Atlas-Based Segmentation of Abdominal Organs in 3D Ultrasound, and its Application in Automated Kidney Segmentation

Size: px
Start display at page:

Download "Atlas-Based Segmentation of Abdominal Organs in 3D Ultrasound, and its Application in Automated Kidney Segmentation"

Transcription

1 University of Toronto Atlas-Based Segmentation of Abdominal Organs in 3D Ultrasound, and its Application in Automated Kidney Segmentation Authors: M. Marsousi, K. N. Plataniotis, S. Stergiopoulos Presenter: M. Marsousi, M. Sc., Ph.D. Candidate University of Toronto Electrical and Computer Eng. Communication Group

2 Agenda Introduction Problem Definition Motivation Why Using 3D Ultrasound Imaging? Challenges of 3D Ultrasound Segmentation Prior Arts Proposed Solution Objectives and Contributions Training Processes Specially Aligned Classifiers Training Process of SANNs Segmentation Process Automated Organ s Shape Segmentation Experiments and Results Conclusion 2

3 Section I. Introduction

4 Problem Definition Developing a fully automated method to segment abdominal organs in 3D ultrasound images. **In particular, segmenting the kidney shape.** Computer Aided Diagnosis (CAD) 4

5 Motivation Abdominal Trauma detection Abdominal Trauma is an internal bleeding. To save a trauma patient s life, rapid diagnosis is required. Internal bleeding is detectable around the right kidney in ultrasound images. Ultrasound Image of internal bleeding [7] 5

6 Why Using 3D Ultrasound Imaging? Advantages of 3D US over CT & MRI Non-invasiveness: 3D US does not expose any danger Portability: unstable patients are not required to be moved Near real-time imaging: essential for emergency situations. Advantages of 3D Ultrasound over 2D Ultrasound Images are visualized which could not be achieved by 2D US 3D US provides localization of internal organs 6

7 Challenges of 3D Ultrasound Segmentation Ultrasound-Specific Challenges: Speckle noise Low Contrast Inconsistent Intensity Profile Gaps among the organ shape s boundary Organ Specific Challenge: Partial visibility of the organ shape Operator-Specific Challenge: Probe misalignment 7

8 Prior Arts Prior arts, addressing kidney segmentation in 3D ultrasound images: Semi-automated: MRF-AC by Fernandez and Lopez [1] Fully-automated: Noll et al. [2] (Automated) Marsousi et al.-embc2014[3] (Automated) [1] Martın-Fernández, M., & Alberola-Lopez, C. (2005). An approach for contour detection of human kidneys from ultrasound images using Markov random fields and active contours. Medical Image Analysis, 9(1), [2] M. Noll, X. Li, and S. Wesarg, Automated kidney detection and segmentation in 3d ultrasound, in Clinical Image-Based Proc. Translational Research in Medical Imag. Springer, 2014, pp [3] M. Marsousi, K. N. Plataniotis, and S. Stergiopoulos, Shape-based kidney detection and segmentation in three-dimensional abdominal ultrasound images, in Proc. IEEE Eng. Med. Biol. Soc., Aug 2014, pp

9 Section II. Methodology

10 Objective and Contributions Objective: Developing a fully-automated method to segment abdominal organs shapes of interest in 3D ultrasound images. Proposed Solution: Applying feature-based registration to fit an input ultrasound data on the reference organ s shape (to improve voxels classification accuracy), Applying spatially aligned neural network classifiers (SANNs) to classify voxels into organ and non-organ classes, based on texture information, Applying affine transformation to fit an organ s shape model on the classified voxels, Using the fitted organ shape model to initialize region-based level-set. 10

11 Methodology Processes: (1) Training, and (2) Segmentation Training ultrasound volumes Reference Ultrasound volume Training Process Organ s Shape Model SANN Classifiers Input ultrasound volume Segmentation Process Detection Segmentation Segmented Organ s shape Organ s shape exists or not 11

12 Training Process Selecting a training set of ultrasound volumes, and a reference volume Registering training volumes on the reference volume Manually outlining organ s shapes Extracting texture features by 3D Gabor filters for organ and non-organ voxels Training spatially aligned neural network classifiers (SANNs) Generating an organ s shape model 12

13 Specially Aligned Classifiers Objective: To improve classification performance by reducing data complexity of each classifier (segment) For each training volume: Register the volume on the reference volume. Extract Gabor features of organ s voxels for each segment. Extract Gabor features of non-organ voxels of the entire volumes. Training a neural network classifier for each segment. B x + W x(k x 1) N x + 1 B y + W y(k y 1) N y + 1 B z + W z(k z 1) N z + 1 K x [1,2,, N x ] K y [1,2,, N y ] K z [1,2,, N z ] x < B x + W x(k x + 1) N x + 1 y < B y + W y K y + 1 N y + 1 z < B z + W z K z + 1 N z

14 Training Process of SANNs Horizontal Concatenation Of feature matrices Vertical Concatenation Of feature vectors 14

15 Segmentation Process Reducing speckle noise using Gaussian FIR filtering, Registering an input ultrasound volume on the reference volume, Extracting texture features using the 3D Gabor filters, Classifying voxels into organ and non-organ candidates, Registering the shape model on the candidate organ s voxels Deciding whether the organ s shape exists or not. Initializing a level-set function using the fitted shape model. 15

16 Automated Organ s Shape Segmentation Organ Shape Detection (Required for Automated Process) Organ Shape Segmentation 16

