Computational Aspects of MRI

Size: px
Start display at page:

Download "Computational Aspects of MRI"

Transcription

1 David Atkinson Philip Batchelor David Larkman

2 Programme 09:30 11:00 Fourier, sampling, gridding, interpolation. Matrices and Linear Algebra 11:30 13:00 MRI Lunch (not provided) 14:00 15:30 SVD, eigenvalues. Regularisation, Norms, Conjugate Gradient, Compressed Sensing. 16:00 17:30 Coordinate systems and geometrical transforms, DICOM, Jacobians

3 Fourier, Sampling and Gridding David Atkinson

4 Resources References in lecture notes Maths for Medical Imaging summer school MathWorld: MATLAB manual. IEEE Trans Med Imag (1999) Survey: Interpolation Methods in Medical Image Processing. Lehman et al. IEEE Trans Med Imag (1991) Selection of a Convolution Function for Fourier Inversion Using Gridding. Jackson et al.

5 The Fourier Transform & Its Applications. Ronald Bracewell Numerical Recipes 3rd Edition: The Art of Scientific Computing William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery Scientific Computing: An Introductory Survey Michael T. Heath

6 Outline Fourier and MRI. Continuous and Discrete FT Pixels and FOV. FT pairs and relations. Convolution. Filtering. Aliasing. Sampling Theory. The FFT. Interpolation Gridding

7 Fourier and MRI Analogue to Digital Converter (ADC) Samples k-space Host reconstruction computer Discrete Fourier Transform H ( k) = h( x) e ikx dx

8 Fourier Relations in MRI ADC Host Time domain signal from ADC [s] K-space Spatial frequency [m -1 ] Temporal Frequency [Hz or s -1 ] Image space [m]

9 H Continuous and Discrete, Forward and Reverse Fourier Transforms 2πifx ( f ) = h( x) e dx h( x) = H ( f ) e df 2πifx H ( k) = N j= 1 h( j) e 2πi( j 1)( k 1)/ N h( j) = 1 N N k= 1 H ( k) e + 2πi( j 1)( k 1) / N Definitions of forward and reverse vary just be consistent. Note 1/N scale factor in only one of the Discrete FTs. Angular frequency ω = k = 2πf

10 Discretely Sampled Data: Pixels and FOV f 1 0 2Δ 1 2Δ Δ NΔ pixel FOV 1 NΔ 1 Δ

11 Fourier Transform Pairs k-space constant offset

12 Fourier Transform Pairs For a rect that just covers the image FOV, the sinc will go through 0 at the k-space sample points.

13 Fourier Transform Pairs FT of a series of spikes is another set of spikes with reciprocal spacing

14 Fourier Transform Pairs Kaiser-Bessel. Fourier behaviour has analytic expression

15 Fourier Transform Relations h( x) H ( 1 h( ax) a h( x + b) f ) H H ( f a f )exp [ 2πifb] scaling shifting Rotation in one domain is a rotation by the same angle in the Fourier domain g h g( τ ) h( x τ ) dτ G( f ) H ( f ) convolution

16 Motion During an MRI scan Rotation example Time Linear profile order Rotation mid-way through scan. Ghosting in PE direction.

17 Convolution rect spike g h g( τ ) h( x τ ) dτ x x x

18 Convolution rect rect g h g( τ ) h( x τ ) dτ x

19 Convolution rect gaussian g h g( τ ) h( x τ ) dτ x x

20 Image Filtering Low pass filter passes low frequencies. Commonly used for noise reduction. High pass filter passes high frequencies. e.g. separate cardiac from respiratory signal. Filtering (k-space multiplication) is equivalent to convolution in the image domain.

21 Filtering and Convolution x

22 Discrete Sampling sampled k-space continuous k-space discrete sampling continuous object FT of sampling pattern periodic replication

23 Discrete Sampling: Aliasing sampled k-space continuous k-space wider discrete sampling continuous object FT of sampling pattern periodic replication aliasing

24 image sampled every 8 th pixel

25 Aliasing cont. Too wide a sampling pattern in k-space leads to image aliasing: MR image wrap around. Too widely separated pixels in a digital camera leads to spatial frequency aliasing: Image is not wrapped but has features with wrong spatial frequencies. Anti-aliasing filters are effective but must be used BEFORE digitisation.

26 Original Cubic interpolation to 1/8 size, with anti-aliasing Cubic interpolation to 1/8 size, without anti-aliasing imshow(imresize(x,0.125,'method','cubic','antialiasing',true))

27 Sampling Theory The values of a function between samples can be recovered exactly, if, function is band-limited sampled at or above the Nyquist rate. The Nyquist rate is twice the highest frequency in the signal. (The sampling needs to catch the up and down of a sine wave.) Band-limited means its Fourier Transform goes to zero at the edges.

28 NΔ / 2 + NΔ / 2 f 1 2Δ Δ Δ NΔ pixel FOV 1 NΔ 1 Δ Band-limited: continuous frequencies assumed zero outside range shown Nyquist rate is 1 NΔ

29 Is MRI Data Band-Limited? In theory data cannot be band-limited in both image and k-space domains. For full FOV, raw, unchopped data the k- space is band-limited if there is no image wrap. The image is often effectively bandlimited as the k-space signal falls into the noise.

