Analysis and Synthesis of 3D Shape Families via Deep Learned Generative Models of Surfaces

Size: px
Start display at page:

Download "Analysis and Synthesis of 3D Shape Families via Deep Learned Generative Models of Surfaces"

Transcription

1 Analysis and Synthesis of 3D Shape Families via Deep Learned Generative Models of Surfaces Haibin Huang, Evangelos Kalogerakis, Benjamin Marlin University of Massachusetts Amherst

2 Given an input 3D shape family

3 Goal 1/4: part segmentation & labeling wing horizontal stabilizer vertical stabilizer fuselage Applications: assembly based modeling, manufacturing

4 Goal 2/4: correspondences stabilizer top tip fuselage front tip left wing tip right wing tip Applications: texture transfer, exploration, morphing

5 Goal 3/4: learn shape descriptors & fine grained classification Commercial jets Propeller airplanes Military jets Applications: text based shape retrieval, database organization

6 Goal 4/4: shape synthesis Applications: virtual worlds with lots of (infinite?) content variations, training data for vision algorithms

7 Challenges Shape families can have large structural & geometric variability. All tasks depend on each other. Generate surface geometry.

8 Related work: modeling structural & geometric variability Box part templates [Kim et al. 13] Non rigid alignment / distance learning [Huang et al. 13] Probabilistic model for shape synthesis [Kalogerakis et al. 12]

9 Related Work: deep learning Deep representations for volumetric shapes [Wu et al. 15]

10 Joint Analysis and Synthesis Probabilistic Model for analysis: Learns template geometry and deformations Estimates fuzzy point correspondences Segments and labels parts Deep Probabilistic Model for synthesis: Generates point sampled surfaces Learns class specific descriptors Combine both models and jointly learn them from input collection

11 Probabilistic model Given the input shapes, estimate assignments to random variables representing template geometry Learned templates Input collection

12 Probabilistic model Given the input shapes, estimate assignments to random variables representing template geometry, template deformations for each shape Input collection Non rigid deformation [video]

13 Probabilistic model Given the input shapes, estimate assignments to random variables representing template geometry, template deformations for each shape, surface part labels and point labels for each shape Input collection Segmented & labeled shapes

14 Probabilistic model Given the input shapes, estimate assignments to random variables representing template geometry, template deformations for each shape, surface part labels and point labels for each shape, and descriptors for each shape. Input collection Descriptors

15 Probabilistic model Given the input shapes, estimate assignments to random variables representing template geometry, template deformations for each shape, surface part labels and point labels for each shape, and descriptors for each shape. Maximize: P crf (Y, D, S, U X) P bsm (D, H)

16 Probabilistic model Given the input shapes, estimate assignments to random variables representing template geometry, template deformations for each shape, surface part labels and point labels for each shape, and descriptors for each shape. Maximize: P crf (Y, D, S, U X) P bsm (D, H) Probabilistic model for analysis: how likely are the shape & template attributes given each input surface geometry?

17 Probabilistic model Given the input shapes, estimate assignments to random variables representing template geometry, template deformations for each shape, surface part labels and point labels for each shape, and descriptors for each shape. Maximize: P crf (Y, D, S, U X) P bsm (D, H) Generative probabilistic model: How likely is the output deformed geometry? Ensures consistency within the input collection

18 Probabilistic model Given the input shapes, estimate assignments to random variables representing template geometry, template deformations for each shape, surface part labels and point labels for each shape, and descriptors for each shape. Maximize: P crf (Y, D, S, U X) P bsm (D, H) New Collection Generative probabilistic model: How likely is the output deformed geometry? Ensures consistency within the input collection

19 Input shape representation Each input surface is uniformly sampled:

20 Surface random variables For each surface point p of shape t with position X t,p : Part label: S t,p {fuselage, left wing, right wing } {S t,3,u t,3 } {S t,4,u t,4 } X 4 X 3 {S t,1,u t,1 } X 1 {S t,2,u t,2 } X 2 Point label: U t,p {left wing tip, front fuselage tip } Assignments are probabilistic ( fuzzy correspondences).

21 Y 3 Y 1 Y 2 D t,1 D t,2 D t,3 Template Random variables For each template point k: Template point position: Y k {point position in 3D space} Deformed template point position for each input shape t: D t,k {point position in 3D space} Template geometry will be estimated.

22 Factors All these random variables are not independent of each other! The probabilistic model is defined through factors over variable assignments. The higher the factor values, the more compatible the assignments are.

