Automatic Vertebrae Localization in Pathological Spine CT using Decision Forests

Size: px
Start display at page:

Download "Automatic Vertebrae Localization in Pathological Spine CT using Decision Forests"

Transcription

1 Automatic Vertebrae Localization in Pathological Spine CT using Decision Forests Ana Jiménez-Pastor 1, Esther Tomás-González 1, Ángel Alberich-Bayarri 1,2, Fabio García-Castro 1, David García-Juan 1, Luis Martí-Bonmatí 1,3 1 QUIBIM S.L., Valencia, Spain 2 La Fe Health Research Institute,Valencia, Spain 3 La Fe Radiology Department,Valencia, Spain

2 Introduction In clinical diagnosis, therapy and surgical intervention, the identification of vertebral bodies is a crucial step

3 Introduction Purpose Materials and methods Decision Forests Building input data Building output data Training Testing Results Conclusions Outline

4 Purpose MAIN PROBLEM: In spine pathologies it takes much time to radiologists to perform diagnosis because they have to label manually all vertebrae HELP RADIOLOGISTS TO PERFORM SPINE DIAGNOSIS IN A SHORTER PERIOD OF TIME USE AI METHODS TO LOCATE AND IDENTIFY AUTOMATICALLY VERTEBRAE IN SPINE CT SCANS CREATE PIPELINES FOR THE CHARACTERIZATION OF BONE STRUCTURES IN PATIENTS

5 DECISION FOREST Supervised learning: annotated training data Input data: set of Internal (split) node Root node 7 features (location & intensity-based features of each voxel) Output data: centroid probability maps Terminal (leaf) node

6 BUILDING TRAINING DATA CT SCANS INPUT DATA OUTPUT DATA

7 BUILDING TRAINING DATA CT SCANS INPUT DATA OUTPUT DATA

8 BUILDING TRAINING DATA. DATASET Dataset preparation for training the forest algorithm spine CT scans - Arbitrary field of view - Healthy and pathological cases

9 BUILDING TRAINING DATA CT SCANS INPUT DATA OUTPUT DATA

10 BUILDING TRAINING DATA CT SCANS INPUT DATA OUTPUT DATA Vertebral centroid location

11 - Position (x,y,z coordinates) - Vertebral body name

12 CONTEXTUAL INFORMATION Intensity-based features: Mean intensity over a 3D cuboid displaced with respect to the reference voxel position. Cuboid size and displacement are chosen randomly.

13 BUILDING TRAINING DATA CT SCANS INPUT DATA OUTPUT DATA

14 BUILDING TRAINING DATA CT SCANS INPUT DATA OUTPUT DATA Centroid probability maps

15 BUILDING OUTPUT DATA. PROBABILITY MATRICES Compute the probability of each voxel to be part of each vertebra ψ v x = e c v x 2 h v with x Ω I Centroid likelihood distribution for each vertebra ψ B x = 1 max v ψ v (xሻ Likelihood function for background label p l x = ψ l (xሻ σ mεl ψ m x with l L = V B Labeling distribution B. Glocker, D. Zikic, E. Konukoglu, D. R. Haynor, and A. Criminisi. Vertebrae localization in pathological spine ct via dense classification from sparse annotations. In Medical Image Computing and Computer-Assisted Intervention, pages Springer, 2013.

16 TRAINING X1 Y1 Z1 I1 F Fm1 X2 Y2 Z2 I2 F Fm2 X3 Y3 Z3 I3 F Fm Xn Yn Zn In f1n.... Fmn Pc11 Pc Ps11 Pc12 Pc Ps12 Pc13 Pc Ps Pc1n Pc2n.... Ps1n REGRESSION FOREST

17 TESTING X1 Y1 Z1 I1 F Fm1 X2 Y2 Z2 I2 F Fm2 X3 Y3 Z3 I3 F Fm Xn Yn Zn In f1n.... Fmn TRAINED REGRESSION FOREST Pc11 Pc Ps11 Pc12 Pc Ps12 Pc13 Pc Ps Pc1n Pc2n.... Ps1n

18 Results Expert annotation

19 Results Predicted location Expert annotation

20 Results VERTEBRAE AVARAGE DISTANCE (mm) STANDARD DEVIATION(mm) VERTEBRAE AVARAGE DISTANCE (mm) STANDARD DEVIATION(mm) T1 9,28 8,63 T2 9,31 6,87 T3 7,04 5,33 T4 3,02 3,52 T5 3,64 2,04 T6 4,96 2,82 L1 1,31 1,47 L2 4,92 4,55 L3 9,22 5,99 L4 15,29 10,15 L5 12,68 14,24 S1 11,01 10,57 T7 4,93 1,94 T8 5,83 4,46 T9 4,71 3,32 T10 3,01 0,45 T11 5,84 4,41 Average distance between the real and the predicted location less than 15 mm T12 3,88 2,68

21 Results REGION AVARAGE DISTANCE (mm) STANDARD DEVIATION (mm) THORAX (T1-T12) 5,45 2,15 LUMBAR (L1-L5) 10,88 5,16 Better classification in thorax region due to the variability inherent to the lumbar region shape

22 Conclusions We created pipelines for the automatic localization and identification of vertebrae in CT scans The detection method will allow radiologists to perform the spine diagnosis in a shorter period of time. Automatic localization and identification of vertebral bodies can be addressed by AI methods to create pipelines for the characterization of bone structure in patients.