30 Truncation Artefacts When the object is not band-limited, we have to truncate the frequencies. truncation multiply frequencies by a rect convolve image with a sinc image ringing

31 Truncation Gibbs effect. Ripples narrow but never disappear.

32 Use of Hermitian Symmetry The k-space of a real object (no imaginary component) is Hermitian symmetric. S( k x, k y ) = S * ( k x, k y ) Used in the half Fourier MRI acquisitions. Note in reality object has non-zero phase and a phase correction is applied. Scan times ~5/8 of whole data achieved.

33 The Fast Fourier Transform Algorithm Revolutionised signal processing. Performs the FT on discrete data. Requires data to be regularly sampled. A number of practical issues

34 FT of a Gaussian is?

35 Discrete FT is periodic Expect to see Read The Manual

36 FFT Algorithm Pay attention to (i.e. read the manual): Scaling. Forward/inverse definitions. Location of zero frequency (DC). MATLAB for N even: DC at N/2 + 1 MATLAB for N odd: DC at (N+1)/2 Shifting MATLAB: Apply ifftshift, then FFT or ifft, then fftshift Dimensions over which to apply FT through slice?

37 Complex nature of Fourier Coefficients Always use complex numbers when dealing with FFT. Pass through without special care. Take modulus, phase etc at the end.

38 Interpolation Finding the value of a function between measured points.? a x

39 Interpolation Approaches 1. Fit a polynomial-type function to all the data points. Function values between points can be computed. not well suited to images with many pixels. 2. Repeatedly fit within local regions. 3. Use sampling theory.

40 Local Interpolations Nearest neighbour Linear Cubic? x

41 Local Interpolations Nearest neighbour Linear Cubic? x

42 Local Interpolations Nearest neighbour Linear Cubic [schematic]? x

43 Interpolation and Convolution Nearest neighbour interpolation is equivalent to convolution with a rectangle. d? d x

44 Interpolation and Convolution Linear interpolation is equivalent to convolution with a triangle. f f where k k b a a + is f c k c the triangular interpolation kernel f c f b f a a b c x

45 Effect of convolution Convolution in image domain is multiplication by FT of kernel in k-space i.e. a low pass filtering or blurring.

46

47 Link to Sampling Theory A sinc kernel has a k-space filter that is a rect For a band-limited image, multiplication of k- space by a rect does no damage to k-space or the image. A band-limited function can be interpolated at any point exactly by sinc interpolation if it was sampled at the Nyquist rate. But, a sinc kernel has infinite extent

48 sinc x = Sinc Interpolation Kernel sin x x? x

49 Smaller kernels: faster interpolation, more blurry results. Interpolation error can oscillate with a period of 1 pixel. In iterative algorithms e.g. registration, sometimes use linear interpolation during the algorithm and a larger kernel for final display. Sinc interpolation for a rigid shift can be implemented by applying a phase ramp in the Fourier domain. For a fixed kernel applied across the data, can perform a de-apodisation

50 Gridding Gridding, or re-gridding, maps irregularly sampled data to a regular grid. The FFT requires regularly sampled data as input. Motion during a single scan can put data off a regular grid. Non-Cartesian k-space trajectory, e.g. radial, spiral Gridding Methods MATLAB function griddata Convolution re-gridding (interpolation) Non-uniform FFT (nufft)

51 MATLAB griddata Delauney triangulation of irregular points. Triangular interpolation using the measured values at the triangle vertices.

52 Convolution Re-gridding (recap on interpolation) f c f f k + b a a f c k c f b f a a b c x Linear interpolation of regularly sampled data: convolution with a triangle kernel centred at the position b where we wish to evaluate the function.

53 Convolution Re-gridding (irregular samples) Apply a sampling density correction. Centre the kernel at each regular grid point. Compute convolution. De-apodise. x

54 De-apodisation In convolution re-gridding, the k-space has been convolved with a kernel. Equivalently, the image has been multiplied by the FT of the kernel. bright in image centre Divide image by FT of kernel to deapodise. beware of zeros.

55 Other gridding issues The kernel is often chosen to be a Kaiser Bessel. The grid may be oversampled finer k- space resolution, chop doubled FOV after processing. Convolution is in 2D. Sampling density correction is non-trivial for general sampling pattern.

56 Discrete Fourier Transform of Non-Uniform Data The Discrete Fourier Transform can be computed by summation - data still needs to be sampling density corrected O(N 2 ). Non-uniform Fast Fourier Transform uses oversampled grid and FFT to achieve speed O(mNlogN).

57 Summary FT is linear. Discrete sampling raises issues of aliasing, gridding etc. Useful to think about issues in both image and k-space domains.

58

59 Interpolation in MATLAB griddata scattered data imresize image resizing with antialiasing. interp2, interpn 2D and nd interpolation. imtransform apply geometrical transform makeresampler user specified interpolation for imtransform

Steen Moeller Center for Magnetic Resonance research University of Minnesota

Steen Moeller Center for Magnetic Resonance research University of Minnesota Steen Moeller Center for Magnetic Resonance research University of Minnesota moeller@cmrr.umn.edu Lot of material is from a talk by Douglas C. Noll Department of Biomedical Engineering Functional MRI Laboratory

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

Sampling, Ordering, Interleaving

Sampling, Ordering, Interleaving Sampling, Ordering, Interleaving Sampling patterns and PSFs View ordering Modulation due to transients Temporal modulations Slice interleaving Sequential, Odd/even, bit-reversed Arbitrary Other considerations:

More information

Outline. Sampling and Reconstruction. Sampling and Reconstruction. Foundations of Computer Graphics (Fall 2012)

Outline. Sampling and Reconstruction. Sampling and Reconstruction. Foundations of Computer Graphics (Fall 2012) Foundations of Computer Graphics (Fall 2012) CS 184, Lectures 19: Sampling and Reconstruction http://inst.eecs.berkeley.edu/~cs184 Outline Basic ideas of sampling, reconstruction, aliasing Signal processing

More information

Aliasing. Can t draw smooth lines on discrete raster device get staircased lines ( jaggies ):

Aliasing. Can t draw smooth lines on discrete raster device get staircased lines ( jaggies ): (Anti)Aliasing and Image Manipulation for (y = 0; y < Size; y++) { for (x = 0; x < Size; x++) { Image[x][y] = 7 + 8 * sin((sqr(x Size) + SQR(y Size)) / 3.0); } } // Size = Size / ; Aliasing Can t draw

More information

Basics. Sampling and Reconstruction. Sampling and Reconstruction. Outline. (Spatial) Aliasing. Advanced Computer Graphics (Fall 2010)

Basics. Sampling and Reconstruction. Sampling and Reconstruction. Outline. (Spatial) Aliasing. Advanced Computer Graphics (Fall 2010) Advanced Computer Graphics (Fall 2010) CS 283, Lecture 3: Sampling and Reconstruction Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/fa10 Some slides courtesy Thomas Funkhouser and Pat Hanrahan

More information

Outline. Foundations of Computer Graphics (Spring 2012)

Outline. Foundations of Computer Graphics (Spring 2012) Foundations of Computer Graphics (Spring 2012) CS 184, Lectures 19: Sampling and Reconstruction http://inst.eecs.berkeley.edu/~cs184 Basic ideas of sampling, reconstruction, aliasing Signal processing

More information

FOV. ] are the gradient waveforms. The reconstruction of this signal proceeds by an inverse Fourier Transform as:. [2] ( ) ( )

FOV. ] are the gradient waveforms. The reconstruction of this signal proceeds by an inverse Fourier Transform as:. [2] ( ) ( ) Gridding Procedures for Non-Cartesian K-space Trajectories Douglas C. Noll and Bradley P. Sutton Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA 1. Introduction The data collected

More information

Biomedical Image Analysis. Spatial Filtering

Biomedical Image Analysis. Spatial Filtering Biomedical Image Analysis Contents: Spatial Filtering The mechanics of Spatial Filtering Smoothing and sharpening filters BMIA 15 V. Roth & P. Cattin 1 The Mechanics of Spatial Filtering Spatial filter:

More information

Reading. 2. Fourier analysis and sampling theory. Required: Watt, Section 14.1 Recommended:

Reading. 2. Fourier analysis and sampling theory. Required: Watt, Section 14.1 Recommended: Reading Required: Watt, Section 14.1 Recommended: 2. Fourier analysis and sampling theory Ron Bracewell, The Fourier Transform and Its Applications, McGraw-Hill. Don P. Mitchell and Arun N. Netravali,

More information

Module 4. K-Space Symmetry. Review. K-Space Review. K-Space Symmetry. Partial or Fractional Echo. Half or Partial Fourier HASTE

Module 4. K-Space Symmetry. Review. K-Space Review. K-Space Symmetry. Partial or Fractional Echo. Half or Partial Fourier HASTE MRES 7005 - Fast Imaging Techniques Module 4 K-Space Symmetry Review K-Space Review K-Space Symmetry Partial or Fractional Echo Half or Partial Fourier HASTE Conditions for successful reconstruction Interpolation

More information

Fourier analysis and sampling theory

Fourier analysis and sampling theory Reading Required: Shirley, Ch. 9 Recommended: Fourier analysis and sampling theory Ron Bracewell, The Fourier Transform and Its Applications, McGraw-Hill. Don P. Mitchell and Arun N. Netravali, Reconstruction

More information

Advanced Computer Graphics. Aliasing. Matthias Teschner. Computer Science Department University of Freiburg

Advanced Computer Graphics. Aliasing. Matthias Teschner. Computer Science Department University of Freiburg Advanced Computer Graphics Aliasing Matthias Teschner Computer Science Department University of Freiburg Outline motivation Fourier analysis filtering sampling reconstruction / aliasing antialiasing University

More information

Sampling, Ordering, Interleaving

Sampling, Ordering, Interleaving Sampling, Ordering, Interleaving Sampling patterns and PSFs View ordering Modulation due to transients Temporal modulations Timing: cine, gating, triggering Slice interleaving Sequential, Odd/even, bit-reversed

More information

Aliasing and Antialiasing. ITCS 4120/ Aliasing and Antialiasing

Aliasing and Antialiasing. ITCS 4120/ Aliasing and Antialiasing Aliasing and Antialiasing ITCS 4120/5120 1 Aliasing and Antialiasing What is Aliasing? Errors and Artifacts arising during rendering, due to the conversion from a continuously defined illumination field

More information

Computer Graphics. Sampling Theory & Anti-Aliasing. Philipp Slusallek

Computer Graphics. Sampling Theory & Anti-Aliasing. Philipp Slusallek Computer Graphics Sampling Theory & Anti-Aliasing Philipp Slusallek Dirac Comb (1) Constant & δ-function flash Comb/Shah function 2 Dirac Comb (2) Constant & δ-function Duality f(x) = K F(ω) = K (ω) And