17 Section III Experiments and Results

18 Experiments and Results Objective Evaluating the proposed kidney detection and segmentation methods Comparing the obtained results with the prior arts Case Study The right upper quadrant (RUQ) view, in which the right kidney is visualized Dataset 36 ultrasound volumes: 21 RUQ volumes with-kidney, and 15 non-ruq views without-kidney volumes. Training set: Containing 6 with-kidney volumes. Evaluation set: Containing 15 with-kidney and 15 without-kidney volumes. Evaluation Metrics Organ detection accuracy: ACC KD = 100%( N TP+N TN ) 30 Organ segmentation metrics: Dice s coefficient DSC = Accuracy ACC = 100% 2TP 2TP+FN+FP TP+TN TP+TN+FP+FN Mean distance MD = 1 AS p AS e p, GT dp Where e p, GT is the l-2 norm 18

19 Organ Detection Results According to TABLE I, the proposed method of this paper shows a higher accuracy compared to the other methods. The proposed method has a high specificity of kidney detection, by making zero False-Positive detection. 19

20 Organ Segmentation Results The proposed method of this paper shows the highest segmentation accuracy, compared to the other methods. 20

21 Conclusion We proposed a fully automated organ segmentation method to segment internal organ s in 3D Ultrasound images. We trained an atlas model of the organ of interest The SANNs classify voxels into organ and non-organ classes, providing a higher detection accuracy. The proposed method was used to segment the kidney shape in ultrasound volumes. The reported results validates the utility of the method in segmenting internal organs in 3D ultrasound images. 21

22 The End, Thank You

Shape-Based Kidney Detection and Segmentation in Three-Dimensional Abdominal Ultrasound Images

Shape-Based Kidney Detection and Segmentation in Three-Dimensional Abdominal Ultrasound Images University of Toronto Shape-Based Kidney Detection and Segmentation in Three-Dimensional Abdominal Ultrasound Images Authors: M. Marsousi, K. N. Plataniotis, S. Stergiopoulos Presenter: M. Marsousi, M.

More information

Automated Kidney Segmentation In 3D Ultrasound Imagery, and its Application in Computer-assisted Trauma Diagnosis

Automated Kidney Segmentation In 3D Ultrasound Imagery, and its Application in Computer-assisted Trauma Diagnosis Automated Kidney Segmentation In 3D Ultrasound Imagery, and its Application in Computer-assisted Trauma Diagnosis Final PhD Oral Examination - Presentation Slides September 1 st, 2016 Mahdi Marsousi Supervisor:

More information

Atlas-Based Organ Segmentation in 3D Ultrasound Images and its Application in Automated Kidney Segmentation

Atlas-Based Organ Segmentation in 3D Ultrasound Images and its Application in Automated Kidney Segmentation Atlas-Based Organ Segmentation in 3D Ultrasound Images and its Application in Automated Kidney Segmentation Mahdi Marsousi 1, Konstantinos N. Plataniotis and Stergios Stergiopoulos 3 Abstract Automated

More information

Computer-Assisted 3D Ultrasound Probe Placement for Emergency Healthcare Applications

Computer-Assisted 3D Ultrasound Probe Placement for Emergency Healthcare Applications 1 Computer-Assisted 3D Ultrasound Probe Placement for Emergency Healthcare Applications Mahdi Marsousi, Member, IEEE, Konstantinos Plataniotis, Fellow, IEEE, Stergios Stergiopoulos, SeniorMember, IEEE

More information

Medical Image Segmentation

Medical Image Segmentation Medical Image Segmentation Xin Yang, HUST *Collaborated with UCLA Medical School and UCSB Segmentation to Contouring ROI Aorta & Kidney 3D Brain MR Image 3D Abdominal CT Image Liver & Spleen Caudate Nucleus

More information

Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion

Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion Mattias P. Heinrich Julia A. Schnabel, Mark Jenkinson, Sir Michael Brady 2 Clinical

More information

Machine Learning for Medical Image Analysis. A. Criminisi

Machine Learning for Medical Image Analysis. A. Criminisi Machine Learning for Medical Image Analysis A. Criminisi Overview Introduction to machine learning Decision forests Applications in medical image analysis Anatomy localization in CT Scans Spine Detection

More information

Fully Automatic Multi-organ Segmentation based on Multi-boost Learning and Statistical Shape Model Search

Fully Automatic Multi-organ Segmentation based on Multi-boost Learning and Statistical Shape Model Search Fully Automatic Multi-organ Segmentation based on Multi-boost Learning and Statistical Shape Model Search Baochun He, Cheng Huang, Fucang Jia Shenzhen Institutes of Advanced Technology, Chinese Academy

More information

8/3/2017. Contour Assessment for Quality Assurance and Data Mining. Objective. Outline. Tom Purdie, PhD, MCCPM

8/3/2017. Contour Assessment for Quality Assurance and Data Mining. Objective. Outline. Tom Purdie, PhD, MCCPM Contour Assessment for Quality Assurance and Data Mining Tom Purdie, PhD, MCCPM Objective Understand the state-of-the-art in contour assessment for quality assurance including data mining-based techniques

More information

Modeling and preoperative planning for kidney surgery

Modeling and preoperative planning for kidney surgery Modeling and preoperative planning for kidney surgery Refael Vivanti Computer Aided Surgery and Medical Image Processing Lab Hebrew University of Jerusalem, Israel Advisor: Prof. Leo Joskowicz Clinical