23 Unary deformation factor Encourage template points deform towards corresponding, closeby surface points. D t,1 D t,2 X t,1 X t,2 Learned template surface D t,3 Deformed template surface X t,3 Input shape surface t φ 1 (D t,k, U t,p =k, Χ t,p )=exp{-.5[d t,k X t,p ] T Σ 1-1 [D t,k X t,p ]} Learned covariance matrix

24 Deformation smoothness factor Encourages smoothness in the deformations of the template parts. Y 2 Y 1 D t,2 D t,1 X t,1 Y 3 Learned template surface D t,3 Deformed template surface X t,2 X t,3 Input shape surface t φ 2 (D t,k,d t,k,y k,y k )=exp{-.5[(d t,k -D t,k ) - (Y k -Y k )] T Σ 2-1 [(D t,k -D t,k ) - (Y k -Y k )]} Learned covariance matrix

25 Correspondence factor Encourage correspondences between template and surface points with similar geometry SDF=0.9 Y 1 D t,1 X t,1 SDF=0.9 SDF=0.5 Y 2 D t,2 X t,2 SDF=0.4 SDF=0.1 Y 3 Learned template surface D t,3 Deformed template surface X t,3 SDF=0.2 Input shape surface t φ 3 (U t,p = k)=exp{-.5[f k - f t,p ] T Σ 3-1 [f k - f t,p ]} Learned covariance matrix

26 Segmentation factor Encourage consistent part labels between corresponding template and surface points Y 1 S t,1 Y 2 S t,2 Y 3 Learned template surface S t,3 Input shape surface t

27 Segmentation smoothness factor Encourage surface points within convex patches and similar geometry to have similar part label. S t,1 S t,2 [Asafi et al. 2013] S t,3 Input shape surface t

28 H 1 (3) H 2 (3) Generative model H 2 (2) H 1 (2) H 3 (2) H (1) H (1) 2 H (1) 1 3 H (1) 4 D t,1 D t,2 D t,3 D t,4 D t,5 D t,6 wing point tailplane point positions positions

29 Generative model D t,1 D t,2 D t,3 D t,4 D t,5 D t,6 wing point tailplane point positions positions

30 Generative model H 1 (1) H 2 (1) H 3 (1) H 4 (1) D t,1 D t,2 D t,3 D t,4 D t,5 D t,6 wing point tailplane point positions positions delta shaped wing straight wing

31 Generative model H 1 (1) H 2 (1) H 3 (1) H 4 (1) D t,1 D t,2 D t,3 D t,4 D t,5 D t,6 wing point tailplane point positions positions swept tailplanes straight tailplanes

32 Generative model H 1 (2) H 2 (2) H 3 (2) H (1) H (1) 2 H (1) 1 3 H (1) 4 correlations between part configurations D t,1 D t,2 D t,3 D t,4 D t,5 D t,6 wing point tailplane point positions positions

33 H 1 (3) H 2 (3) Generative model {0.9, 0.1 } {0.7, 0.2 } {0.1, 0.0 } {0.1, 0.2. } vs H 2 (2) H 1 (2) H 3 (2) shape descriptor H (1) H (1) 2 H (1) 1 3 H (1) 4 D t,1 D t,2 D t,3 D t,4 D t,5 D t,6 wing point tailplane point positions positions

34 G 1 (3) G 2 (3) Generative model G 2 (2) G 1 (2) G 3 (2) G (1) G (1) 2 G (1) 1 3 G (1) 4 E t,1 E t,2 E t,3 E t,4 E t,5 E t,6 wing point existence tailplane point existence

35 Inference / parameter learning Parameter learning: Piecewise training for covariance matrices of the analysis part (12 parameters) Contrastive divergence for the generative model parameters (millions) Mean field inference: Efficient compared to other forms of inference Convergence properties Approximate Requires initialization (template parts from co segmented shapes we use [Kim et al., 2013] to initialize the segmentations)

36 Deformation examples Template surface Input surface

37 Deformation examples Template surface Input surface [video]

38 Deformation examples Template surface Input surface

39 Deformation examples Template surface Input surface [video]

40 Sampled shapes

41 Sampled shapes

42 Sampled shapes

43 Assembly based modeling + deformation (Embedded deformation for shape manipulation, Sumner et al., 2007)

44 Correspondence quality BHCP dataset 18.2% more correct predictions within.05 distance than Kim et al. s 2013 method. % Correspondences Euclidean Distance

45 Segmentation quality

46 MTurk User study: plausibility of synthesized shapes

47 Summary Joint segmentation, correspondence, non rigid deformation, descriptor learning, shape synthesis Analysis by synthesis Deep learning for modeling shape surfaces

48 Future Work Full shape synthesis from scratch without assembly Reconstruction, link descriptor to other forms of user input More robust and automatic initialization schemes What is the best input shape representation?