More information

Lecture 5: Frequency Domain Transformations

Lecture 5: Frequency Domain Transformations #1 Lecture 5: Frequency Domain Transformations Saad J Bedros sbedros@umn.edu From Last Lecture Spatial Domain Transformation Point Processing for Enhancement Area/Mask Processing Transformations Image

More information

To Do. Advanced Computer Graphics. Sampling and Reconstruction. Outline. Sign up for Piazza

To Do. Advanced Computer Graphics. Sampling and Reconstruction. Outline. Sign up for Piazza Advanced Computer Graphics CSE 63 [Spring 207], Lecture 3 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir Sign up for Piazza To Do Assignment, Due Apr 28. Anyone need help finding partners? Any issues with

More information

Computer Graphics. Texture Filtering & Sampling Theory. Hendrik Lensch. Computer Graphics WS07/08 Texturing

Computer Graphics. Texture Filtering & Sampling Theory. Hendrik Lensch. Computer Graphics WS07/08 Texturing Computer Graphics Texture Filtering & Sampling Theory Hendrik Lensch Overview Last time Texture Parameterization Procedural Shading Today Texturing Filtering 2D Texture Mapping Forward mapping Object surface

More information

6 credits. BMSC-GA Practical Magnetic Resonance Imaging II

6 credits. BMSC-GA Practical Magnetic Resonance Imaging II BMSC-GA 4428 - Practical Magnetic Resonance Imaging II 6 credits Course director: Ricardo Otazo, PhD Course description: This course is a practical introduction to image reconstruction, image analysis

More information

Biomedical Image Processing

Biomedical Image Processing Biomedical Image Processing Jason Thong Gabriel Grant 1 2 Motivation from the Medical Perspective MRI, CT and other biomedical imaging devices were designed to assist doctors in their diagnosis and treatment

More information

Sampling: Application to 2D Transformations

Sampling: Application to 2D Transformations Sampling: Application to 2D Transformations University of the Philippines - Diliman August Diane Lingrand lingrand@polytech.unice.fr http://www.essi.fr/~lingrand Sampling Computer images are manipulated

More information

Sampling and Reconstruction

Sampling and Reconstruction Page 1 Sampling and Reconstruction The sampling and reconstruction process Real world: continuous Digital world: discrete Basic signal processing Fourier transforms The convolution theorem The sampling

More information

Theoretically Perfect Sensor

Theoretically Perfect Sensor Sampling 1/60 Sampling The ray tracer samples the geometry, only gathering information from the parts of the world that interact with a finite number of rays In contrast, a scanline renderer can push all

More information

NUFFT for Medical and Subsurface Image Reconstruction

NUFFT for Medical and Subsurface Image Reconstruction NUFFT for Medical and Subsurface Image Reconstruction Qing H. Liu Department of Electrical and Computer Engineering Duke University Duke Frontiers 2006 May 16, 2006 Acknowledgment Jiayu Song main contributor

More information

Theoretically Perfect Sensor

Theoretically Perfect Sensor Sampling 1/67 Sampling The ray tracer samples the geometry, only gathering information from the parts of the world that interact with a finite number of rays In contrast, a scanline renderer can push all

More information

Assignment 2. Due Feb 3, 2012

Assignment 2. Due Feb 3, 2012 EE225E/BIOE265 Spring 2012 Principles of MRI Miki Lustig Assignment 2 Due Feb 3, 2012 1. Read Nishimura Ch. 3 2. Non-Uniform Sampling. A student has an assignment to monitor the level of Hetch-Hetchi reservoir

More information

Lecture 6 Basic Signal Processing

Lecture 6 Basic Signal Processing Lecture 6 Basic Signal Processing Copyright c1996, 1997 by Pat Hanrahan Motivation Many aspects of computer graphics and computer imagery differ from aspects of conventional graphics and imagery because

More information

Computer Vision. Fourier Transform. 20 January Copyright by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved

Computer Vision. Fourier Transform. 20 January Copyright by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved Van de Loosdrecht Machine Vision Computer Vision Fourier Transform 20 January 2017 Copyright 2001 2017 by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved j.van.de.loosdrecht@nhl.nl,

More information

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space White Pixel Artifact Caused by a noise spike during acquisition Spike in K-space sinusoid in image space Susceptibility Artifacts Off-resonance artifacts caused by adjacent regions with different

More information

Image Filtering, Warping and Sampling

Image Filtering, Warping and Sampling Image Filtering, Warping and Sampling Connelly Barnes CS 4810 University of Virginia Acknowledgement: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David

More information

Lecture 2: 2D Fourier transforms and applications

Lecture 2: 2D Fourier transforms and applications Lecture 2: 2D Fourier transforms and applications B14 Image Analysis Michaelmas 2017 Dr. M. Fallon Fourier transforms and spatial frequencies in 2D Definition and meaning The Convolution Theorem Applications

More information

Advanced Imaging Trajectories

Advanced Imaging Trajectories Advanced Imaging Trajectories Cartesian EPI Spiral Radial Projection 1 Radial and Projection Imaging Sample spokes Radial out : from k=0 to kmax Projection: from -kmax to kmax Trajectory design considerations

More information

CS1114 Section 8: The Fourier Transform March 13th, 2013

CS1114 Section 8: The Fourier Transform March 13th, 2013 CS1114 Section 8: The Fourier Transform March 13th, 2013 http://xkcd.com/26 Today you will learn about an extremely useful tool in image processing called the Fourier transform, and along the way get more

More information

Digital Image Processing. Image Enhancement in the Frequency Domain

Digital Image Processing. Image Enhancement in the Frequency Domain Digital Image Processing Image Enhancement in the Frequency Domain Topics Frequency Domain Enhancements Fourier Transform Convolution High Pass Filtering in Frequency Domain Low Pass Filtering in Frequency

More information

Michael Moody School of Pharmacy University of London 29/39 Brunswick Square London WC1N 1AX, U.K.