23 Acknowledgements Luis Martí Bonmatí MD, PhD.GIBI PI andquibim Founder ÁngelAlberich-Bayarri PhD.GIBI DirectorandQUIBIMCEO QUIBIM Staff Fabio GarcíaCastro- M.Sc Rafa Hernández Navarro - B.Sc DavidGarcía - M.Sc Encarna Sánchez - M.Sc KatherineWilisch Ramírez - M.Sc Irene Mayorga Ruiz - M.Sc Belén FosGuarinos -InternshipStudent Ana Jiménez Pastor -InternshipStudent Chief Scientific Officer Chief Technology Officer Back-End Development of Imaging Biomarkers Chief Marketing Officer GIBI2 30 Staff Enrique Ruiz Martínez M.Sc AmadeoTen Esteve M.Sc Ana Penadés-Adm. AlfredoTorregrosa-InternshipStudent Carlos Moya-InternshipStudent MS Biomedical Engineering Coordinator and CEO Support Imaging Study Coordinator Image Analysis Scientist Artificial Intelligence Artificial Intelligence Chief Financial Officer Imaging Biomarker Developer Imaging Biomarker Developer

Automatic Vertebrae Localization in Spine CT using Decision Forests

Automatic Vertebrae Localization in Spine CT using Decision Forests Automatic Vertebrae Localization in Spine CT using Decision Forests 1, Angel Alberich-Bayarri 1,2, Belén Fos-Guarinos 1, Fabio García-Castro 1, Luis Martí-Bonmatí 1,3 1 QUIBIM S.L., Valencia, Spain 2 La

More information

Machine Learning for Medical Image Analysis. A. Criminisi

Machine Learning for Medical Image Analysis. A. Criminisi Machine Learning for Medical Image Analysis A. Criminisi Overview Introduction to machine learning Decision forests Applications in medical image analysis Anatomy localization in CT Scans Spine Detection

More information

Vertebrae Localization in Pathological Spine CT via Dense Classification from Sparse Annotations

Vertebrae Localization in Pathological Spine CT via Dense Classification from Sparse Annotations Vertebrae Localization in Pathological Spine CT via Dense Classification from Sparse Annotations B. Glocker 1, D. Zikic 1, E. Konukoglu 2, D. R. Haynor 3, A. Criminisi 1 1 Microsoft Research, Cambridge,

More information

arxiv: v1 [cs.cv] 17 May 2017

arxiv: v1 [cs.cv] 17 May 2017 Automatic Vertebra Labeling in Large-Scale 3D CT using Deep Image-to-Image Network with Message Passing and Sparsity Regularization arxiv:1705.05998v1 [cs.cv] 17 May 2017 Dong Yang 1, Tao Xiong 2, Daguang

More information

Deep Learning for Automatic Localization, Identification, and Segmentation of Vertebral Bodies in Volumetric MR Images

Deep Learning for Automatic Localization, Identification, and Segmentation of Vertebral Bodies in Volumetric MR Images Deep Learning for Automatic Localization, Identification, and Segmentation of Vertebral Bodies in Volumetric MR Images Amin Suzani a, Abtin Rasoulian a, Alexander Seitel a,sidneyfels a, Robert N. Rohling

More information

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 20: Machine Learning in Medical Imaging II (deep learning and decision forests)

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 20: Machine Learning in Medical Imaging II (deep learning and decision forests) SPRING 2016 1 MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 20: Machine Learning in Medical Imaging II (deep learning and decision forests) Dr. Ulas Bagci HEC 221, Center for Research in Computer Vision (CRCV),

More information

Vertebrae Segmentation in 3D CT Images based on a Variational Framework

Vertebrae Segmentation in 3D CT Images based on a Variational Framework Vertebrae Segmentation in 3D CT Images based on a Variational Framework Kerstin Hammernik, Thomas Ebner, Darko Stern, Martin Urschler, and Thomas Pock Abstract Automatic segmentation of 3D vertebrae is

More information

Context-sensitive Classification Forests for Segmentation of Brain Tumor Tissues

Context-sensitive Classification Forests for Segmentation of Brain Tumor Tissues Context-sensitive Classification Forests for Segmentation of Brain Tumor Tissues D. Zikic, B. Glocker, E. Konukoglu, J. Shotton, A. Criminisi, D. H. Ye, C. Demiralp 3, O. M. Thomas 4,5, T. Das 4, R. Jena

More information

Vertebrae Localization in Pathological Spine CT via Dense Classification from Sparse Annotations

Vertebrae Localization in Pathological Spine CT via Dense Classification from Sparse Annotations Vertebrae Localization in Pathological Spine CT via Dense Classification from Sparse Annotations Ben Glocker 1,DarkoZikic 1, Ender Konukoglu 2, David R. Haynor 3, and Antonio Criminisi 1 1 Microsoft Research,

More information

A Workflow for Improving Medical Visualization of Semantically Annotated CT-Images

A Workflow for Improving Medical Visualization of Semantically Annotated CT-Images A Workflow for Improving Medical Visualization of Semantically Annotated CT-Images Alexander Baranya 1,2, Luis Landaeta 1,2, Alexandra La Cruz 1, and Maria-Esther Vidal 2 1 Biophysic and Bioengeneering

More information

Supervoxel Classification Forests for Estimating Pairwise Image Correspondences

Supervoxel Classification Forests for Estimating Pairwise Image Correspondences Supervoxel Classification Forests for Estimating Pairwise Image Correspondences Fahdi Kanavati 1, Tong Tong 1, Kazunari Misawa 2, Michitaka Fujiwara 3, Kensaku Mori 4, Daniel Rueckert 1, and Ben Glocker

More information

8/3/2017. Contour Assessment for Quality Assurance and Data Mining. Objective. Outline. Tom Purdie, PhD, MCCPM

8/3/2017. Contour Assessment for Quality Assurance and Data Mining. Objective. Outline. Tom Purdie, PhD, MCCPM Contour Assessment for Quality Assurance and Data Mining Tom Purdie, PhD, MCCPM Objective Understand the state-of-the-art in contour assessment for quality assurance including data mining-based techniques

More information

Iterative fully convolutional neural networks for automatic vertebra segmentation