49 Thank you! Acknowledgements: Qi xing Huang, Vladimir Kim, Siddhartha Chaudhuri Szymon Rusinkiewicz, anonymous reviewers Our project web page (code, data, supp. material):

3D Shape Segmentation with Projective Convolutional Networks

3D Shape Segmentation with Projective Convolutional Networks 3D Shape Segmentation with Projective Convolutional Networks Evangelos Kalogerakis 1 Melinos Averkiou 2 Subhransu Maji 1 Siddhartha Chaudhuri 3 1 University of Massachusetts Amherst 2 University of Cyprus

More information

3D Shape Analysis with Multi-view Convolutional Networks. Evangelos Kalogerakis

3D Shape Analysis with Multi-view Convolutional Networks. Evangelos Kalogerakis 3D Shape Analysis with Multi-view Convolutional Networks Evangelos Kalogerakis 3D model repositories [3D Warehouse - video] 3D geometry acquisition [KinectFusion - video] 3D shapes come in various flavors

More information

... arxiv: v2 [cs.cv] 5 Sep Learning local shape descriptors from part correspondences with multi-view convolutional networks

... arxiv: v2 [cs.cv] 5 Sep Learning local shape descriptors from part correspondences with multi-view convolutional networks Learning local shape descriptors from part correspondences with multi-view convolutional networks HAIBIN HUANG, University of Massachusetts Amherst EVANGELOS KALOGERAKIS, University of Massachusetts Amherst

More information

Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction

Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction Atul Kanaujia, CBIM, Rutgers Cristian Sminchisescu, TTI-C Dimitris Metaxas,CBIM, Rutgers 3D Human Pose Inference Difficulties Towards

More information

Data driven 3D shape analysis and synthesis

Data driven 3D shape analysis and synthesis Data driven 3D shape analysis and synthesis Head Neck Torso Leg Tail Ear Evangelos Kalogerakis UMass Amherst 3D shapes for computer aided design Architecture Interior design 3D shapes for information visualization

More information

Learning Probabilistic Models from Collections of 3D Meshes

Learning Probabilistic Models from Collections of 3D Meshes Learning Probabilistic Models from Collections of 3D Meshes Sid Chaudhuri, Steve Diverdi, Matthew Fisher, Pat Hanrahan, Vladimir Kim, Wilmot Li, Niloy Mitra, Daniel Ritchie, Manolis Savva, and Thomas Funkhouser

More information

DISTANCE MAPS: A ROBUST ILLUMINATION PREPROCESSING FOR ACTIVE APPEARANCE MODELS

DISTANCE MAPS: A ROBUST ILLUMINATION PREPROCESSING FOR ACTIVE APPEARANCE MODELS DISTANCE MAPS: A ROBUST ILLUMINATION PREPROCESSING FOR ACTIVE APPEARANCE MODELS Sylvain Le Gallou*, Gaspard Breton*, Christophe Garcia*, Renaud Séguier** * France Telecom R&D - TECH/IRIS 4 rue du clos

More information

Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting

Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting R. Maier 1,2, K. Kim 1, D. Cremers 2, J. Kautz 1, M. Nießner 2,3 Fusion Ours 1

More information

3D Deep Learning

3D Deep Learning 3D Deep Learning Tutorial@CVPR2017 Hao Su (UCSD) Leonidas Guibas (Stanford) Michael Bronstein (Università della Svizzera Italiana) Evangelos Kalogerakis (UMass) Jimei Yang (Adobe Research) Charles Qi (Stanford)

More information

Final Exam Schedule. Final exam has been scheduled. 12:30 pm 3:00 pm, May 7. Location: INNOVA It will cover all the topics discussed in class

Final Exam Schedule. Final exam has been scheduled. 12:30 pm 3:00 pm, May 7. Location: INNOVA It will cover all the topics discussed in class Final Exam Schedule Final exam has been scheduled 12:30 pm 3:00 pm, May 7 Location: INNOVA 1400 It will cover all the topics discussed in class One page double-sided cheat sheet is allowed A calculator

More information

Exploring Collections of 3D Models using Fuzzy Correspondences

Exploring Collections of 3D Models using Fuzzy Correspondences Exploring Collections of 3D Models using Fuzzy Correspondences Vladimir G. Kim Wilmot Li Niloy J. Mitra Princeton University Adobe UCL Stephen DiVerdi Adobe Thomas Funkhouser Princeton University Motivating

More information

Translation Symmetry Detection: A Repetitive Pattern Analysis Approach

Translation Symmetry Detection: A Repetitive Pattern Analysis Approach 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops Translation Symmetry Detection: A Repetitive Pattern Analysis Approach Yunliang Cai and George Baciu GAMA Lab, Department of Computing

More information

Machine Learning for Shape Analysis and Processing. Evangelos Kalogerakis

Machine Learning for Shape Analysis and Processing. Evangelos Kalogerakis Machine Learning for Shape Analysis and Processing Evangelos Kalogerakis 3D shapes for computer aided design Architecture Interior design 3D shapes for information visualization Geo visualization Scientific

More information

Why study Computer Vision?