More information

Deformable Segmentation using Sparse Shape Representation. Shaoting Zhang

Deformable Segmentation using Sparse Shape Representation. Shaoting Zhang Deformable Segmentation using Sparse Shape Representation Shaoting Zhang Introduction Outline Our methods Segmentation framework Sparse shape representation Applications 2D lung localization in X-ray 3D

More information

Hybrid Approach for MRI Human Head Scans Classification using HTT based SFTA Texture Feature Extraction Technique

Hybrid Approach for MRI Human Head Scans Classification using HTT based SFTA Texture Feature Extraction Technique Volume 118 No. 17 2018, 691-701 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Hybrid Approach for MRI Human Head Scans Classification using HTT

More information

Auto-Segmentation Using Deformable Image Registration. Disclosure. Objectives 8/4/2011

Auto-Segmentation Using Deformable Image Registration. Disclosure. Objectives 8/4/2011 Auto-Segmentation Using Deformable Image Registration Lei Dong, Ph.D. Dept. of Radiation Physics University of Texas MD Anderson Cancer Center, Houston, Texas AAPM Therapy Educational Course Aug. 4th 2011

More information

Towards an Estimation of Acoustic Impedance from Multiple Ultrasound Images

Towards an Estimation of Acoustic Impedance from Multiple Ultrasound Images Towards an Estimation of Acoustic Impedance from Multiple Ultrasound Images Christian Wachinger 1, Ramtin Shams 2, Nassir Navab 1 1 Computer Aided Medical Procedures (CAMP), Technische Universität München

More information

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging 1 CS 9 Final Project Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging Feiyu Chen Department of Electrical Engineering ABSTRACT Subject motion is a significant

More information

Object Identification in Ultrasound Scans

Object Identification in Ultrasound Scans Object Identification in Ultrasound Scans Wits University Dec 05, 2012 Roadmap Introduction to the problem Motivation Related Work Our approach Expected Results Introduction Nowadays, imaging devices like

More information

A Registration-Based Atlas Propagation Framework for Automatic Whole Heart Segmentation

A Registration-Based Atlas Propagation Framework for Automatic Whole Heart Segmentation A Registration-Based Atlas Propagation Framework for Automatic Whole Heart Segmentation Xiahai Zhuang (PhD) Centre for Medical Image Computing University College London Fields-MITACS Conference on Mathematics

More information

Learning-based Neuroimage Registration

Learning-based Neuroimage Registration Learning-based Neuroimage Registration Leonid Teverovskiy and Yanxi Liu 1 October 2004 CMU-CALD-04-108, CMU-RI-TR-04-59 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Abstract

More information

Hierarchical Multi structure Segmentation Guided by Anatomical Correlations

Hierarchical Multi structure Segmentation Guided by Anatomical Correlations Hierarchical Multi structure Segmentation Guided by Anatomical Correlations Oscar Alfonso Jiménez del Toro oscar.jimenez@hevs.ch Henning Müller henningmueller@hevs.ch University of Applied Sciences Western

More information

Automatic Rapid Segmentation of Human Lung from 2D Chest X-Ray Images

Automatic Rapid Segmentation of Human Lung from 2D Chest X-Ray Images Automatic Rapid Segmentation of Human Lung from 2D Chest X-Ray Images Abstract. In this paper, we propose a complete framework that segments lungs from 2D Chest X-Ray (CXR) images automatically and rapidly.

More information

Using Probability Maps for Multi organ Automatic Segmentation

Using Probability Maps for Multi organ Automatic Segmentation Using Probability Maps for Multi organ Automatic Segmentation Ranveer Joyseeree 1,2, Óscar Jiménez del Toro1, and Henning Müller 1,3 1 University of Applied Sciences Western Switzerland (HES SO), Sierre,

More information

An Elliptical Level Set Method for Automatic TRUS Prostate Image Segmentation. Nezamoddin N. Kachouie, Paul Fieguth and Shahryar Rahnamayan

An Elliptical Level Set Method for Automatic TRUS Prostate Image Segmentation. Nezamoddin N. Kachouie, Paul Fieguth and Shahryar Rahnamayan 6 IEEE International Symposium on Signal Processing and Information Technology An Elliptical Level Set Method for Automatic TRUS Prostate Image Segmentation Nezamoddin N. Kachouie, Paul Fieguth and Shahryar

More information

Prostate Detection Using Principal Component Analysis

Prostate Detection Using Principal Component Analysis Prostate Detection Using Principal Component Analysis Aamir Virani (avirani@stanford.edu) CS 229 Machine Learning Stanford University 16 December 2005 Introduction During the past two decades, computed

More information

Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation!

Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation! Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation Ozan Oktay, Wenzhe Shi, Jose Caballero, Kevin Keraudren, and Daniel Rueckert Department of Compu.ng Imperial

More information

PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION

PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION Ms. Vaibhavi Nandkumar Jagtap 1, Mr. Santosh D. Kale 2 1 PG Scholar, 2 Assistant Professor, Department of Electronics and Telecommunication,

More information

Detection and Identification of Lung Tissue Pattern in Interstitial Lung Diseases using Convolutional Neural Network

Detection and Identification of Lung Tissue Pattern in Interstitial Lung Diseases using Convolutional Neural Network Detection and Identification of Lung Tissue Pattern in Interstitial Lung Diseases using Convolutional Neural Network Namrata Bondfale 1, Asst. Prof. Dhiraj Bhagwat 2 1,2 E&TC, Indira College of Engineering