Iterative fully convolutional neural networks for automatic vertebra segmentation Iterative fully convolutional neural networks for automatic vertebra segmentation Nikolas Lessmann Image Sciences Institute University Medical Center Utrecht Pim A. de Jong Department of Radiology University

More information

arxiv: v1 [cs.cv] 13 Mar 2017

arxiv: v1 [cs.cv] 13 Mar 2017 A Localisation-Segmentation Approach for Multi-label Annotation of Lumbar Vertebrae using Deep Nets Anjany Sekuboyina 1,2,, Alexander Valentinitsch 2, Jan S. Kirschke 2, and Bjoern H. Menze 1 arxiv:1703.04347v1

More information

Accurate Bone Segmentation in 2D Radiographs Using Fully Automatic Shape Model Matching Based On Regression-Voting

Accurate Bone Segmentation in 2D Radiographs Using Fully Automatic Shape Model Matching Based On Regression-Voting Accurate Bone Segmentation in 2D Radiographs Using Fully Automatic Shape Model Matching Based On Regression-Voting C. Lindner, S. Thiagarajah 2, J.M. Wilkinson 2, arcogen Consortium, G.A. Wallis 3, and

More information

Hierarchical Multi structure Segmentation Guided by Anatomical Correlations

Hierarchical Multi structure Segmentation Guided by Anatomical Correlations Hierarchical Multi structure Segmentation Guided by Anatomical Correlations Oscar Alfonso Jiménez del Toro oscar.jimenez@hevs.ch Henning Müller henningmueller@hevs.ch University of Applied Sciences Western

More information

Deep Learning in Pulmonary Image Analysis with Incomplete Training Samples

Deep Learning in Pulmonary Image Analysis with Incomplete Training Samples Deep Learning in Pulmonary Image Analysis with Incomplete Training Samples Ziyue Xu, Staff Scientist, National Institutes of Health Nov. 2nd, 2017 (GTC DC Talk DC7137) Image Analysis Arguably the most

More information

Joint Supervoxel Classification Forest for Weakly-Supervised Organ Segmentation

Joint Supervoxel Classification Forest for Weakly-Supervised Organ Segmentation Joint Supervoxel Classification Forest for Weakly-Supervised Organ Segmentation Fahdi Kanavati 1, Kazunari Misawa 2, Michitaka Fujiwara 3, Kensaku Mori 4, Daniel Rueckert 1, and Ben Glocker 1 1 Biomedical

More information

Automatic Vertebra Detection in X-Ray Images

Automatic Vertebra Detection in X-Ray Images Automatic Vertebra Detection in X-Ray Images Daniel C. Moura INEB - Instituto de Engenharia Biomédica, Laboratório de Sinal e Imagem, Porto, Portugal Instituto Politécnico de Viana do Castelo, Escola Superior

More information

Automatic Labeling and Segmentation of Vertebrae in CT Images

Automatic Labeling and Segmentation of Vertebrae in CT Images 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

In vivo Bone Characterization from Magnetic Resonance Imaging: Morphometry and Mechanical analysis

In vivo Bone Characterization from Magnetic Resonance Imaging: Morphometry and Mechanical analysis In vivo Bone Characterization from Magnetic Resonance Imaging: Morphometry and Mechanical analysis Angel Alberich-Bayarri, PhD angel@quibim.com 15 th october 2014 La Fe Polytechnics and University Hospital

More information

Accurate Intervertebral Disc Localisation and Segmentation in MRI using Vantage Point Hough Forests and Multi-Atlas Fusion

Accurate Intervertebral Disc Localisation and Segmentation in MRI using Vantage Point Hough Forests and Multi-Atlas Fusion Accurate Intervertebral Disc Localisation and Segmentation in MRI using Vantage Point Hough Forests and Multi-Atlas Fusion Mattias P. Heinrich 1 and Ozan Oktay 2 1 Institute of Medical Informatics, University

More information

Supervoxel Classification Forests for Estimating Pairwise Image Correspondences

Supervoxel Classification Forests for Estimating Pairwise Image Correspondences Supervoxel Classification Forests for Estimating Pairwise Image Correspondences Fahdi Kanavati a,, Tong Tong a, Kazunari Misawa b, Michitaka Fujiwara c, Kensaku Mori d, Daniel Rueckert a, Ben Glocker a

More information

Joint Classification-Regression Forests for Spatially Structured Multi-Object Segmentation

Joint Classification-Regression Forests for Spatially Structured Multi-Object Segmentation Joint Classification-Regression Forests for Spatially Structured Multi-Object Segmentation Ben Glocker 1, Olivier Pauly 2,3, Ender Konukoglu 1, Antonio Criminisi 1 1 Microsoft Research, Cambridge, UK 2

More information

Frequency split metal artifact reduction (FSMAR) in computed tomography

Frequency split metal artifact reduction (FSMAR) in computed tomography The Johns Hopkins University Advanced Computer Integrated Surgery Group 4 Metal Artifact Removal in C-arm Cone-Beam CT Paper Seminar Critical Review of Frequency split metal artifact reduction (FSMAR)

More information

Evaluation of 1D, 2D and 3D nodule size estimation by radiologists for spherical and non-spherical nodules through CT thoracic phantom imaging

Evaluation of 1D, 2D and 3D nodule size estimation by radiologists for spherical and non-spherical nodules through CT thoracic phantom imaging Evaluation of 1D, 2D and 3D nodule size estimation by radiologists for spherical and non-spherical nodules through CT thoracic phantom imaging Nicholas Petrick, Hyun J. Grace Kim, David Clunie, Kristin

More information

Prostate Detection Using Principal Component Analysis

Prostate Detection Using Principal Component Analysis Prostate Detection Using Principal Component Analysis Aamir Virani (avirani@stanford.edu) CS 229 Machine Learning Stanford University 16 December 2005 Introduction During the past two decades, computed

More information

Semi-Automatic Detection of Cervical Vertebrae in X-ray Images Using Generalized Hough Transform