Michael Moody School of Pharmacy University of London 29/39 Brunswick Square London WC1N 1AX, U.K. This material is provided for educational use only. The information in these slides including all data, images and related materials are the property of : Michael Moody School of Pharmacy University of

More information

Sampling, Aliasing, & Mipmaps

Sampling, Aliasing, & Mipmaps Sampling, Aliasing, & Mipmaps Last Time? Monte-Carlo Integration Importance Sampling Ray Tracing vs. Path Tracing source hemisphere Sampling sensitive to choice of samples less sensitive to choice of samples

More information

Role of Parallel Imaging in High Field Functional MRI

Role of Parallel Imaging in High Field Functional MRI Role of Parallel Imaging in High Field Functional MRI Douglas C. Noll & Bradley P. Sutton Department of Biomedical Engineering, University of Michigan Supported by NIH Grant DA15410 & The Whitaker Foundation

More information

Image Sampling and Quantisation

Image Sampling and Quantisation Image Sampling and Quantisation Introduction to Signal and Image Processing Prof. Dr. Philippe Cattin MIAC, University of Basel 1 of 46 22.02.2016 09:17 Contents Contents 1 Motivation 2 Sampling Introduction

More information

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012)

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) Fourier Transform in Image Processing CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) 1D: Common Transform Pairs Summary source FT Properties: Convolution See book DIP 4.2.5:

More information

Image Sampling & Quantisation

Image Sampling & Quantisation Image Sampling & Quantisation Biomedical Image Analysis Prof. Dr. Philippe Cattin MIAC, University of Basel Contents 1 Motivation 2 Sampling Introduction and Motivation Sampling Example Quantisation Example

More information

Announcements. Image Matching! Source & Destination Images. Image Transformation 2/ 3/ 16. Compare a big image to a small image

Announcements. Image Matching! Source & Destination Images. Image Transformation 2/ 3/ 16. Compare a big image to a small image 2/3/ Announcements PA is due in week Image atching! Leave time to learn OpenCV Think of & implement something creative CS 50 Lecture #5 February 3 rd, 20 2/ 3/ 2 Compare a big image to a small image So

More information

4.1 QUANTIZATION NOISE

4.1 QUANTIZATION NOISE DIGITAL SIGNAL PROCESSING UNIT IV FINITE WORD LENGTH EFFECTS Contents : 4.1 Quantization Noise 4.2 Fixed Point and Floating Point Number Representation 4.3 Truncation and Rounding 4.4 Quantization Noise

More information

Sampling, Aliasing, & Mipmaps

Sampling, Aliasing, & Mipmaps Sampling, Aliasing, & Mipmaps Last Time? Monte-Carlo Integration Importance Sampling Ray Tracing vs. Path Tracing source hemisphere What is a Pixel? Sampling & Reconstruction Filters in Computer Graphics

More information

Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics

Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics Dimitri Van De Ville Ecole Polytechnique Fédérale de Lausanne Biomedical Imaging Group dimitri.vandeville@epfl.ch

More information

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier Computer Vision 2 SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung Computer Vision 2 Dr. Benjamin Guthier 1. IMAGE PROCESSING Computer Vision 2 Dr. Benjamin Guthier Content of this Chapter Non-linear

More information

To Do. Advanced Computer Graphics. Discrete Convolution. Outline. Outline. Implementing Discrete Convolution

To Do. Advanced Computer Graphics. Discrete Convolution. Outline. Outline. Implementing Discrete Convolution Advanced Computer Graphics CSE 163 [Spring 2018], Lecture 4 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment 1, Due Apr 27. Please START EARLY This lecture completes all the material you

More information

Fourier transforms and convolution

Fourier transforms and convolution Fourier transforms and convolution (without the agonizing pain) CS/CME/BioE/Biophys/BMI 279 Oct. 26, 2017 Ron Dror 1 Why do we care? Fourier transforms Outline Writing functions as sums of sinusoids The

More information

Five Dimensional Interpolation:exploring different Fourier operators

Five Dimensional Interpolation:exploring different Fourier operators Five Dimensional Interpolation:exploring different Fourier operators Daniel Trad CREWES-University of Calgary Summary Five-Dimensional interpolation has become a very popular method to pre-condition data

More information

(a Scrhon5 R2iwd b. P)jc%z 5. ivcr3. 1. I. ZOms Xn,s. 1E IDrAS boms. EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 8 Solutions

(a Scrhon5 R2iwd b. P)jc%z 5. ivcr3. 1. I. ZOms Xn,s. 1E IDrAS boms. EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 8 Solutions EE225E/BIOE265 Spring 2013 Principles of MRI Miki Lustig Assignment 8 Solutions 1. Nishimura 7.1 P)jc%z 5 ivcr3. 1. I Due Wednesday April 10th, 2013 (a Scrhon5 R2iwd b 0 ZOms Xn,s r cx > qs 4-4 8ni6 4