More information

Detection of Bone Fracture using Image Processing Methods

Detection of Bone Fracture using Image Processing Methods Detection of Bone Fracture using Image Processing Methods E Susmitha, M.Tech Student, Susmithasrinivas3@gmail.com Mr. K. Bhaskar Assistant Professor bhasi.adc@gmail.com MVR college of engineering and Technology

More information

Computer Aided Diagnosis Based on Medical Image Processing and Artificial Intelligence Methods

Computer Aided Diagnosis Based on Medical Image Processing and Artificial Intelligence Methods International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 9 (2013), pp. 887-892 International Research Publications House http://www. irphouse.com /ijict.htm Computer

More information

Image Registration. Prof. Dr. Lucas Ferrari de Oliveira UFPR Informatics Department

Image Registration. Prof. Dr. Lucas Ferrari de Oliveira UFPR Informatics Department Image Registration Prof. Dr. Lucas Ferrari de Oliveira UFPR Informatics Department Introduction Visualize objects inside the human body Advances in CS methods to diagnosis, treatment planning and medical

More information

ANALYSIS OF PULMONARY FIBROSIS IN MRI, USING AN ELASTIC REGISTRATION TECHNIQUE IN A MODEL OF FIBROSIS: Scleroderma

ANALYSIS OF PULMONARY FIBROSIS IN MRI, USING AN ELASTIC REGISTRATION TECHNIQUE IN A MODEL OF FIBROSIS: Scleroderma ANALYSIS OF PULMONARY FIBROSIS IN MRI, USING AN ELASTIC REGISTRATION TECHNIQUE IN A MODEL OF FIBROSIS: Scleroderma ORAL DEFENSE 8 th of September 2017 Charlotte MARTIN Supervisor: Pr. MP REVEL M2 Bio Medical

More information

VALIDATION OF DIR. Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology

VALIDATION OF DIR. Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology VALIDATION OF DIR Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology Overview Basics: Registration Framework, Theory Discuss Validation techniques Using Synthetic CT data & Phantoms What metrics to

More information

Introduction to Medical Image Processing

Introduction to Medical Image Processing Introduction to Medical Image Processing Δ Essential environments of a medical imaging system Subject Image Analysis Energy Imaging System Images Image Processing Feature Images Image processing may be

More information

Available Online through

Available Online through Available Online through www.ijptonline.com ISSN: 0975-766X CODEN: IJPTFI Research Article ANALYSIS OF CT LIVER IMAGES FOR TUMOUR DIAGNOSIS BASED ON CLUSTERING TECHNIQUE AND TEXTURE FEATURES M.Krithika

More information

Learn Image Segmentation Basics with Hands-on Introduction to ITK-SNAP. RSNA 2016 Courses RCB22 and RCB54

Learn Image Segmentation Basics with Hands-on Introduction to ITK-SNAP. RSNA 2016 Courses RCB22 and RCB54 Learn Image Segmentation Basics with Hands-on Introduction to ITK-SNAP RSNA 2016 Courses RCB22 and RCB54 RCB22 Mon, Nov 28 10:30-12:00 PM, Room S401CD RCB54 Thu, Dec 1 2:30-4:30 PM, Room S401CD Presenters:

More information

Content Based Medical Image Retrieval Using Fuzzy C- Means Clustering With RF

Content Based Medical Image Retrieval Using Fuzzy C- Means Clustering With RF Content Based Medical Image Retrieval Using Fuzzy C- Means Clustering With RF Jasmine Samraj #1, NazreenBee. M *2 # Associate Professor, Department of Computer Science, Quaid-E-Millath Government college

More information

Manifold Learning-based Data Sampling for Model Training

Manifold Learning-based Data Sampling for Model Training Manifold Learning-based Data Sampling for Model Training Shuqing Chen 1, Sabrina Dorn 2, Michael Lell 3, Marc Kachelrieß 2,Andreas Maier 1 1 Pattern Recognition Lab, FAU Erlangen-Nürnberg 2 German Cancer

More information

IMAGE PROCESSING FOR MEASUREMENT OF INTIMA MEDIA THICKNESS

IMAGE PROCESSING FOR MEASUREMENT OF INTIMA MEDIA THICKNESS 3rd SPLab Workshop 2013 1 www.splab.cz IMAGE PROCESSING FOR MEASUREMENT OF INTIMA MEDIA THICKNESS Ing. Radek Beneš Department of Telecommunications FEEC, Brno University of Technology OUTLINE 2 Introduction

More information

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 20: Machine Learning in Medical Imaging II (deep learning and decision forests)

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 20: Machine Learning in Medical Imaging II (deep learning and decision forests) SPRING 2016 1 MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 20: Machine Learning in Medical Imaging II (deep learning and decision forests) Dr. Ulas Bagci HEC 221, Center for Research in Computer Vision (CRCV),

More information

Automatized & Interactive. Muscle tissues characterization using. Na MRI

Automatized & Interactive. Muscle tissues characterization using. Na MRI Automatized & Interactive Human Skeletal Muscle Segmentation Muscle tissues characterization using 23 Na MRI Noura Azzabou 30 April 2013 What is muscle segmentation? Axial slice of the thigh of a healthy

More information

Feature Extraction and Texture Classification in MRI

Feature Extraction and Texture Classification in MRI Extraction and Texture Classification in MRI Jayashri Joshi, Mrs.A.C.Phadke. Marathwada Mitra Mandal s College of Engineering, Pune.. Maharashtra Institute of Technology, Pune. kjayashri@rediffmail.com.