Semi-Automatic Detection of Cervical Vertebrae in X-ray Images Using Generalized Hough Transform Semi-Automatic Detection of Cervical Vertebrae in X-ray Images Using Generalized Hough Transform Mohamed Amine LARHMAM, Saïd MAHMOUDI and Mohammed BENJELLOUN Faculty of Engineering, University of Mons,

More information

Statistical models of the spine with applications in medical image processing

Statistical models of the spine with applications in medical image processing Faculté Polytechnique Statistical models of the spine with applications in medical image processing ISP Seminars, UCL -April 17th, 2013 Fabian Lecron Fabian.Lecron@umons.ac.be A Statistical Model? Sub-space

More information

Supervised Learning for Image Segmentation

Supervised Learning for Image Segmentation Supervised Learning for Image Segmentation Raphael Meier 06.10.2016 Raphael Meier MIA 2016 06.10.2016 1 / 52 References A. Ng, Machine Learning lecture, Stanford University. A. Criminisi, J. Shotton, E.

More information

Using Probability Maps for Multi organ Automatic Segmentation

Using Probability Maps for Multi organ Automatic Segmentation Using Probability Maps for Multi organ Automatic Segmentation Ranveer Joyseeree 1,2, Óscar Jiménez del Toro1, and Henning Müller 1,3 1 University of Applied Sciences Western Switzerland (HES SO), Sierre,

More information

Automated segmentation methods for liver analysis in oncology applications

Automated segmentation methods for liver analysis in oncology applications University of Szeged Department of Image Processing and Computer Graphics Automated segmentation methods for liver analysis in oncology applications Ph. D. Thesis László Ruskó Thesis Advisor Dr. Antal

More information

Automatic Localisation of Vertebrae in DXA Images using Random Forest Regression Voting

Automatic Localisation of Vertebrae in DXA Images using Random Forest Regression Voting Automatic Localisation of Vertebrae in DXA Images using Random Forest Regression Voting Paul A. Bromiley, Judith E. Adams 2, and Timothy F. Cootes Imaging Sciences Research Group, University of Manchester,

More information

Learning Algorithms for Medical Image Analysis. Matteo Santoro slipguru

Learning Algorithms for Medical Image Analysis. Matteo Santoro slipguru Learning Algorithms for Medical Image Analysis Matteo Santoro slipguru santoro@disi.unige.it June 8, 2010 Outline 1. learning-based strategies for quantitative image analysis 2. automatic annotation of

More information

Neighbourhood Approximation Forests

Neighbourhood Approximation Forests Neighbourhood Approximation Forests Ender Konukoglu, Ben Glocker, Darko Zikic and Antonio Criminisi Microsoft Research Cambridge Abstract. Methods that leverage neighbourhood structures in highdimensional

More information

ABSTRACT 1. INTRODUCTION 2. METHODS

ABSTRACT 1. INTRODUCTION 2. METHODS Finding Seeds for Segmentation Using Statistical Fusion Fangxu Xing *a, Andrew J. Asman b, Jerry L. Prince a,c, Bennett A. Landman b,c,d a Department of Electrical and Computer Engineering, Johns Hopkins

More information

Detecting Bone Lesions in Multiple Myeloma Patients using Transfer Learning

Detecting Bone Lesions in Multiple Myeloma Patients using Transfer Learning Detecting Bone Lesions in Multiple Myeloma Patients using Transfer Learning Matthias Perkonigg 1, Johannes Hofmanninger 1, Björn Menze 2, Marc-André Weber 3, and Georg Langs 1 1 Computational Imaging Research

More information

Anatomical triangulation: from sparse landmarks to dense annotation of the skeleton in CT images

Anatomical triangulation: from sparse landmarks to dense annotation of the skeleton in CT images BIETH et al.: ANATOMICAL TRIANGULATION 1 Anatomical triangulation: from sparse landmarks to dense annotation of the skeleton in CT images Marie Bieth 12 marie.bieth@tum.de Rene Donner 3 Georg Langs 3 Markus

More information

Automatic Vascular Tree Formation Using the Mahalanobis Distance

Automatic Vascular Tree Formation Using the Mahalanobis Distance Automatic Vascular Tree Formation Using the Mahalanobis Distance Julien Jomier, Vincent LeDigarcher, and Stephen R. Aylward Computer-Aided Diagnosis and Display Lab, Department of Radiology The University

More information

Bone registration with 3D CT and ultrasound data sets

Bone registration with 3D CT and ultrasound data sets International Congress Series 1256 (2003) 426 432 Bone registration with 3D CT and ultrasound data sets B. Brendel a, *,1, S. Winter b,1, A. Rick c,1, M. Stockheim d,1, H. Ermert a,1 a Institute of High

More information

Automatic Detection and Segmentation of Kidneys in 3D CT Images Using Random Forests

Automatic Detection and Segmentation of Kidneys in 3D CT Images Using Random Forests Automatic Detection and Segmentation of Kidneys in 3D CT Images Using Random Forests Rémi Cuingnet 1, Raphael Prevost 1,2, David Lesage 1,LaurentD.Cohen 2, Benoît Mory 1, and Roberto Ardon 1 1 Philips

More information

Kinematic Analysis of Lumbar Spine Undergoing Extension and Dynamic Neural Foramina Cross Section Measurement

Kinematic Analysis of Lumbar Spine Undergoing Extension and Dynamic Neural Foramina Cross Section Measurement Copyright c 2008 ICCES ICCES, vol.7, no.2, pp.57-62 Kinematic Analysis of Lumbar Spine Undergoing Extension and Dynamic Neural Foramina Cross Section Measurement Yongjie Zhang 1,BoyleC.Cheng 2,ChanghoOh

