectories Advanced Imaging Trajectories Cartesian EPI Spiral Radial Projection 1 Radial and Projection Imaging Sample spokes Radial out : from k=0 to kmax Projection: from -kmax to kmax Trajectory design considerations

More information

Fast Imaging Trajectories: Non-Cartesian Sampling (1)

Fast Imaging Trajectories: Non-Cartesian Sampling (1) Fast Imaging Trajectories: Non-Cartesian Sampling (1) M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.05.03 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business

More information

2-D Reconstruction Hannes Hofmann. 2-D Reconstruction. MB-JASS 2006, March 2006

2-D Reconstruction Hannes Hofmann. 2-D Reconstruction. MB-JASS 2006, March 2006 2-D Reconstruction MB-JASS 2006, 19 29 March 2006 Computer Tomography systems use X-rays to acquire images from the inside of the human body. Out of the projection images the original object is reconstructed.

More information

Material for Chapter 6: Basic Principles of Tomography M I A Integral Equations in Visual Computing Material

Material for Chapter 6: Basic Principles of Tomography M I A Integral Equations in Visual Computing Material Material for Chapter : Integral Equations in Visual Computing Material Basic Principles of Tomography c 00 Bernhard Burgeth 0 Source: Images Figure : Radon Transform: ttenuation http://en.wikimedia.org/wiki/image:radon_transform.png

More information

Image Reconstruction 3 Fully 3D Reconstruction

Image Reconstruction 3 Fully 3D Reconstruction Image Reconstruction 3 Fully 3D Reconstruction Thomas Bortfeld Massachusetts General Hospital, Radiation Oncology, HMS HST.S14, February 25, 2013 Thomas Bortfeld (MGH, HMS, Rad. Onc.) Image Reconstruction

More information

Single Particle Reconstruction Techniques

Single Particle Reconstruction Techniques T H E U N I V E R S I T Y of T E X A S S C H O O L O F H E A L T H I N F O R M A T I O N S C I E N C E S A T H O U S T O N Single Particle Reconstruction Techniques For students of HI 6001-125 Computational

More information

Sampling, Ordering, Interleaving

Sampling, Ordering, Interleaving Sampling, Ordering, Interleaving Sampling patterns and PSFs View ordering Modulation due to transients Temporal modulations Slice interleaving Sequential, Odd/even, bit-reversed Arbitrary Other considerations:

More information

Math 205B - Topology. Dr. Baez. January 19, Christopher Walker. p(x) = (cos(2πx), sin(2πx))

Math 205B - Topology. Dr. Baez. January 19, Christopher Walker. p(x) = (cos(2πx), sin(2πx)) Math 205B - Topology Dr. Baez January 19, 2007 Christopher Walker Theorem 53.1. The map p : R S 1 given by the equation is a covering map p(x) = (cos(2πx), sin(2πx)) Proof. First p is continuous since

More information

Biomedical Imaging. Computed Tomography. Patrícia Figueiredo IST

Biomedical Imaging. Computed Tomography. Patrícia Figueiredo IST Biomedical Imaging Computed Tomography Patrícia Figueiredo IST 2013-2014 Overview Basic principles X ray attenuation projection Slice selection and line projections Projection reconstruction Instrumentation

More information

Edges, interpolation, templates. Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth)

Edges, interpolation, templates. Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth) Edges, interpolation, templates Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth) Edge detection edge detection has many applications in image processing an edge detector implements

More information

Fourier analysis and sampling theory

Fourier analysis and sampling theory Reading Required: Shirley, Ch. 9 Recommended: Fourier analysis and sampling theory Ron Bracewell, The Fourier Transform and Its Applications, McGraw-Hill. Don P. Mitchell and Arun N. Netravali, Reconstruction

More information

Non-Stationary CT Image Noise Spectrum Analysis

Non-Stationary CT Image Noise Spectrum Analysis Non-Stationary CT Image Noise Spectrum Analysis Michael Balda, Björn J. Heismann,, Joachim Hornegger Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen Siemens Healthcare, Erlangen michael.balda@informatik.uni-erlangen.de

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Multi-Dimensional Signals EE23 Digital Signal Processing Lecture Our world is more complex than D Images: f(x,y) Videos: f(x,y,t) Dynamic 3F scenes: f(x,y,z,t) Medical Imaging 3D Video Computer Graphics

More information

Continuous and Discrete Image Reconstruction

Continuous and Discrete Image Reconstruction 25 th SSIP Summer School on Image Processing 17 July 2017, Novi Sad, Serbia Continuous and Discrete Image Reconstruction Péter Balázs Department of Image Processing and Computer Graphics University of

More information

Phys. 428, Lecture 6

Phys. 428, Lecture 6 Phys. 428, Lecture 6 Mid-Term & Weekly questions Since we are behind in the material, there will be no midterm Instead the final project will be subdivided into graded stages Class Project Pick: An imaging

More information

Double Integrals over Polar Coordinate

Double Integrals over Polar Coordinate 1. 15.4 DOUBLE INTEGRALS OVER POLAR COORDINATE 1 15.4 Double Integrals over Polar Coordinate 1. Polar Coordinates. The polar coordinates (r, θ) of a point are related to the rectangular coordinates (x,y)

More information

Tomographic Image Reconstruction in Noisy and Limited Data Settings.