More information

ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION

ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION Abstract: MIP Project Report Spring 2013 Gaurav Mittal 201232644 This is a detailed report about the course project, which was to implement

More information

Biomedical Image Processing

Biomedical Image Processing Biomedical Image Processing Jason Thong Gabriel Grant 1 2 Motivation from the Medical Perspective MRI, CT and other biomedical imaging devices were designed to assist doctors in their diagnosis and treatment

More information

3D Registration based on Normalized Mutual Information

3D Registration based on Normalized Mutual Information 3D Registration based on Normalized Mutual Information Performance of CPU vs. GPU Implementation Florian Jung, Stefan Wesarg Interactive Graphics Systems Group (GRIS), TU Darmstadt, Germany stefan.wesarg@gris.tu-darmstadt.de

More information

NIH Public Access Author Manuscript Proc Soc Photo Opt Instrum Eng. Author manuscript; available in PMC 2014 October 07.

NIH Public Access Author Manuscript Proc Soc Photo Opt Instrum Eng. Author manuscript; available in PMC 2014 October 07. NIH Public Access Author Manuscript Published in final edited form as: Proc Soc Photo Opt Instrum Eng. 2014 March 21; 9034: 903442. doi:10.1117/12.2042915. MRI Brain Tumor Segmentation and Necrosis Detection

More information

Kidney Segmentation in Ultrasound Images Using Curvelet Transform and Shape Prior

Kidney Segmentation in Ultrasound Images Using Curvelet Transform and Shape Prior 013 International Conference on Communication Systems and Network Technologies Kidney Segmentation in Ultrasound Images Using Curvelet Transform and Shape Prior Ehsan Jokar 1, Hossein Pourghassem Department

More information

CHAPTER 6 DETECTION OF MASS USING NOVEL SEGMENTATION, GLCM AND NEURAL NETWORKS

CHAPTER 6 DETECTION OF MASS USING NOVEL SEGMENTATION, GLCM AND NEURAL NETWORKS 130 CHAPTER 6 DETECTION OF MASS USING NOVEL SEGMENTATION, GLCM AND NEURAL NETWORKS A mass is defined as a space-occupying lesion seen in more than one projection and it is described by its shapes and margin

More information

MR IMAGE SEGMENTATION

MR IMAGE SEGMENTATION MR IMAGE SEGMENTATION Prepared by : Monil Shah What is Segmentation? Partitioning a region or regions of interest in images such that each region corresponds to one or more anatomic structures Classification

More information

Additional file 1: Online Supplementary Material 1

Additional file 1: Online Supplementary Material 1 Additional file 1: Online Supplementary Material 1 Calyn R Moulton and Michael J House School of Physics, University of Western Australia, Crawley, Western Australia. Victoria Lye, Colin I Tang, Michele

More information

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12 Contents 1 Introduction 10 1.1 Motivation and Aims....... 10 1.1.1 Functional Imaging.... 10 1.1.2 Computational Neuroanatomy... 12 1.2 Overview of Chapters... 14 2 Rigid Body Registration 18 2.1 Introduction.....

More information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Andreas Biesdorf 1, Stefan Wörz 1, Hans-Jürgen Kaiser 2, Karl Rohr 1 1 University of Heidelberg, BIOQUANT, IPMB,

More information

Content-based Image Retrieval (CBIR)

Content-based Image Retrieval (CBIR) Content-based Image Retrieval (CBIR) Content-based Image Retrieval (CBIR) Searching a large database for images that match a query: What kinds of databases? What kinds of queries? What constitutes a match?

More information

Computer-Aided Diagnosis in Abdominal and Cardiac Radiology Using Neural Networks

Computer-Aided Diagnosis in Abdominal and Cardiac Radiology Using Neural Networks Computer-Aided Diagnosis in Abdominal and Cardiac Radiology Using Neural Networks Du-Yih Tsai, Masaru Sekiya and Yongbum Lee Department of Radiological Technology, School of Health Sciences, Faculty of

More information

Automatic 3D Segmentation of Ultrasound Images Using Atlas Registration and Statistical Texture Prior

Automatic 3D Segmentation of Ultrasound Images Using Atlas Registration and Statistical Texture Prior Cum Laude Poster Award Automatic 3D Segmentation of Ultrasound Images Using Atlas Registration and Statistical Texture Prior Xiaofeng Yang 1, David Schuster 1, Viraj Master 2, Peter Nieh 2, Aaron Fenster

More information

Medical Image Registration by Maximization of Mutual Information

Medical Image Registration by Maximization of Mutual Information Medical Image Registration by Maximization of Mutual Information EE 591 Introduction to Information Theory Instructor Dr. Donald Adjeroh Submitted by Senthil.P.Ramamurthy Damodaraswamy, Umamaheswari Introduction

More information

MRI Segmentation. MRI Bootcamp, 14 th of January J. Miguel Valverde

MRI Segmentation. MRI Bootcamp, 14 th of January J. Miguel Valverde MRI Segmentation MRI Bootcamp, 14 th of January 2019 Segmentation Segmentation Information Segmentation Algorithms Approach Types of Information Local 4 45 100 110 80 50 76 42 27 186 177 120 167 111 56

More information

MEDICAL IMAGE NOISE REDUCTION AND REGION CONTRAST ENHANCEMENT USING PARTIAL DIFFERENTIAL EQUATIONS

MEDICAL IMAGE NOISE REDUCTION AND REGION CONTRAST ENHANCEMENT USING PARTIAL DIFFERENTIAL EQUATIONS MEDICAL IMAGE NOISE REDUCTION AND REGION CONTRAST ENHANCEMENT USING PARTIAL DIFFERENTIAL EQUATIONS Miguel Alemán-Flores, Luis Álvarez-León Departamento de Informática y Sistemas, Universidad de Las Palmas

More information

Segmenting Lesions in Multiple Sclerosis Patients James Chen, Jason Su

Segmenting Lesions in Multiple Sclerosis Patients James Chen, Jason Su Segmenting Lesions in Multiple Sclerosis Patients James Chen, Jason Su Radiologists and researchers spend countless hours tediously segmenting white matter lesions to diagnose and study brain diseases.