More information

Automatic DRR Enhancement for Patient Positioning in a Radiotherapy Treatment

Automatic DRR Enhancement for Patient Positioning in a Radiotherapy Treatment Automatic DRR Enhancement for Patient Positioning in a Radiotherapy Treatment Rafael Verdú-Monedero, Jorge Larrey-Ruiz, Juan Morales-Sánchez, José Luis Sancho-Gómez Department of Information Technologies

More information

Semen fertility prediction based on lifestyle factors

Semen fertility prediction based on lifestyle factors Koskas Florence CS 229 Guyon Axel 12/12/2014 Buratti Yoann Semen fertility prediction based on lifestyle factors 1 Introduction Although many people still think of infertility as a "woman s problem," in

More information

A Robust Segmentation Framework for Spine Trauma Diagnosis

A Robust Segmentation Framework for Spine Trauma Diagnosis A Robust Segmentation Framework for Spine Trauma Diagnosis Poay Hoon Lim 1, Ulas Bagci 2 and Li Bai 1 1 School of Computer Science, University of Nottingham, UK 2 Radiology and Imaging Sciences, National

More information

Introduction to Data Mining and Data Analytics

Introduction to Data Mining and Data Analytics 1/28/2016 MIST.7060 Data Analytics 1 Introduction to Data Mining and Data Analytics What Are Data Mining and Data Analytics? Data mining is the process of discovering hidden patterns in data, where Patterns

More information

Automated Model-Based Rib Cage Segmentation and Labeling in CT Images

Automated Model-Based Rib Cage Segmentation and Labeling in CT Images Automated Model-Based Rib Cage Segmentation and Labeling in CT Images Tobias Klinder 1,2,CristianLorenz 2,JensvonBerg 2, Sebastian P.M. Dries 2, Thomas Bülow 2,andJörn Ostermann 1 1 Institut für Informationsverarbeitung,

More information

Combination of Markerless Surrogates for Motion Estimation in Radiation Therapy

Combination of Markerless Surrogates for Motion Estimation in Radiation Therapy Combination of Markerless Surrogates for Motion Estimation in Radiation Therapy CARS 2016 T. Geimer, M. Unberath, O. Taubmann, C. Bert, A. Maier June 24, 2016 Pattern Recognition Lab (CS 5) FAU Erlangen-Nu

More information

Object Identification in Ultrasound Scans

Object Identification in Ultrasound Scans Object Identification in Ultrasound Scans Wits University Dec 05, 2012 Roadmap Introduction to the problem Motivation Related Work Our approach Expected Results Introduction Nowadays, imaging devices like

More information

Document downloaded from: This paper must be cited as:

Document downloaded from:   This paper must be cited as: Document downloaded from: http://hdl.handle.net/10251/44271 This paper must be cited as: García Hernández, J.; Heras Barberá, SM.; Juan Císcar, A.; Paredes Palacios, R.; Nácher Rodríguez, B.; Alemany,

More information

Two-phase MRI brain tumor segmentation using Random Forests and Level Set Methods

Two-phase MRI brain tumor segmentation using Random Forests and Level Set Methods Two-phase MRI brain tumor segmentation using Random Forests and Level Set Methods László Lefkovits Sapientia University Department of Electrical Engineering Romania, Tg. Mureș lefkolaci@ms.sapientia.ro

More information

Uncertainty-driven Forest Predictors for Vertebra Localization and Segmentation

Uncertainty-driven Forest Predictors for Vertebra Localization and Segmentation Uncertainty-driven Forest Predictors for Vertebra Localization and Segmentation David Richmond 1, Dagmar Kainmueller 1, Ben Glocker 2, Carsten Rother 3, and Gene Myers 1 1 Max Planck Institute of Molecular

More information

From Image Data to Three-Dimensional Geometric Models Case Studies on the Impact of 3D Patient Models

From Image Data to Three-Dimensional Geometric Models Case Studies on the Impact of 3D Patient Models From Image Data to Three-Dimensional Geometric Models Case Studies on the Impact of 3D Patient Models Hans-Christian HEGE 1,2), Hartmut SCHIRMACHER 2), Malte WESTERHOFF 1,2), Hans LAMECKER 1), Steffen

More information

Automated Diagnosis of Vertebral Fractures using 2D and 3D Convolutional Networks

Automated Diagnosis of Vertebral Fractures using 2D and 3D Convolutional Networks Automated Diagnosis of Vertebral Fractures using 2D and 3D Convolutional Networks CS189 Final Project Naofumi Tomita Overview Automated diagnosis of osteoporosis-related vertebral fractures is a useful

More information

Atlas-Based Segmentation of Abdominal Organs in 3D Ultrasound, and its Application in Automated Kidney Segmentation

Atlas-Based Segmentation of Abdominal Organs in 3D Ultrasound, and its Application in Automated Kidney Segmentation University of Toronto Atlas-Based Segmentation of Abdominal Organs in 3D Ultrasound, and its Application in Automated Kidney Segmentation Authors: M. Marsousi, K. N. Plataniotis, S. Stergiopoulos Presenter:

More information

Pathology Hinting as the Combination of Automatic Segmentation with a Statistical Shape Model

Pathology Hinting as the Combination of Automatic Segmentation with a Statistical Shape Model Pathology Hinting as the Combination of Automatic Segmentation with a Statistical Shape Model Pascal A. Dufour 1,2, Hannan Abdillahi 3, Lala Ceklic 3, Ute Wolf-Schnurrbusch 2,3, and Jens Kowal 1,2 1 ARTORG

More information

Simultaneous Model-based Segmentation of Multiple Objects

Simultaneous Model-based Segmentation of Multiple Objects Simultaneous Model-based Segmentation of Multiple Objects Astrid Franz 1, Robin Wolz 1, Tobias Klinder 1,2, Cristian Lorenz 1, Hans Barschdorf 1, Thomas Blaffert 1, Sebastian P. M. Dries 1, Steffen Renisch