Tomographic Image Reconstruction in Noisy and Limited Data Settings. Tomographic Image Reconstruction in Noisy and Limited Data Settings. Syed Tabish Abbas International Institute of Information Technology, Hyderabad syed.abbas@research.iiit.ac.in July 1, 2016 Tabish (IIIT-H)

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Computer-Tomography II: Image reconstruction and applications

Computer-Tomography II: Image reconstruction and applications Computer-Tomography II: Image reconstruction and applications Prof. Dr. U. Oelfke DKFZ Heidelberg Department of Medical Physics (E040) Im Neuenheimer Feld 280 69120 Heidelberg, Germany u.oelfke@dkfz.de

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

TOMOGRAPHIC reconstruction problems are found in

TOMOGRAPHIC reconstruction problems are found in 4750 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 11, NOVEMBER 2014 Improving Filtered Backprojection Reconstruction by Data-Dependent Filtering Abstract Filtered backprojection, one of the most

More information

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let Calculus Lia Vas Polar Coordinates If P = (x, y) is a point in the xy-plane and O denotes the origin, let r denote the distance from the origin O to the point P = (x, y). Thus, x + y = r ; θ be the angle

More information

Topics. 2D Signal. a b. c d. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2004 Lecture 4 2D Fourier Transforms

Topics. 2D Signal. a b. c d. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2004 Lecture 4 2D Fourier Transforms Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2004 Lecture 4 2D Fourier Transforms Topics. 2D Signal Representations 2. 2D Fourier Transform 3. Transform Pairs 4. FT Properties 2D Signal

More information

GRAPHICAL USER INTERFACE (GUI) TO STUDY DIFFERENT RECONSTRUCTION ALGORITHMS IN COMPUTED TOMOGRAPHY

GRAPHICAL USER INTERFACE (GUI) TO STUDY DIFFERENT RECONSTRUCTION ALGORITHMS IN COMPUTED TOMOGRAPHY GRAPHICAL USER INTERFACE (GUI) TO STUDY DIFFERENT RECONSTRUCTION ALGORITHMS IN COMPUTED TOMOGRAPHY A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering

More information

Visual Recognition: Image Formation

Visual Recognition: Image Formation Visual Recognition: Image Formation Raquel Urtasun TTI Chicago Jan 5, 2012 Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 1 / 61 Today s lecture... Fundamentals of image formation You should know

More information

Henry Ford NERS/BIOE 481. Lecture 11 B Computed Tomography (CT)

Henry Ford NERS/BIOE 481. Lecture 11 B Computed Tomography (CT) NERS/BIOE 481 Lecture 11 B Computed Tomography (CT) Michael Flynn, Adjunct Prof Nuclear Engr & Rad. Science mikef@umich.edu mikef@rad.hfh.edu Henry Ford Health System RADIOLOGY RESEARCH VII Computed Tomography

More information

Computational Aspects of MRI

Computational Aspects of MRI David Atkinson Philip Batchelor David Larkman Programme 09:30 11:00 Fourier, sampling, gridding, interpolation. Matrices and Linear Algebra 11:30 13:00 MRI Lunch (not provided) 14:00 15:30 SVD, eigenvalues.

More information

Name: Signature: Section and TA:

Name: Signature: Section and TA: Name: Signature: Section and TA: Math 7. Lecture 00 (V. Reiner) Midterm Exam I Thursday, February 8, 00 This is a 50 minute exam. No books, notes, calculators, cell phones or other electronic devices are

More information

Hello, welcome to the video lecture series on Digital Image Processing. So in today's lecture

Hello, welcome to the video lecture series on Digital Image Processing. So in today's lecture Digital Image Processing Prof. P. K. Biswas Department of Electronics and Electrical Communications Engineering Indian Institute of Technology, Kharagpur Module 02 Lecture Number 10 Basic Transform (Refer

More information

X-ray Tomography. A superficial introduction, but sufficient enough to get us started in surgical navigation.