More information

Sampling, Aliasing, & Mipmaps

Sampling, Aliasing, & Mipmaps Last Time? Sampling, Aliasing, & Mipmaps 2D Texture Mapping Perspective Correct Interpolation Common Texture Coordinate Projections Bump Mapping Displacement Mapping Environment Mapping Texture Maps for

More information

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging 1 CS 9 Final Project Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging Feiyu Chen Department of Electrical Engineering ABSTRACT Subject motion is a significant

More information

Computer Vision and Graphics (ee2031) Digital Image Processing I

Computer Vision and Graphics (ee2031) Digital Image Processing I Computer Vision and Graphics (ee203) Digital Image Processing I Dr John Collomosse J.Collomosse@surrey.ac.uk Centre for Vision, Speech and Signal Processing University of Surrey Learning Outcomes After

More information

Filtering Applications & Edge Detection. GV12/3072 Image Processing.

Filtering Applications & Edge Detection. GV12/3072 Image Processing. Filtering Applications & Edge Detection GV12/3072 1 Outline Sampling & Reconstruction Revisited Anti-Aliasing Edges Edge detection Simple edge detector Canny edge detector Performance analysis Hough Transform

More information

K-Space Trajectories and Spiral Scan

K-Space Trajectories and Spiral Scan K-Space and Spiral Scan Presented by: Novena Rangwala nrangw2@uic.edu 1 Outline K-space Gridding Reconstruction Features of Spiral Sampling Pulse Sequences Mathematical Basis of Spiral Scanning Variations

More information

Michael Moody School of Pharmacy University of London 29/39 Brunswick Square London WC1N 1AX, U.K.

Michael Moody School of Pharmacy University of London 29/39 Brunswick Square London WC1N 1AX, U.K. This material is provided for educational use only. The information in these slides including all data, images and related materials are the property of : Michael Moody School of Pharmacy University of

More information

Aliasing And Anti-Aliasing Sampling and Reconstruction

Aliasing And Anti-Aliasing Sampling and Reconstruction Aliasing And Anti-Aliasing Sampling and Reconstruction An Introduction Computer Overview Intro - Aliasing Problem definition, Examples Ad-hoc Solutions Sampling theory Fourier transform Convolution Reconstruction

More information

Fast Imaging Trajectories: Non-Cartesian Sampling (1)

Fast Imaging Trajectories: Non-Cartesian Sampling (1) Fast Imaging Trajectories: Non-Cartesian Sampling (1) M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.05.03 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business

More information

Recovery of Piecewise Smooth Images from Few Fourier Samples

Recovery of Piecewise Smooth Images from Few Fourier Samples Recovery of Piecewise Smooth Images from Few Fourier Samples Greg Ongie*, Mathews Jacob Computational Biomedical Imaging Group (CBIG) University of Iowa SampTA 2015 Washington, D.C. 1. Introduction 2.

More information

Synthesis Imaging. Claire Chandler, Sanjay Bhatnagar NRAO/Socorro

Synthesis Imaging. Claire Chandler, Sanjay Bhatnagar NRAO/Socorro Synthesis Imaging Claire Chandler, Sanjay Bhatnagar NRAO/Socorro Michelson Summer Workshop Caltech, July 24-28, 2006 Synthesis Imaging 2 Based on the van Cittert-Zernike theorem: The complex visibility

More information

Image Processing, Warping, and Sampling

Image Processing, Warping, and Sampling Image Processing, Warping, and Sampling Michael Kazhdan (601.457/657) HB Ch. 4.8 FvDFH Ch. 14.10 Outline Image Processing Image Warping Image Sampling Image Processing What about the case when the modification

More information

Texture. Outline. Image representations: spatial and frequency Fourier transform Frequency filtering Oriented pyramids Texture representation

Texture. Outline. Image representations: spatial and frequency Fourier transform Frequency filtering Oriented pyramids Texture representation Texture Outline Image representations: spatial and frequency Fourier transform Frequency filtering Oriented pyramids Texture representation 1 Image Representation The standard basis for images is the set

More information

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing G16.4428 Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine Compressed Sensing Ricardo Otazo, PhD ricardo.otazo@nyumc.org Compressed

More information

Nuts & Bolts of Advanced Imaging. Image Reconstruction Parallel Imaging

Nuts & Bolts of Advanced Imaging. Image Reconstruction Parallel Imaging Nuts & Bolts of Advanced Imaging Image Reconstruction Parallel Imaging Michael S. Hansen, PhD Magnetic Resonance Technology Program National Institutes of Health, NHLBI Declaration of Financial Interests

More information

CS354 Computer Graphics Sampling and Aliasing

CS354 Computer Graphics Sampling and Aliasing Slide Credit: http://www.siggraph.org/education/materials/hypergraph/aliasing/alias0.htm CS354 Computer Graphics Sampling and Aliasing Qixing Huang February 12th 2018 Sampling and Aliasing Display is discrete

More information

Laboratorio di Problemi Inversi Esercitazione 3: regolarizzazione iterativa, metodo di Landweber

Laboratorio di Problemi Inversi Esercitazione 3: regolarizzazione iterativa, metodo di Landweber Laboratorio di Problemi Inversi Esercitazione 3: regolarizzazione iterativa, metodo di Landweber Luca Calatroni Dipartimento di Matematica, Universitá degli studi di Genova May 18, 2016. Luca Calatroni