More information

Multi-Organ Segmentation using Vantage Point Forests and Binary Context Features

Multi-Organ Segmentation using Vantage Point Forests and Binary Context Features Multi-Organ Segmentation using Vantage Point Forests and Binary Context Features Mattias P. Heinrich and Maximilian Blendowski Institute of Medical Informatics, University of Lübeck, Germany heinrich@imi.uni-luebeck.de,

More information

EDITORS. Proceedings of the Workshop on Applied Topological Structures WATS'17. Editorial Universitat Politècnica de València

EDITORS. Proceedings of the Workshop on Applied Topological Structures WATS'17. Editorial Universitat Politècnica de València EDITORS Josefa Marín and Jesús Rodríguez-López Proceedings of the Workshop on Applied Topological Structures WATS'17 Editorial Universitat Politècnica de València Congress UPV Proceedings of the Workshop

More information

Acknowledgements. Atlas-based automatic measurements of the morphology of the tibiofemoral joint

Acknowledgements. Atlas-based automatic measurements of the morphology of the tibiofemoral joint Atlas-based automatic measurements of the morphology of the tibiofemoral joint M Brehler 1, G Thawait 2, W Shyr 1, J Ramsay 3, JH Siewerdsen 1,2, W Zbijewski 1 1 Dept. of Biomedical Engineering, Johns

More information

Hierarchical Segmentation and Identification of Thoracic Vertebra Using Learning-Based Edge Detection and Coarse-to-Fine Deformable Model

Hierarchical Segmentation and Identification of Thoracic Vertebra Using Learning-Based Edge Detection and Coarse-to-Fine Deformable Model Hierarchical Segmentation and Identification of Thoracic Vertebra Using Learning-Based Edge Detection and Coarse-to-Fine Deformable Model Jun Ma, Le Lu, Yiqiang Zhan, Xiang Zhou, Marcos Salganicoff, and

More information

Robust Detection for Red Blood Cells in Thin Blood Smear Microscopy Using Deep Learning

Robust Detection for Red Blood Cells in Thin Blood Smear Microscopy Using Deep Learning Robust Detection for Red Blood Cells in Thin Blood Smear Microscopy Using Deep Learning By Yasmin Kassim PhD Candidate in University of Missouri-Columbia Supervised by Dr. Kannappan Palaniappan Mentored

More information

2008 International ANSYS Conference

2008 International ANSYS Conference 2008 International ANSYS Conference Patient-Specific Orthopedics Simulation Using ANSYS Technologies N. Hraiech, E. Malvesin and M. Rochette ANSYS France M. Viceconti and F. Taddei Istituti Ortopedici

More information

Head and Neck Lymph Node Region Delineation with Auto-segmentation and Image Registration

Head and Neck Lymph Node Region Delineation with Auto-segmentation and Image Registration Head and Neck Lymph Node Region Delineation with Auto-segmentation and Image Registration Chia-Chi Teng Department of Electrical Engineering University of Washington 1 Outline Introduction Related Work

More information

The VesselGlyph: Focus & Context Visualization in CT-Angiography

The VesselGlyph: Focus & Context Visualization in CT-Angiography The VesselGlyph: Focus & Context Visualization in CT-Angiography Matúš Straka M. Šrámek, A. La Cruz E. Gröller, D. Fleischmann Contents Motivation:» Why again a new visualization method for vessel data?

More information

Functional Analysis of the Vertebral Column Based on MR and Direct Volume Rendering

Functional Analysis of the Vertebral Column Based on MR and Direct Volume Rendering Functional Analysis of the Vertebral Column Based on MR and Direct Volume Rendering P. Hastreiter 1, C. Rezk-Salama 2,K.Eberhardt 3 and B. Tomandl 3,andT.Ertl 4 1 Neurocenter, University of Erlangen-Nuremberg,

More information

Detection and Identification of Lung Tissue Pattern in Interstitial Lung Diseases using Convolutional Neural Network

Detection and Identification of Lung Tissue Pattern in Interstitial Lung Diseases using Convolutional Neural Network Detection and Identification of Lung Tissue Pattern in Interstitial Lung Diseases using Convolutional Neural Network Namrata Bondfale 1, Asst. Prof. Dhiraj Bhagwat 2 1,2 E&TC, Indira College of Engineering

More information

NIH Public Access Author Manuscript Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 November 15.

NIH Public Access Author Manuscript Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 November 15. NIH Public Access Author Manuscript Published in final edited form as: Proc IEEE Int Symp Biomed Imaging. 2013 April ; 2013: 748 751. doi:10.1109/isbi.2013.6556583. BRAIN TUMOR SEGMENTATION WITH SYMMETRIC

More information

A simple method to extract abbreviations within a document using regular expressions

A simple method to extract abbreviations within a document using regular expressions A simple method to extract abbreviations within a document using regular expressions Christian Sánchez, Paloma Martínez Computer Science Department, Universidad Carlos III of Madrid Avd. Universidad, 30,

More information

Analysis of classifier to improve Medical diagnosis for Breast Cancer Detection using Data Mining Techniques A.subasini 1

Analysis of classifier to improve Medical diagnosis for Breast Cancer Detection using Data Mining Techniques A.subasini 1 2117 Analysis of classifier to improve Medical diagnosis for Breast Cancer Detection using Data Mining Techniques A.subasini 1 1 Research Scholar, R.D.Govt college, Sivagangai Nirase Fathima abubacker

More information

Correspondence Management with Medical Director. For Medical Director 3.15 or later

Correspondence Management with Medical Director. For Medical Director 3.15 or later For Medical Director 3.15 or later This guide presents the various methods for importing correspondence into Medical Director, and helps you establish which method best suits your Practice s workflow.