More information

Automated Lesion Detection Methods for 2D and 3D Chest X-Ray Images

Automated Lesion Detection Methods for 2D and 3D Chest X-Ray Images Automated Lesion Detection Methods for 2D and 3D Chest X-Ray Images Takeshi Hara, Hiroshi Fujita,Yongbum Lee, Hitoshi Yoshimura* and Shoji Kido** Department of Information Science, Gifu University Yanagido

More information

Using the Apriori Algorithm for Medical Image Classification SORINA GHITA

Using the Apriori Algorithm for Medical Image Classification SORINA GHITA Using the Apriori Algorithm for Medical Image Classification SORINA GHITA Introduction Today, the analysis of an image is done by a radiologist and is time consuming. Also, the amount of images is growing

More information

Semantic Context Forests for Learning- Based Knee Cartilage Segmentation in 3D MR Images

Semantic Context Forests for Learning- Based Knee Cartilage Segmentation in 3D MR Images Semantic Context Forests for Learning- Based Knee Cartilage Segmentation in 3D MR Images MICCAI 2013: Workshop on Medical Computer Vision Authors: Quan Wang, Dijia Wu, Le Lu, Meizhu Liu, Kim L. Boyer,

More information

WEIGHTED L1 AND L2 NORMS FOR IMAGE RECONSTRUCTION: FIRST CLINICAL RESULTS OF EIT LUNG VENTILATION DATA

WEIGHTED L1 AND L2 NORMS FOR IMAGE RECONSTRUCTION: FIRST CLINICAL RESULTS OF EIT LUNG VENTILATION DATA WEIGHTED L1 AND L2 NORMS FOR IMAGE RECONSTRUCTION: FIRST CLINICAL RESULTS OF EIT LUNG VENTILATION DATA PRESENTER: PEYMAN RAHMATI, PHD CANDIDATE, Biomedical Eng., Dept. of Systems and Computer Eng., Carleton

More information

A New GPU-Based Level Set Method for Medical Image Segmentation

A New GPU-Based Level Set Method for Medical Image Segmentation A New GPU-Based Level Set Method for Medical Image Segmentation Wenzhe Xue Research Assistant Radiology Department Mayo Clinic, Scottsdale, AZ Ph.D. Student Biomedical Informatics Arizona State University,

More information

Spectral Clustering Algorithms for Ultrasound Image Segmentation

Spectral Clustering Algorithms for Ultrasound Image Segmentation Spectral Clustering Algorithms for Ultrasound Image Segmentation Neculai Archip 1, Robert Rohling 2, Peter Cooperberg 3, Hamid Tahmasebpour 3, and Simon K. Warfield 1 1 Computational Radiology Laboratory,

More information

Good Morning! Thank you for joining us

Good Morning! Thank you for joining us Good Morning! Thank you for joining us Deformable Registration, Contour Propagation and Dose Mapping: 101 and 201 Marc Kessler, PhD, FAAPM The University of Michigan Conflict of Interest I receive direct

More information

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 19: Machine Learning in Medical Imaging (A Brief Introduction)

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 19: Machine Learning in Medical Imaging (A Brief Introduction) SPRING 2016 1 MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 19: Machine Learning in Medical Imaging (A Brief Introduction) Dr. Ulas Bagci HEC 221, Center for Research in Computer Vision (CRCV), University

More information

SHAPE-INCLUDED LABEL-CONSISTENT DISCRIMINATIVE DICTIONARY LEARNING: AN APPROACH TO DETECT AND SEGMENT MULTI-CLASS OBJECTS IN IMAGES

SHAPE-INCLUDED LABEL-CONSISTENT DISCRIMINATIVE DICTIONARY LEARNING: AN APPROACH TO DETECT AND SEGMENT MULTI-CLASS OBJECTS IN IMAGES SHAPE-INCLUDED LABEL-CONSISTENT DISCRIMINATIVE DICTIONARY LEARNING: AN APPROACH TO DETECT AND SEGMENT MULTI-CLASS OBJECTS IN IMAGES Mahdi Marsousi, Xingyu Li, Konstantinos N. Plataniotis Multimedia Lab,

More information

CHAPTER 3 TUMOR DETECTION BASED ON NEURO-FUZZY TECHNIQUE

CHAPTER 3 TUMOR DETECTION BASED ON NEURO-FUZZY TECHNIQUE 32 CHAPTER 3 TUMOR DETECTION BASED ON NEURO-FUZZY TECHNIQUE 3.1 INTRODUCTION In this chapter we present the real time implementation of an artificial neural network based on fuzzy segmentation process

More information

Organ Surface Reconstruction using B-Splines and Hu Moments

Organ Surface Reconstruction using B-Splines and Hu Moments Organ Surface Reconstruction using B-Splines and Hu Moments Andrzej Wytyczak-Partyka Institute of Computer Engineering Control and Robotics, Wroclaw University of Technology, 27 Wybrzeze Wyspianskiego