More information

3. Image formation, Fourier analysis and CTF theory. Paula da Fonseca

3. Image formation, Fourier analysis and CTF theory. Paula da Fonseca 3. Image formation, Fourier analysis and CTF theory Paula da Fonseca EM course 2017 - Agenda - Overview of: Introduction to Fourier analysis o o o o Sine waves Fourier transform (simple examples of 1D

More information

Computer Vision I - Basics of Image Processing Part 1

Computer Vision I - Basics of Image Processing Part 1 Computer Vision I - Basics of Image Processing Part 1 Carsten Rother 28/10/2014 Computer Vision I: Basics of Image Processing Link to lectures Computer Vision I: Basics of Image Processing 28/10/2014 2

More information

CPSC 425: Computer Vision

CPSC 425: Computer Vision CPSC 425: Computer Vision Image Credit: https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/templatematching.html Lecture 9: Template Matching (cont.) and Scaled Representations ( unless otherwise

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 WRI C225 Lecture 04 130131 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Histogram Equalization Image Filtering Linear

More information

International ejournals

International ejournals ISSN 2249 5460 Available online at www.internationalejournals.com International ejournals International Journal of Mathematical Sciences, Technology and Humanities 96 (2013) 1063 1069 Image Interpolation

More information

G009 Scale and Direction-guided Interpolation of Aliased Seismic Data in the Curvelet Domain

G009 Scale and Direction-guided Interpolation of Aliased Seismic Data in the Curvelet Domain G009 Scale and Direction-guided Interpolation of Aliased Seismic Data in the Curvelet Domain M. Naghizadeh* (University of Alberta) & M. Sacchi (University of Alberta) SUMMARY We propose a robust interpolation

More information

Sampling and Reconstruction. Most slides from Steve Marschner

Sampling and Reconstruction. Most slides from Steve Marschner Sampling and Reconstruction Most slides from Steve Marschner 15-463: Computational Photography Alexei Efros, CMU, Fall 2008 Sampling and Reconstruction Sampled representations How to store and compute

More information

Video Mosaics for Virtual Environments, R. Szeliski. Review by: Christopher Rasmussen

Video Mosaics for Virtual Environments, R. Szeliski. Review by: Christopher Rasmussen Video Mosaics for Virtual Environments, R. Szeliski Review by: Christopher Rasmussen September 19, 2002 Announcements Homework due by midnight Next homework will be assigned Tuesday, due following Tuesday.

More information

Super-Resolution. Many slides from Miki Elad Technion Yosi Rubner RTC and more

Super-Resolution. Many slides from Miki Elad Technion Yosi Rubner RTC and more Super-Resolution Many slides from Mii Elad Technion Yosi Rubner RTC and more 1 Example - Video 53 images, ratio 1:4 2 Example Surveillance 40 images ratio 1:4 3 Example Enhance Mosaics 4 5 Super-Resolution

More information

Image Registration Lecture 4: First Examples

Image Registration Lecture 4: First Examples Image Registration Lecture 4: First Examples Prof. Charlene Tsai Outline Example Intensity-based registration SSD error function Image mapping Function minimization: Gradient descent Derivative calculation

More information

Contents. Implementing the QR factorization The algebraic eigenvalue problem. Applied Linear Algebra in Geoscience Using MATLAB

Contents. Implementing the QR factorization The algebraic eigenvalue problem. Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

Evaluations of k-space Trajectories for Fast MR Imaging for project of the course EE591, Fall 2004

Evaluations of k-space Trajectories for Fast MR Imaging for project of the course EE591, Fall 2004 Evaluations of k-space Trajectories for Fast MR Imaging for project of the course EE591, Fall 24 1 Alec Chi-Wah Wong Department of Electrical Engineering University of Southern California 374 McClintock

More information

Digital Image Processing. Lecture 6

Digital Image Processing. Lecture 6 Digital Image Processing Lecture 6 (Enhancement in the Frequency domain) Bu-Ali Sina University Computer Engineering Dep. Fall 2016 Image Enhancement In The Frequency Domain Outline Jean Baptiste Joseph

More information

MRI Physics II: Gradients, Imaging

MRI Physics II: Gradients, Imaging MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

Introduction to Inverse Problems

Introduction to Inverse Problems 1 Introduction to Inverse Problems 1.1 Examples of Inverse Problems The aim of collecting data is to gain meaningful information about a physical system or phenomenon of interest. However, in many situations

More information

Sampling and Monte-Carlo Integration

Sampling and Monte-Carlo Integration Sampling and Monte-Carlo Integration Sampling and Monte-Carlo Integration Last Time Pixels are samples Sampling theorem Convolution & multiplication Aliasing: spectrum replication Ideal filter And its

More information

Edges, interpolation, templates. Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth)

Edges, interpolation, templates. Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth) Edges, interpolation, templates Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth) Edge detection edge detection has many applications in image processing an edge detector implements

More information

Statistical Analysis of Image Reconstructed Fully-Sampled and Sub-Sampled fmri Data

Statistical Analysis of Image Reconstructed Fully-Sampled and Sub-Sampled fmri Data Statistical Analysis of Image Reconstructed Fully-Sampled and Sub-Sampled fmri Data Daniel B. Rowe Program in Computational Sciences Department of Mathematics, Statistics, and Computer Science Marquette