X-ray Tomography. A superficial introduction, but sufficient enough to get us started in surgical navigation. X-ray Tomography A superficial introduction, but sufficient enough to get us started in surgical navigation. X-ray absorption in homogeneous tissue I o I o / I d m = density I I=I o e -kdm k= constant

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature10934 Supplementary Methods Mathematical implementation of the EST method. The EST method begins with padding each projection with zeros (that is, embedding

More information

Tomographic Reconstruction

Tomographic Reconstruction Tomographic Reconstruction 3D Image Processing Torsten Möller Reading Gonzales + Woods, Chapter 5.11 2 Overview Physics History Reconstruction basic idea Radon transform Fourier-Slice theorem (Parallel-beam)

More information

APPLICATION OF RADON TRANSFORM IN CT IMAGE MATCHING Yufang Cai, Kuan Shen, Jue Wang ICT Research Center of Chongqing University, Chongqing, P.R.

APPLICATION OF RADON TRANSFORM IN CT IMAGE MATCHING Yufang Cai, Kuan Shen, Jue Wang ICT Research Center of Chongqing University, Chongqing, P.R. APPLICATION OF RADON TRANSFORM IN CT IMAGE MATCHING Yufang Cai, Kuan Shen, Jue Wang ICT Research Center of Chongqing University, Chongqing, P.R.China Abstract: When Industrial Computerized Tomography (CT)

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/8289 holds various files of this Leiden University dissertation Author: Plantagie, L. Title: Algebraic filters for filtered backprojection Issue Date: 2017-0-13

More information

Announcements. Edge Detection. An Isotropic Gaussian. Filters are templates. Assignment 2 on tracking due this Friday Midterm: Tuesday, May 3.

Announcements. Edge Detection. An Isotropic Gaussian. Filters are templates. Assignment 2 on tracking due this Friday Midterm: Tuesday, May 3. Announcements Edge Detection Introduction to Computer Vision CSE 152 Lecture 9 Assignment 2 on tracking due this Friday Midterm: Tuesday, May 3. Reading from textbook An Isotropic Gaussian The picture

More information

Translational Computed Tomography: A New Data Acquisition Scheme

Translational Computed Tomography: A New Data Acquisition Scheme 2nd International Symposium on NDT in Aerospace 2010 - We.1.A.3 Translational Computed Tomography: A New Data Acquisition Scheme Theobald FUCHS 1, Tobias SCHÖN 2, Randolf HANKE 3 1 Fraunhofer Development

More information

Reconstruction methods for sparse-data tomography

Reconstruction methods for sparse-data tomography Reconstruction methods for sparse-data tomography Part B: filtered back-projection Samuli Siltanen Department of Mathematics and Statistics University of Helsinki, Finland samuli.siltanen@helsinki.fi www.siltanen-research.net

More information

Biomedical Image Analysis. Spatial Filtering

Biomedical Image Analysis. Spatial Filtering Biomedical Image Analysis Contents: Spatial Filtering The mechanics of Spatial Filtering Smoothing and sharpening filters BMIA 15 V. Roth & P. Cattin 1 The Mechanics of Spatial Filtering Spatial filter:

More information

A Novel Two-step Method for CT Reconstruction

A Novel Two-step Method for CT Reconstruction A Novel Two-step Method for CT Reconstruction Michael Felsberg Computer Vision Laboratory, Dept. EE, Linköping University, Sweden mfe@isy.liu.se Abstract. In this paper we address the parallel beam 2D

More information

Image Acquisition Systems

Image Acquisition Systems Image Acquisition Systems Goals and Terminology Conventional Radiography Axial Tomography Computer Axial Tomography (CAT) Magnetic Resonance Imaging (MRI) PET, SPECT Ultrasound Microscopy Imaging ITCS

More information

10.2 Calculus with Parametric Curves

10.2 Calculus with Parametric Curves CHAPTER 1. PARAMETRIC AND POLAR 91 1.2 Calculus with Parametric Curves Example 1. Return to the parametric equations in Example 2 from the previous section: x t + sin() y t + cos() (a) Find the Cartesian

More information

Announcements. Image Matching! Source & Destination Images. Image Transformation 2/ 3/ 16. Compare a big image to a small image

Announcements. Image Matching! Source & Destination Images. Image Transformation 2/ 3/ 16. Compare a big image to a small image 2/3/ Announcements PA is due in week Image atching! Leave time to learn OpenCV Think of & implement something creative CS 50 Lecture #5 February 3 rd, 20 2/ 3/ 2 Compare a big image to a small image So

More information

Math 136 Exam 1 Practice Problems

Math 136 Exam 1 Practice Problems Math Exam Practice Problems. Find the surface area of the surface of revolution generated by revolving the curve given by around the x-axis? To solve this we use the equation: In this case this translates

More information

From multiple images to catalogs

From multiple images to catalogs Lecture 14 From multiple images to catalogs Image reconstruction Optimal co-addition Sampling-reconstruction-resampling Resolving faint galaxies Automated object detection Photometric catalogs Deep CCD