Why study Computer Vision? Why study Computer Vision? Images and movies are everywhere Fast-growing collection of useful applications building representations of the 3D world from pictures automated surveillance (who s doing what)

More information

Learning to generate 3D shapes

Learning to generate 3D shapes Learning to generate 3D shapes Subhransu Maji College of Information and Computer Sciences University of Massachusetts, Amherst http://people.cs.umass.edu/smaji August 10, 2018 @ Caltech Creating 3D shapes

More information

Modeling and Analyzing 3D Shapes using Clues from 2D Images. Minglun Gong Dept. of CS, Memorial Univ.

Modeling and Analyzing 3D Shapes using Clues from 2D Images. Minglun Gong Dept. of CS, Memorial Univ. Modeling and Analyzing 3D Shapes using Clues from 2D Images Minglun Gong Dept. of CS, Memorial Univ. Modeling Flowers from Images Reconstructing 3D flower petal shapes from a single image is difficult

More information

Finding Structure in Large Collections of 3D Models

Finding Structure in Large Collections of 3D Models Finding Structure in Large Collections of 3D Models Vladimir Kim Adobe Research Motivation Explore, Analyze, and Create Geometric Data Real Virtual Motivation Explore, Analyze, and Create Geometric Data

More information

DEEP LEARNING OF COMPRESSED SENSING OPERATORS WITH STRUCTURAL SIMILARITY (SSIM) LOSS

DEEP LEARNING OF COMPRESSED SENSING OPERATORS WITH STRUCTURAL SIMILARITY (SSIM) LOSS DEEP LEARNING OF COMPRESSED SENSING OPERATORS WITH STRUCTURAL SIMILARITY (SSIM) LOSS ABSTRACT Compressed sensing (CS) is a signal processing framework for efficiently reconstructing a signal from a small

More information

CS 534: Computer Vision Texture

CS 534: Computer Vision Texture CS 534: Computer Vision Texture Ahmed Elgammal Dept of Computer Science CS 534 Texture - 1 Outlines Finding templates by convolution What is Texture Co-occurrence matrices for texture Spatial Filtering

More information

Flow Estimation. Min Bai. February 8, University of Toronto. Min Bai (UofT) Flow Estimation February 8, / 47

Flow Estimation. Min Bai. February 8, University of Toronto. Min Bai (UofT) Flow Estimation February 8, / 47 Flow Estimation Min Bai University of Toronto February 8, 2016 Min Bai (UofT) Flow Estimation February 8, 2016 1 / 47 Outline Optical Flow - Continued Min Bai (UofT) Flow Estimation February 8, 2016 2

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 013-014 Jakob Verbeek, December 13+0, 013 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.13.14

More information

3D Deep Learning on Geometric Forms. Hao Su

3D Deep Learning on Geometric Forms. Hao Su 3D Deep Learning on Geometric Forms Hao Su Many 3D representations are available Candidates: multi-view images depth map volumetric polygonal mesh point cloud primitive-based CAD models 3D representation

More information

Supplementary Material for Synthesizing Normalized Faces from Facial Identity Features

Supplementary Material for Synthesizing Normalized Faces from Facial Identity Features Supplementary Material for Synthesizing Normalized Faces from Facial Identity Features Forrester Cole 1 David Belanger 1,2 Dilip Krishnan 1 Aaron Sarna 1 Inbar Mosseri 1 William T. Freeman 1,3 1 Google,

More information

CS 534: Computer Vision Texture

CS 534: Computer Vision Texture CS 534: Computer Vision Texture Spring 2004 Ahmed Elgammal Dept of Computer Science CS 534 Ahmed Elgammal Texture - 1 Outlines Finding templates by convolution What is Texture Co-occurrence matrecis for

More information

Structure-oriented Networks of Shape Collections

Structure-oriented Networks of Shape Collections Structure-oriented Networks of Shape Collections Noa Fish 1 Oliver van Kaick 2 Amit Bermano 3 Daniel Cohen-Or 1 1 Tel Aviv University 2 Carleton University 3 Princeton University 1 pplementary material

More information

CS233: The Shape of Data Handout # 3 Geometric and Topological Data Analysis Stanford University Wednesday, 9 May 2018

CS233: The Shape of Data Handout # 3 Geometric and Topological Data Analysis Stanford University Wednesday, 9 May 2018 CS233: The Shape of Data Handout # 3 Geometric and Topological Data Analysis Stanford University Wednesday, 9 May 2018 Homework #3 v4: Shape correspondences, shape matching, multi-way alignments. [100

More information

9 length of contour = no. of horizontal and vertical components + ( 2 no. of diagonal components) diameter of boundary B