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

Assessing Accuracy Factors in Deformable 2D/3D Medical Image Registration Using a Statistical Pelvis Model

Assessing Accuracy Factors in Deformable 2D/3D Medical Image Registration Using a Statistical Pelvis Model Assessing Accuracy Factors in Deformable 2D/3D Medical Image Registration Using a Statistical Pelvis Model Jianhua Yao National Institute of Health Bethesda, MD USA jyao@cc.nih.gov Russell Taylor The Johns

More information

Adaptive Multiscale Ultrasound Compounding Using Phase Information

Adaptive Multiscale Ultrasound Compounding Using Phase Information Adaptive Multiscale Ultrasound Compounding Using Phase Information Vicente Grau and J. Alison Noble Wolfson Medical Vision Laboratory, Department of Engineering Science, University of Oxford, Parks Road,

More information

ABSTRACT 1. INTRODUCTION 2. METHODS

ABSTRACT 1. INTRODUCTION 2. METHODS Finding Seeds for Segmentation Using Statistical Fusion Fangxu Xing *a, Andrew J. Asman b, Jerry L. Prince a,c, Bennett A. Landman b,c,d a Department of Electrical and Computer Engineering, Johns Hopkins

More information

MEDICAL IMAGE ANALYSIS

MEDICAL IMAGE ANALYSIS SECOND EDITION MEDICAL IMAGE ANALYSIS ATAM P. DHAWAN g, A B IEEE Engineering in Medicine and Biology Society, Sponsor IEEE Press Series in Biomedical Engineering Metin Akay, Series Editor +IEEE IEEE PRESS

More information

Medical Imaging Projects

Medical Imaging Projects NSF REU MedIX Summer 2006 Medical Imaging Projects Daniela Stan Raicu, PhD http://facweb.cs.depaul.edu/research draicu@cs.depaul.edu Outline Medical Informatics Imaging Modalities Computed Tomography Medical

More information

Computational Radiology Lab, Children s Hospital, Harvard Medical School, Boston, MA.

Computational Radiology Lab, Children s Hospital, Harvard Medical School, Boston, MA. Shape prior integration in discrete optimization segmentation algorithms M. Freiman Computational Radiology Lab, Children s Hospital, Harvard Medical School, Boston, MA. Email: moti.freiman@childrens.harvard.edu

More information

Statistical Shape and Probability Prior Model for Automatic Prostate Segmentation

Statistical Shape and Probability Prior Model for Automatic Prostate Segmentation 2011 International Conference on Digital Image Computing: Techniques and Applications Statistical Shape and Probability Prior Model for Automatic Prostate Segmentation Soumya Ghose, Arnau Oliver, Robert

More information

Liver Tumor Detection using Artificial Neural Networks for Medical Images

Liver Tumor Detection using Artificial Neural Networks for Medical Images IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 03 August 2015 ISSN (online): 2349-6010 Liver Tumor Detection using Artificial Neural Networks for Medical Images

More information

Modern Medical Image Analysis 8DC00 Exam

Modern Medical Image Analysis 8DC00 Exam Parts of answers are inside square brackets [... ]. These parts are optional. Answers can be written in Dutch or in English, as you prefer. You can use drawings and diagrams to support your textual answers.

More information

NIH Public Access Author Manuscript Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 November 15.

NIH Public Access Author Manuscript Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 November 15. NIH Public Access Author Manuscript Published in final edited form as: Proc IEEE Int Symp Biomed Imaging. 2013 April ; 2013: 748 751. doi:10.1109/isbi.2013.6556583. BRAIN TUMOR SEGMENTATION WITH SYMMETRIC

More information

A SURVEY ON LIVER TUMOR DETECTION AND SEGMENTATION METHODS

A SURVEY ON LIVER TUMOR DETECTION AND SEGMENTATION METHODS A SURVEY ON LIVER TUMOR DETECTION AND SEGMENTATION METHODS R. Rajagopal 1 and P. Subbaiah 2 1 Department of Electronics and Communication Engineering, St. Peter University, Avadi, Chennai, Tamilnadu, India

More information

Medical Image Analysis

Medical Image Analysis Computer assisted Image Analysis VT04 29 april 2004 Medical Image Analysis Lecture 10 (part 1) Xavier Tizon Medical Image Processing Medical imaging modalities XRay,, CT Ultrasound MRI PET, SPECT Generic

More information

Hybrid Segmentation with Canny Edge and K Means Clustering To Extract the Mammogram Tumor

Hybrid Segmentation with Canny Edge and K Means Clustering To Extract the Mammogram Tumor RESEARCH ARTICLE Hybrid Segmentation with Canny Edge and K Means Clustering To Extract the Mammogram Tumor M Punitha [1], K.Perumal [2] Research scholar [1], Professor [2] Department of Computer Applications

More information

GPU Ultrasound Simulation and Volume Reconstruction

GPU Ultrasound Simulation and Volume Reconstruction GPU Ultrasound Simulation and Volume Reconstruction Athanasios Karamalis 1,2 Supervisor: Nassir Navab1 Advisor: Oliver Kutter1, Wolfgang Wein2 1Computer Aided Medical Procedures (CAMP), Technische Universität

More information

radiotherapy Andrew Godley, Ergun Ahunbay, Cheng Peng, and X. Allen Li NCAAPM Spring Meeting 2010 Madison, WI

radiotherapy Andrew Godley, Ergun Ahunbay, Cheng Peng, and X. Allen Li NCAAPM Spring Meeting 2010 Madison, WI GPU-Accelerated autosegmentation for adaptive radiotherapy Andrew Godley, Ergun Ahunbay, Cheng Peng, and X. Allen Li agodley@mcw.edu NCAAPM Spring Meeting 2010 Madison, WI Overview Motivation Adaptive