More information

Bioimage Informatics

Bioimage Informatics Bioimage Informatics Lecture 13, Spring 2012 Bioimage Data Analysis (IV) Image Segmentation (part 2) Lecture 13 February 29, 2012 1 Outline Review: Steger s line/curve detection algorithm Intensity thresholding

More information

SPNet: Shape Prediction using a Fully Convolutional Neural Network

SPNet: Shape Prediction using a Fully Convolutional Neural Network SPNet: Shape Prediction using a Fully Convolutional Neural Network S M Masudur Rahman Al Arif 1, Karen Knapp 2 and Greg Slabaugh 1 1 City, University of London 2 University of Exeter Abstract. Shape has

More information

Semantic Context Forests for Learning- Based Knee Cartilage Segmentation in 3D MR Images

Semantic Context Forests for Learning- Based Knee Cartilage Segmentation in 3D MR Images Semantic Context Forests for Learning- Based Knee Cartilage Segmentation in 3D MR Images MICCAI 2013: Workshop on Medical Computer Vision Authors: Quan Wang, Dijia Wu, Le Lu, Meizhu Liu, Kim L. Boyer,

More information

Visualisation : Lecture 1. So what is visualisation? Visualisation

Visualisation : Lecture 1. So what is visualisation? Visualisation So what is visualisation? UG4 / M.Sc. Course 2006 toby.breckon@ed.ac.uk Computer Vision Lab. Institute for Perception, Action & Behaviour Introducing 1 Application of interactive 3D computer graphics to

More information

Semi-automatic Segmentation of Vertebral Bodies in Volumetric MR Images Using a Statistical Shape+Pose Model

Semi-automatic Segmentation of Vertebral Bodies in Volumetric MR Images Using a Statistical Shape+Pose Model Semi-automatic Segmentation of Vertebral Bodies in Volumetric MR Images Using a Statistical Shape+Pose Model A. Suzani, A. Rasoulian S. Fels, R. N. Rohling P. Abolmaesumi Robotics and Control Laboratory,

More information

Clustering human body shapes using k-means algorithm

Clustering human body shapes using k-means algorithm Clustering human body shapes using k-means algorithm Guillermo Vinué Visús PhD Student Faculty of Mathematics University of Valencia, Spain Jointly with Guillermo Ayala Gallego, Juan Domingo Esteve, Esther

More information

On Feature Relevance in Image-based Prediction Models: An Empirical Study

On Feature Relevance in Image-based Prediction Models: An Empirical Study On Feature Relevance in Image-based Prediction Models: An Empirical Study Ender Konukoglu 1, Melanie Ganz 1, Koen van Leemput 1,2,3, and Mert R. Sabuncu 1 for the Alzheimers Disease Neuroimaging Initiative

More information

Content Based Medical Image Retrieval Using Fuzzy C- Means Clustering With RF

Content Based Medical Image Retrieval Using Fuzzy C- Means Clustering With RF Content Based Medical Image Retrieval Using Fuzzy C- Means Clustering With RF Jasmine Samraj #1, NazreenBee. M *2 # Associate Professor, Department of Computer Science, Quaid-E-Millath Government college

More information

Computational color Lecture 1. Ville Heikkinen

Computational color Lecture 1. Ville Heikkinen Computational color Lecture 1 Ville Heikkinen 1. Introduction - Course context - Application examples (UEF research) 2 Course Standard lecture course: - 2 lectures per week (see schedule from Weboodi)

More information

Pathology Hinting as the Combination of Automatic Segmentation with a Statistical Shape Model

Pathology Hinting as the Combination of Automatic Segmentation with a Statistical Shape Model Pathology Hinting as the Combination of Automatic Segmentation with a Statistical Shape Model Pascal A. Dufour 12,HannanAbdillahi 3, Lala Ceklic 3,Ute Wolf-Schnurrbusch 23,JensKowal 12 1 ARTORG Center

More information

Automated Tool for Diagnosis of Sinus Analysis CT Scans

Automated Tool for Diagnosis of Sinus Analysis CT Scans Automated Tool for Diagnosis of Sinus Analysis CT Scans Abdel Razzak Natsheh 1, Prasad VS Ponnapalli 1, Nader Anani 1, Atef El-Kholy 2 1 Department of Engineering and Technology, Manchester Metropolitan

More information

Weakly Supervised Fully Convolutional Network for PET Lesion Segmentation

Weakly Supervised Fully Convolutional Network for PET Lesion Segmentation Weakly Supervised Fully Convolutional Network for PET Lesion Segmentation S. Afshari a, A. BenTaieb a, Z. Mirikharaji a, and G. Hamarneh a a Medical Image Analysis Lab, School of Computing Science, Simon

More information

Rib Cage Segmentation in CT Scans

Rib Cage Segmentation in CT Scans 1. Rib Cage Segmentation Literature Review Biomedical Image Science 14 October 2013 Enrico Contini 3913511 Supervisor: Dr. Josien Pluim Daily Supervisor: Yolanda Noorda Table of Contents 1. Introduction...

More information

INTRODUCTION TO DATA MINING. Daniel Rodríguez, University of Alcalá

INTRODUCTION TO DATA MINING. Daniel Rodríguez, University of Alcalá INTRODUCTION TO DATA MINING Daniel Rodríguez, University of Alcalá Outline Knowledge Discovery in Datasets Model Representation Types of models Supervised Unsupervised Evaluation (Acknowledgement: Jesús

More information

Assessing Accuracy Factors in Deformable 2D/3D Medical Image Registration Using a Statistical Pelvis Model

Assessing Accuracy Factors in Deformable 2D/3D Medical Image Registration Using a Statistical Pelvis Model Assessing Accuracy Factors in Deformable 2D/3D Medical Image Registration Using a Statistical Pelvis Model Jianhua Yao National Institute of Health Bethesda, MD USA jyao@cc.nih.gov Russell Taylor The Johns

More information

Detecting Thoracic Diseases from Chest X-Ray Images Binit Topiwala, Mariam Alawadi, Hari Prasad { topbinit, malawadi, hprasad