More information

MAS.963 Special Topics: Computational Camera and Photography

MAS.963 Special Topics: Computational Camera and Photography MIT OpenCourseWare http://ocw.mit.edu MAS.963 Special Topics: Computational Camera and Photography Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Approximating Algebraic Tomography Methods by Filtered Backprojection: A Local Filter Approach

Approximating Algebraic Tomography Methods by Filtered Backprojection: A Local Filter Approach Fundamenta Informaticae 135 (2014) 1 19 1 DOI 10.3233/FI-2014-1109 IOS Press Approximating Algebraic Tomography Methods by Filtered Backprojection: A Local Filter Approach Linda Plantagie Centrum Wiskunde

More information

IT has been known for a long time that direct Fourier. Iterative Tomographic Image Reconstruction Using Fourier-Based Forward and Back-Projectors

IT has been known for a long time that direct Fourier. Iterative Tomographic Image Reconstruction Using Fourier-Based Forward and Back-Projectors Iterative Tomographic Image Reconstruction Using Fourier-Based Forward and Back-Projectors Samuel Matej, Senior Member, IEEE, Jeffrey A. Fessler, Senior Member, IEEE, and Ivan G. Kazantsev, Member, IEEE

More information

Feldkamp-type image reconstruction from equiangular data

Feldkamp-type image reconstruction from equiangular data Journal of X-Ray Science and Technology 9 (2001) 113 120 113 IOS Press Feldkamp-type image reconstruction from equiangular data Ben Wang a, Hong Liu b, Shiying Zhao c and Ge Wang d a Department of Elec.

More information

6 credits. BMSC-GA Practical Magnetic Resonance Imaging II

6 credits. BMSC-GA Practical Magnetic Resonance Imaging II BMSC-GA 4428 - Practical Magnetic Resonance Imaging II 6 credits Course director: Ricardo Otazo, PhD Course description: This course is a practical introduction to image reconstruction, image analysis

More information

CS545 Contents IX. Inverse Kinematics. Reading Assignment for Next Class. Analytical Methods Iterative (Differential) Methods

CS545 Contents IX. Inverse Kinematics. Reading Assignment for Next Class. Analytical Methods Iterative (Differential) Methods CS545 Contents IX Inverse Kinematics Analytical Methods Iterative (Differential) Methods Geometric and Analytical Jacobian Jacobian Transpose Method Pseudo-Inverse Pseudo-Inverse with Optimization Extended

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without Class Labels (or correct outputs) Density Estimation Learn P(X) given training data for X Clustering Partition data into clusters Dimensionality Reduction Discover

More information

Deep Learning Computed Tomography

Deep Learning Computed Tomography Deep Learning Computed Tomography Tobias Würfl, Florin C. Ghesu, Vincent Christlein, Andreas Maier Pattern Recognition Lab., Friedrich-Alexander-University Erlangen-Nuremberg, Germany Abstract In this

More information

A Fast GPU-Based Approach to Branchless Distance-Driven Projection and Back-Projection in Cone Beam CT

A Fast GPU-Based Approach to Branchless Distance-Driven Projection and Back-Projection in Cone Beam CT A Fast GPU-Based Approach to Branchless Distance-Driven Projection and Back-Projection in Cone Beam CT Daniel Schlifske ab and Henry Medeiros a a Marquette University, 1250 W Wisconsin Ave, Milwaukee,

More information

Introduction to Image Super-resolution. Presenter: Kevin Su

Introduction to Image Super-resolution. Presenter: Kevin Su Introduction to Image Super-resolution Presenter: Kevin Su References 1. S.C. Park, M.K. Park, and M.G. KANG, Super-Resolution Image Reconstruction: A Technical Overview, IEEE Signal Processing Magazine,

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu X-ray Projection Imaging Computed Tomography Digital X-ray

More information

Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015

Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015 Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015 Date Objective/ Topic Assignment Did it Monday Polar Discovery Activity pp. 4-5 April 27 th Tuesday April 28 th Converting between

More information

K-Space Trajectories and Spiral Scan

K-Space Trajectories and Spiral Scan K-Space and Spiral Scan Presented by: Novena Rangwala nrangw2@uic.edu 1 Outline K-space Gridding Reconstruction Features of Spiral Sampling Pulse Sequences Mathematical Basis of Spiral Scanning Variations

More information

Semantic Segmentation. Zhongang Qi

Semantic Segmentation. Zhongang Qi Semantic Segmentation Zhongang Qi qiz@oregonstate.edu Semantic Segmentation "Two men riding on a bike in front of a building on the road. And there is a car." Idea: recognizing, understanding what's in

More information