9 length of contour = no. of horizontal and vertical components + ( 2 no. of diagonal components) diameter of boundary B 8. Boundary Descriptor 8.. Some Simple Descriptors length of contour : simplest descriptor - chain-coded curve 9 length of contour no. of horiontal and vertical components ( no. of diagonal components

More information

Conditional Random Fields as Recurrent Neural Networks

Conditional Random Fields as Recurrent Neural Networks BIL722 - Deep Learning for Computer Vision Conditional Random Fields as Recurrent Neural Networks S. Zheng, S. Jayasumana, B. Romera-Paredes V. Vineet, Z. Su, D. Du, C. Huang, P.H.S. Torr Introduction

More information

Problem Set 4. Assigned: March 23, 2006 Due: April 17, (6.882) Belief Propagation for Segmentation

Problem Set 4. Assigned: March 23, 2006 Due: April 17, (6.882) Belief Propagation for Segmentation 6.098/6.882 Computational Photography 1 Problem Set 4 Assigned: March 23, 2006 Due: April 17, 2006 Problem 1 (6.882) Belief Propagation for Segmentation In this problem you will set-up a Markov Random

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

Discovering Similarities in 3D Data

Discovering Similarities in 3D Data Discovering Similarities in 3D Data Vladimir Kim, Tianqiang Liu, Sid Chaudhuri, Steve Diverdi, Wilmot Li, Niloy Mitra, Yaron Lipman, Thomas Funkhouser Motivation 3D data is widely available Medicine Mechanical

More information

Meta-representation of Shape Families

Meta-representation of Shape Families Meta-representation of Shape Families Noa Fish 1 Melinos Averkiou 2 Oliver van Kaick 1 Olga Sorkine-Hornung 3 Daniel Cohen-Or 1 Niloy J. Mitra 2 1 Tel Aviv University 2 University College London 3 ETH

More information

CRF Based Point Cloud Segmentation Jonathan Nation

CRF Based Point Cloud Segmentation Jonathan Nation CRF Based Point Cloud Segmentation Jonathan Nation jsnation@stanford.edu 1. INTRODUCTION The goal of the project is to use the recently proposed fully connected conditional random field (CRF) model to

More information

Separating Objects and Clutter in Indoor Scenes

Separating Objects and Clutter in Indoor Scenes Separating Objects and Clutter in Indoor Scenes Salman H. Khan School of Computer Science & Software Engineering, The University of Western Australia Co-authors: Xuming He, Mohammed Bennamoun, Ferdous

More information

Estimating Human Pose in Images. Navraj Singh December 11, 2009

Estimating Human Pose in Images. Navraj Singh December 11, 2009 Estimating Human Pose in Images Navraj Singh December 11, 2009 Introduction This project attempts to improve the performance of an existing method of estimating the pose of humans in still images. Tasks

More information

Computer vision: models, learning and inference. Chapter 13 Image preprocessing and feature extraction

Computer vision: models, learning and inference. Chapter 13 Image preprocessing and feature extraction Computer vision: models, learning and inference Chapter 13 Image preprocessing and feature extraction Preprocessing The goal of pre-processing is to try to reduce unwanted variation in image due to lighting,

More information

Learning Part-based Templates from Large Collections of 3D Shapes

Learning Part-based Templates from Large Collections of 3D Shapes Learning Part-based Templates from Large Collections of 3D Shapes Vladimir G. Kim 1 Wilmot Li 2 Niloy J. Mitra 3 Siddhartha Chaudhuri 1 Stephen DiVerdi 2,4 Thomas Funkhouser 1 1 Princeton University 2

More information

Variational Methods for Discrete-Data Latent Gaussian Models

Variational Methods for Discrete-Data Latent Gaussian Models Variational Methods for Discrete-Data Latent Gaussian Models University of British Columbia Vancouver, Canada March 6, 2012 The Big Picture Joint density models for data with mixed data types Bayesian

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

Local-Level 3D Deep Learning. Andy Zeng

Local-Level 3D Deep Learning. Andy Zeng Local-Level 3D Deep Learning Andy Zeng 1 Matching 3D Data Image Credits: Song and Xiao, Tevs et al. 2 Matching 3D Data Reconstruction Image Credits: Song and Xiao, Tevs et al. 3 Matching 3D Data Reconstruction

More information

A Morphable Model for the Synthesis of 3D Faces

A Morphable Model for the Synthesis of 3D Faces A Morphable Model for the Synthesis of 3D Faces Marco Nef Volker Blanz, Thomas Vetter SIGGRAPH 99, Los Angeles Presentation overview Motivation Introduction Database Morphable 3D Face Model Matching a

More information

Seeing the unseen. Data-driven 3D Understanding from Single Images. Hao Su

Seeing the unseen. Data-driven 3D Understanding from Single Images. Hao Su Seeing the unseen Data-driven 3D Understanding from Single Images Hao Su Image world Shape world 3D perception from a single image Monocular vision a typical prey a typical predator Cited from https://en.wikipedia.org/wiki/binocular_vision