Detecting Thoracic Diseases from Chest X-Ray Images Binit Topiwala, Mariam Alawadi, Hari Prasad { topbinit, malawadi, hprasad CS 229, Fall 2017 1 Detecting Thoracic Diseases from Chest X-Ray Images Binit Topiwala, Mariam Alawadi, Hari Prasad { topbinit, malawadi, hprasad }@stanford.edu Abstract Radiologists have to spend time

More information

A SURVEY ON LIVER TUMOR DETECTION AND SEGMENTATION METHODS

A SURVEY ON LIVER TUMOR DETECTION AND SEGMENTATION METHODS A SURVEY ON LIVER TUMOR DETECTION AND SEGMENTATION METHODS R. Rajagopal 1 and P. Subbaiah 2 1 Department of Electronics and Communication Engineering, St. Peter University, Avadi, Chennai, Tamilnadu, India

More information

SEGMENTATION of the distal femur from magnetic resonance

SEGMENTATION of the distal femur from magnetic resonance MEDICAL IMAGE ANALYSIS LABORATORY 2015 1 Distal Femur Segmentation on MR Images Using Random Forests Fabian Balsiger, Tiziano Ronchetti, and Martin Pletscher Abstract Segmentation of the distal femur from

More information

A Statistical Aspect of Imaging Analytics Based Computer-Aided Diagnosis

A Statistical Aspect of Imaging Analytics Based Computer-Aided Diagnosis A Statistical Aspect of Imaging Analytics Based Computer-Aided Diagnosis Le Lu (01/2013) Radiology and Imaging Science National Institutes of Health Clinical Center le.lu@nih.gov Next decade will be very

More information

Fully automatic cephalometric evaluation using Random Forest regression-voting

Fully automatic cephalometric evaluation using Random Forest regression-voting Fully automatic cephalometric evaluation using Random Forest regression-voting Claudia Lindner and Tim F. Cootes Centre for Imaging Sciences, University of Manchester, UK Abstract. Cephalometric analysis

More information

arxiv: v1 [cs.cv] 26 Jun 2018

arxiv: v1 [cs.cv] 26 Jun 2018 Simultaneous Segmentation and Classification of Bone Surfaces from Ultrasound Using a Multi-feature Guided CNN Puyang Wang 1, Vishal M. Patel 1 and Ilker Hacihaliloglu 2,3 arxiv:1806.09766v1 [cs.cv] 26

More information

Segmentation of Skeleton and Organs in Whole-Body CT Images via Iterative Trilateration

Segmentation of Skeleton and Organs in Whole-Body CT Images via Iterative Trilateration 1 Segmentation of Skeleton and Organs in Whole-Body CT Images via Iterative Trilateration Marie Bieth*, Loic Peter, Stephan G. Nekolla, Matthias Eiber, Georg Langs, Markus Schwaiger and Bjoern Menze Abstract

More information

CS4445 Data Mining and Knowledge Discovery in Databases. A Term 2008 Exam 2 October 14, 2008

CS4445 Data Mining and Knowledge Discovery in Databases. A Term 2008 Exam 2 October 14, 2008 CS4445 Data Mining and Knowledge Discovery in Databases. A Term 2008 Exam 2 October 14, 2008 Prof. Carolina Ruiz Department of Computer Science Worcester Polytechnic Institute NAME: Prof. Ruiz Problem

More information

Model-Based Validation of a Graphics Processing Unit Algorithm to Track Foot Bone Kinematics Using Fluoroscopy

Model-Based Validation of a Graphics Processing Unit Algorithm to Track Foot Bone Kinematics Using Fluoroscopy Model-Based Validation of a Graphics Processing Unit Algorithm to Track Foot Bone Kinematics Using Fluoroscopy Matthew Kindig, MS 1, Grant Marchelli, PhD 2, Joseph M. Iaquinto, PhD 1,2, Duane Storti, PhD

More information

FINDING THE TRUE EDGE IN CTA

FINDING THE TRUE EDGE IN CTA FINDING THE TRUE EDGE IN CTA by: John A. Rumberger, PhD, MD, FACC Your patient has chest pain. The Cardiac CT Angiography shows plaque in the LAD. You adjust the viewing window trying to evaluate the stenosis

More information

Simultaneous Localization of Lumbar Vertebrae and Intervertebral Discs with SVM based MRF

Simultaneous Localization of Lumbar Vertebrae and Intervertebral Discs with SVM based MRF 1 Simultaneous Localization of Lumbar Vertebrae and Intervertebral Discs with SVM based MRF Ayse Betul Oktay and Yusuf Sinan Akgul Abstract This paper presents a method for localizing and labeling the

More information

Automatic System For Brain Tumor Detection And Classification Using Level Set And ANN

Automatic System For Brain Tumor Detection And Classification Using Level Set And ANN Automatic System For Brain Tumor Detection And Classification Using Level Set And ANN Nisha Babu A Computer Science Department LBSITW Trivandrum, India nisthesweet@gmail.com Agoma Martin Computer Science

More information

Regression Forests for Efficient Anatomy Detection and Localization in Computed Tomography Scans

Regression Forests for Efficient Anatomy Detection and Localization in Computed Tomography Scans Regression Forests for Efficient Anatomy Detection and Localization in Computed Tomography Scans A. Criminisi, D. Robertson, E. Konukoglu, J. Shotton, S. Pathak, S. White, and K. Siddiqui Microsoft Research

More information

Improving an Active Shape Model with Random Classification Forest for Segmentation of Cervical Vertebrae

Improving an Active Shape Model with Random Classification Forest for Segmentation of Cervical Vertebrae Improving an Active Shape Model with Random Classification Forest for Segmentation of Cervical Vertebrae S M Masudur Rahman Al Arif 1, Michael Gundry 2, Karen Knapp 2 and Greg Slabaugh 1 1 Department of

More information