More information

CS448f: Image Processing For Photography and Vision. Fast Filtering

CS448f: Image Processing For Photography and Vision. Fast Filtering CS448f: Image Processing For Photography and Vision Fast Filtering Problems in Computer Vision Computer Vision in One Slide 1) Extract some features from some images 2) Use these to formulate some (hopefully

More information

Tracking Computer Vision Spring 2018, Lecture 24

Tracking Computer Vision Spring 2018, Lecture 24 Tracking http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 24 Course announcements Homework 6 has been posted and is due on April 20 th. - Any questions about the homework? - How

More information

Drawing a Triangle (and an introduction to sampling)

Drawing a Triangle (and an introduction to sampling) Lecture 4: Drawing a Triangle (and an introduction to sampling) Computer Graphics CMU 15-462/15-662, Spring 2017 Assignment 1 is out! https://15462-s17.github.io/asst1_drawsvg/ Let s draw some triangles

More information

Functional MRI in Clinical Research and Practice Preprocessing

Functional MRI in Clinical Research and Practice Preprocessing Functional MRI in Clinical Research and Practice Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization

More information

N-Views (1) Homographies and Projection

N-Views (1) Homographies and Projection CS 4495 Computer Vision N-Views (1) Homographies and Projection Aaron Bobick School of Interactive Computing Administrivia PS 2: Get SDD and Normalized Correlation working for a given windows size say

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Image Restoration and Reconstruction (Image Reconstruction from Projections) Christophoros Nikou cnikou@cs.uoi.gr University of Ioannina - Department of Computer Science and Engineering

More information

Introduction to Topics in Machine Learning

Introduction to Topics in Machine Learning Introduction to Topics in Machine Learning Namrata Vaswani Department of Electrical and Computer Engineering Iowa State University Namrata Vaswani 1/ 27 Compressed Sensing / Sparse Recovery: Given y :=

More information

Simulation and Analysis of Interpolation Techniques for Image and Video Transcoding

Simulation and Analysis of Interpolation Techniques for Image and Video Transcoding Multimedia Communication CMPE-584 Simulation and Analysis of Interpolation Techniques for Image and Video Transcoding Mid Report Asmar Azar Khan 2005-06-0003 Objective: The objective of the project is

More information

Computer Vision I. Announcements. Fourier Tansform. Efficient Implementation. Edge and Corner Detection. CSE252A Lecture 13.

Computer Vision I. Announcements. Fourier Tansform. Efficient Implementation. Edge and Corner Detection. CSE252A Lecture 13. Announcements Edge and Corner Detection HW3 assigned CSE252A Lecture 13 Efficient Implementation Both, the Box filter and the Gaussian filter are separable: First convolve each row of input image I with

More information

Sparse Reconstruction / Compressive Sensing

Sparse Reconstruction / Compressive Sensing Sparse Reconstruction / Compressive Sensing Namrata Vaswani Department of Electrical and Computer Engineering Iowa State University Namrata Vaswani Sparse Reconstruction / Compressive Sensing 1/ 20 The

More information

The Non-uniform Fast Fourier Transform. in Computed Tomography (No ) Supervisor: Prof. Mike Davies

The Non-uniform Fast Fourier Transform. in Computed Tomography (No ) Supervisor: Prof. Mike Davies The Non-uniform Fast Fourier Transform in Computed Tomography (No. 2.4.4) Masters Report Supervisor: Prof. Mike Davies Billy Junqi Tang s1408760 AUGEST 12, 2015 UNIVERSITY F EDINBURGH Abstract This project

More information

Lecture 4: Spatial Domain Transformations

Lecture 4: Spatial Domain Transformations # Lecture 4: Spatial Domain Transformations Saad J Bedros sbedros@umn.edu Reminder 2 nd Quiz on the manipulator Part is this Fri, April 7 205, :5 AM to :0 PM Open Book, Open Notes, Focus on the material

More information

Central Slice Theorem

Central Slice Theorem Central Slice Theorem Incident X-rays y f(x,y) R x r x Detected p(, x ) The thick line is described by xcos +ysin =R Properties of Fourier Transform F [ f ( x a)] F [ f ( x)] e j 2 a Spatial Domain Spatial

More information

Refractive Index Map Reconstruction in Optical Deflectometry Using Total-Variation Regularization

Refractive Index Map Reconstruction in Optical Deflectometry Using Total-Variation Regularization Refractive Index Map Reconstruction in Optical Deflectometry Using Total-Variation Regularization L. Jacques 1, A. González 2, E. Foumouo 2 and P. Antoine 2 1 Institute of Information and Communication

More information

Laser sensors. Transmitter. Receiver. Basilio Bona ROBOTICA 03CFIOR

Laser sensors. Transmitter. Receiver. Basilio Bona ROBOTICA 03CFIOR Mobile & Service Robotics Sensors for Robotics 3 Laser sensors Rays are transmitted and received coaxially The target is illuminated by collimated rays The receiver measures the time of flight (back and

More information

Application of optimal sampling lattices on CT image reconstruction and segmentation or three dimensional printing

Application of optimal sampling lattices on CT image reconstruction and segmentation or three dimensional printing Application of optimal sampling lattices on CT image reconstruction and segmentation or three dimensional printing XIQIANG ZHENG Division of Health and Natural Sciences, Voorhees College, Denmark, SC 29042

More information