More information

Undirected Graphical Models. Raul Queiroz Feitosa

Undirected Graphical Models. Raul Queiroz Feitosa Undirected Graphical Models Raul Queiroz Feitosa Pros and Cons Advantages of UGMs over DGMs UGMs are more natural for some domains (e.g. context-dependent entities) Discriminative UGMs (CRF) are better

More information

SIFT - scale-invariant feature transform Konrad Schindler

SIFT - scale-invariant feature transform Konrad Schindler SIFT - scale-invariant feature transform Konrad Schindler Institute of Geodesy and Photogrammetry Invariant interest points Goal match points between images with very different scale, orientation, projective

More information

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos Machine Learning for Computer Vision 1 22 October, 2012 MVA ENS Cachan Lecture 5: Introduction to generative models Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Center for Visual Computing Ecole Centrale Paris

More information

COMPUTER AND ROBOT VISION

COMPUTER AND ROBOT VISION VOLUME COMPUTER AND ROBOT VISION Robert M. Haralick University of Washington Linda G. Shapiro University of Washington T V ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California

More information

Lecture 8: Fitting. Tuesday, Sept 25

Lecture 8: Fitting. Tuesday, Sept 25 Lecture 8: Fitting Tuesday, Sept 25 Announcements, schedule Grad student extensions Due end of term Data sets, suggestions Reminder: Midterm Tuesday 10/9 Problem set 2 out Thursday, due 10/11 Outline Review

More information

Photo-realistic Renderings for Machines Seong-heum Kim

Photo-realistic Renderings for Machines Seong-heum Kim Photo-realistic Renderings for Machines 20105034 Seong-heum Kim CS580 Student Presentations 2016.04.28 Photo-realistic Renderings for Machines Scene radiances Model descriptions (Light, Shape, Material,

More information

Contents I IMAGE FORMATION 1

Contents I IMAGE FORMATION 1 Contents I IMAGE FORMATION 1 1 Geometric Camera Models 3 1.1 Image Formation............................. 4 1.1.1 Pinhole Perspective....................... 4 1.1.2 Weak Perspective.........................

More information

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision Object Recognition Using Pictorial Structures Daniel Huttenlocher Computer Science Department Joint work with Pedro Felzenszwalb, MIT AI Lab In This Talk Object recognition in computer vision Brief definition

More information

Lecture 27, April 24, Reading: See class website. Nonparametric regression and kernel smoothing. Structured sparse additive models (GroupSpAM)

Lecture 27, April 24, Reading: See class website. Nonparametric regression and kernel smoothing. Structured sparse additive models (GroupSpAM) School of Computer Science Probabilistic Graphical Models Structured Sparse Additive Models Junming Yin and Eric Xing Lecture 7, April 4, 013 Reading: See class website 1 Outline Nonparametric regression

More information

Computer Vision for HCI. Topics of This Lecture

Computer Vision for HCI. Topics of This Lecture Computer Vision for HCI Interest Points Topics of This Lecture Local Invariant Features Motivation Requirements, Invariances Keypoint Localization Features from Accelerated Segment Test (FAST) Harris Shi-Tomasi

More information

BSB663 Image Processing Pinar Duygulu. Slides are adapted from Selim Aksoy

BSB663 Image Processing Pinar Duygulu. Slides are adapted from Selim Aksoy BSB663 Image Processing Pinar Duygulu Slides are adapted from Selim Aksoy Image matching Image matching is a fundamental aspect of many problems in computer vision. Object or scene recognition Solving

More information

Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching

Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching Correlated Correspondences [ASP*04] A Complete Registration System [HAW*08] In this session Advanced Global Matching Some practical

More information

Probabilistic Facial Feature Extraction Using Joint Distribution of Location and Texture Information

Probabilistic Facial Feature Extraction Using Joint Distribution of Location and Texture Information Probabilistic Facial Feature Extraction Using Joint Distribution of Location and Texture Information Mustafa Berkay Yilmaz, Hakan Erdogan, Mustafa Unel Sabanci University, Faculty of Engineering and Natural

More information

Surface Registration. Gianpaolo Palma

Surface Registration. Gianpaolo Palma Surface Registration Gianpaolo Palma The problem 3D scanning generates multiple range images Each contain 3D points for different parts of the model in the local coordinates of the scanner Find a rigid

More information

SCAPE: Shape Completion and Animation of People

SCAPE: Shape Completion and Animation of People SCAPE: Shape Completion and Animation of People By Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, James Davis From SIGGRAPH 2005 Presentation for CS468 by Emilio Antúnez