More information

Norbert Schuff VA Medical Center and UCSF

Norbert Schuff VA Medical Center and UCSF Norbert Schuff Medical Center and UCSF Norbert.schuff@ucsf.edu Medical Imaging Informatics N.Schuff Course # 170.03 Slide 1/67 Objective Learn the principle segmentation techniques Understand the role

More information

A Multiple-Layer Flexible Mesh Template Matching Method for Nonrigid Registration between a Pelvis Model and CT Images

A Multiple-Layer Flexible Mesh Template Matching Method for Nonrigid Registration between a Pelvis Model and CT Images A Multiple-Layer Flexible Mesh Template Matching Method for Nonrigid Registration between a Pelvis Model and CT Images Jianhua Yao 1, Russell Taylor 2 1. Diagnostic Radiology Department, Clinical Center,

More information

A Review on Label Image Constrained Multiatlas Selection

A Review on Label Image Constrained Multiatlas Selection A Review on Label Image Constrained Multiatlas Selection Ms. VAIBHAVI NANDKUMAR JAGTAP 1, Mr. SANTOSH D. KALE 2 1PG Scholar, Department of Electronics and Telecommunication, SVPM College of Engineering,

More information

K-Means Clustering Using Localized Histogram Analysis

K-Means Clustering Using Localized Histogram Analysis K-Means Clustering Using Localized Histogram Analysis Michael Bryson University of South Carolina, Department of Computer Science Columbia, SC brysonm@cse.sc.edu Abstract. The first step required for many

More information

VC 11/12 T14 Visual Feature Extraction

VC 11/12 T14 Visual Feature Extraction VC 11/12 T14 Visual Feature Extraction Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline Feature Vectors Colour Texture

More information

Performance Evaluation of the TINA Medical Image Segmentation Algorithm on Brainweb Simulated Images

Performance Evaluation of the TINA Medical Image Segmentation Algorithm on Brainweb Simulated Images Tina Memo No. 2008-003 Internal Memo Performance Evaluation of the TINA Medical Image Segmentation Algorithm on Brainweb Simulated Images P. A. Bromiley Last updated 20 / 12 / 2007 Imaging Science and

More information

MRI Brain Image Segmentation Using an AM-FM Model

MRI Brain Image Segmentation Using an AM-FM Model MRI Brain Image Segmentation Using an AM-FM Model Marios S. Pattichis', Helen Petropoulos2, and William M. Brooks2 1 Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque,

More information

Mirrored LH Histograms for the Visualization of Material Boundaries

Mirrored LH Histograms for the Visualization of Material Boundaries Mirrored LH Histograms for the Visualization of Material Boundaries Petr Šereda 1, Anna Vilanova 1 and Frans A. Gerritsen 1,2 1 Department of Biomedical Engineering, Technische Universiteit Eindhoven,

More information

Comparison of Different Metrics for Appearance-model-based 2D/3D-registration with X-ray Images

Comparison of Different Metrics for Appearance-model-based 2D/3D-registration with X-ray Images Comparison of Different Metrics for Appearance-model-based 2D/3D-registration with X-ray Images Philipp Steininger 1, Karl D. Fritscher 1, Gregor Kofler 1, Benedikt Schuler 1, Markus Hänni 2, Karsten Schwieger

More information

Two Dimensional Wavelet and its Application

Two Dimensional Wavelet and its Application RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Two Dimensional Wavelet and its Application Iman Makaremi 1 2 RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS - UNIVERSITY OF WINDSOR Outline

More information

Spatio-Temporal Registration of Biomedical Images by Computational Methods

Spatio-Temporal Registration of Biomedical Images by Computational Methods Spatio-Temporal Registration of Biomedical Images by Computational Methods Francisco P. M. Oliveira, João Manuel R. S. Tavares tavares@fe.up.pt, www.fe.up.pt/~tavares Outline 1. Introduction 2. Spatial

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 10 130221 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Canny Edge Detector Hough Transform Feature-Based

More information

Texture Based Image Segmentation and analysis of medical image

Texture Based Image Segmentation and analysis of medical image Texture Based Image Segmentation and analysis of medical image 1. The Image Segmentation Problem Dealing with information extracted from a natural image, a medical scan, satellite data or a frame in a

More information

Atlas Based Segmentation of the prostate in MR images

Atlas Based Segmentation of the prostate in MR images Atlas Based Segmentation of the prostate in MR images Albert Gubern-Merida and Robert Marti Universitat de Girona, Computer Vision and Robotics Group, Girona, Spain {agubern,marly}@eia.udg.edu Abstract.

More information

Deformable Registration Using Scale Space Keypoints

Deformable Registration Using Scale Space Keypoints Deformable Registration Using Scale Space Keypoints Mehdi Moradi a, Purang Abolmaesoumi a,b and Parvin Mousavi a a School of Computing, Queen s University, Kingston, Ontario, Canada K7L 3N6; b Department

More information

Segmentation of 3-D medical image data sets with a combination of region based initial segmentation and active surfaces

Segmentation of 3-D medical image data sets with a combination of region based initial segmentation and active surfaces Header for SPIE use Segmentation of 3-D medical image data sets with a combination of region based initial segmentation and active surfaces Regina Pohle, Thomas Behlau, Klaus D. Toennies Otto-von-Guericke

More information