More information

Introduction to Computer Vision

Introduction to Computer Vision Introduction to Computer Vision Michael J. Black Nov 2009 Perspective projection and affine motion Goals Today Perspective projection 3D motion Wed Projects Friday Regularization and robust statistics

More information

Texture Synthesis and Manipulation Project Proposal. Douglas Lanman EN 256: Computer Vision 19 October 2006

Texture Synthesis and Manipulation Project Proposal. Douglas Lanman EN 256: Computer Vision 19 October 2006 Texture Synthesis and Manipulation Project Proposal Douglas Lanman EN 256: Computer Vision 19 October 2006 1 Outline Introduction to Texture Synthesis Previous Work Project Goals and Timeline Douglas Lanman

More information

Feature Selection Using Principal Feature Analysis

Feature Selection Using Principal Feature Analysis Feature Selection Using Principal Feature Analysis Ira Cohen Qi Tian Xiang Sean Zhou Thomas S. Huang Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana,

More information

3D Scanning. Qixing Huang Feb. 9 th Slide Credit: Yasutaka Furukawa

3D Scanning. Qixing Huang Feb. 9 th Slide Credit: Yasutaka Furukawa 3D Scanning Qixing Huang Feb. 9 th 2017 Slide Credit: Yasutaka Furukawa Geometry Reconstruction Pipeline This Lecture Depth Sensing ICP for Pair-wise Alignment Next Lecture Global Alignment Pairwise Multiple

More information

Estimating affine-invariant structures on triangle meshes

Estimating affine-invariant structures on triangle meshes Estimating affine-invariant structures on triangle meshes Thales Vieira Mathematics, UFAL Dimas Martinez Mathematics, UFAM Maria Andrade Mathematics, UFS Thomas Lewiner École Polytechnique Invariant descriptors

More information

Supplementary Material for The Shape-Time Random Field for Semantic Video Labeling

Supplementary Material for The Shape-Time Random Field for Semantic Video Labeling Supplementary Material for The Shape-Time Random Field for Semantic Video Labeling Andrew Kae, Benjamin Marlin, Erik Learned-Miller School of Computer Science University of Massachusetts, Amherst MA, USA

More information

Analysis and Synthesis of Texture

Analysis and Synthesis of Texture Analysis and Synthesis of Texture CMPE 264: Image Analysis and Computer Vision Spring 02, Hai Tao 31/5/02 Extracting image structure by filter banks Q Represent image textures using the responses of a

More information

Urban Scene Segmentation, Recognition and Remodeling. Part III. Jinglu Wang 11/24/2016 ACCV 2016 TUTORIAL

Urban Scene Segmentation, Recognition and Remodeling. Part III. Jinglu Wang 11/24/2016 ACCV 2016 TUTORIAL Part III Jinglu Wang Urban Scene Segmentation, Recognition and Remodeling 102 Outline Introduction Related work Approaches Conclusion and future work o o - - ) 11/7/16 103 Introduction Motivation Motivation

More information

Data-Driven Structural Priors for Shape Completion

Data-Driven Structural Priors for Shape Completion Data-Driven Structural riors for Shape Completion Minhyuk Sung 1 Vladimir G. Kim 1,2 Roland Angst 1,3 Leonidas Guibas 1 1 Stanford University 2 Adobe Research 3 Max lanck Institute for Informatics a1.

More information

Semi-Automatic Prediction of Landmarks on Human Models in Varying Poses

Semi-Automatic Prediction of Landmarks on Human Models in Varying Poses Semi-Automatic Prediction of Landmarks on Human Models in Varying Poses Stefanie Wuhrer Zouhour Ben Azouz Chang Shu National Research Council of Canada, Ottawa, Ontario, Canada {stefanie.wuhrer, zouhour.benazouz,

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Statistical Models for Shape and Appearance Note some material for these slides came from Algorithms

More information

Computer Vision at Cambridge: Reconstruction,Registration and Recognition

Computer Vision at Cambridge: Reconstruction,Registration and Recognition Computer Vision at Cambridge: Reconstruction,Registration and Recognition Roberto Cipolla Research team http://www.eng.cam.ac.uk/~cipolla/people.html Cognitive Systems Engineering Cognitive Systems Engineering

More information

Occluded Facial Expression Tracking

Occluded Facial Expression Tracking Occluded Facial Expression Tracking Hugo Mercier 1, Julien Peyras 2, and Patrice Dalle 1 1 Institut de Recherche en Informatique de Toulouse 118, route de Narbonne, F-31062 Toulouse Cedex 9 2 Dipartimento

More information

Non-Experts Shape Modeling for Dummies

Non-Experts Shape Modeling for Dummies Non-Experts Shape Modeling for Dummies (Modeling with Interchangeable Parts) Alla Sheffer (joint work with Vladislav Kraevoy & Dan Julius) Motivation - Easy creation of 3D Content Currently 3D modeling

More information

Data-Driven Structural Priors for Shape Completion

Data-Driven Structural Priors for Shape Completion Data-Driven Structural Priors for Shape Completion Minhyuk Sung 1 Vladimir G. Kim 1,2 Roland Angst 1,3 Leonidas Guibas 1 1 Stanford University 2 Adobe Research 3 Max Planck Institute for Informatics a1.

More information

SuRVoS Workbench. Super-Region Volume Segmentation. Imanol Luengo

SuRVoS Workbench. Super-Region Volume Segmentation. Imanol Luengo SuRVoS Workbench Super-Region Volume Segmentation Imanol Luengo Index - The project - What is SuRVoS - SuRVoS Overview - What can it do - Overview of the internals - Current state & Limitations - Future

More information

Image Processing. Image Features

Image Processing. Image Features Image Processing Image Features Preliminaries 2 What are Image Features? Anything. What they are used for? Some statements about image fragments (patches) recognition Search for similar patches matching

More information

Registration of Dynamic Range Images

Registration of Dynamic Range Images Registration of Dynamic Range Images Tan-Chi Ho 1,2 Jung-Hong Chuang 1 Wen-Wei Lin 2 Song-Sun Lin 2 1 Department of Computer Science National Chiao-Tung University 2 Department of Applied Mathematics National

More information

Face Recognition At-a-Distance Based on Sparse-Stereo Reconstruction

Face Recognition At-a-Distance Based on Sparse-Stereo Reconstruction Face Recognition At-a-Distance Based on Sparse-Stereo Reconstruction Ham Rara, Shireen Elhabian, Asem Ali University of Louisville Louisville, KY {hmrara01,syelha01,amali003}@louisville.edu Mike Miller,

More information

Fitting D.A. Forsyth, CS 543

Fitting D.A. Forsyth, CS 543 Fitting D.A. Forsyth, CS 543 Fitting Choose a parametric object/some objects to represent a set of tokens Most interesting case is when criterion is not local can t tell whether a set of points lies on

More information

Semantic Segmentation. Zhongang Qi

Semantic Segmentation. Zhongang Qi Semantic Segmentation Zhongang Qi qiz@oregonstate.edu Semantic Segmentation "Two men riding on a bike in front of a building on the road. And there is a car." Idea: recognizing, understanding what's in

More information

Compu&ng Correspondences in Geometric Datasets. 4.2 Symmetry & Symmetriza/on

Compu&ng Correspondences in Geometric Datasets. 4.2 Symmetry & Symmetriza/on Compu&ng Correspondences in Geometric Datasets 4.2 Symmetry & Symmetriza/on Symmetry Invariance under a class of transformations Reflection Translation Rotation Reflection + Translation + global vs. partial

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. The Perceptron Update Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. The Perceptron Update Rule. CS 188: Artificial Intelligence Fall 2007 Lecture 26: Kernels 11/29/2007 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit your

More information

ECCV Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016

ECCV Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016 ECCV 2016 Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016 Fundamental Question What is a good vector representation of an object? Something that can be easily predicted from 2D

More information

Deformable Segmentation using Sparse Shape Representation. Shaoting Zhang

Deformable Segmentation using Sparse Shape Representation. Shaoting Zhang Deformable Segmentation using Sparse Shape Representation Shaoting Zhang Introduction Outline Our methods Segmentation framework Sparse shape representation Applications 2D lung localization in X-ray 3D

More information

The correspondence problem. A classic problem. A classic problem. Deformation-Drive Shape Correspondence. Fundamental to geometry processing

The correspondence problem. A classic problem. A classic problem. Deformation-Drive Shape Correspondence. Fundamental to geometry processing The correspondence problem Deformation-Drive Shape Correspondence Hao (Richard) Zhang 1, Alla Sheffer 2, Daniel Cohen-Or 3, Qingnan Zhou 2, Oliver van Kaick 1, and Andrea Tagliasacchi 1 July 3, 2008 1

More information

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10 Structure from Motion CSE 152 Lecture 10 Announcements Homework 3 is due May 9, 11:59 PM Reading: Chapter 8: Structure from Motion Optional: Multiple View Geometry in Computer Vision, 2nd edition, Hartley

More information

CS468: 3D Deep Learning on Point Cloud Data. class label part label. Hao Su. image. May 10, 2017

CS468: 3D Deep Learning on Point Cloud Data. class label part label. Hao Su. image. May 10, 2017 CS468: 3D Deep Learning on Point Cloud Data class label part label Hao Su image. May 10, 2017 Agenda Point cloud generation Point cloud analysis CVPR 17, Point Set Generation Pipeline render CVPR 17, Point

More information

Optical Flow-Based Motion Estimation. Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides.

Optical Flow-Based Motion Estimation. Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides. Optical Flow-Based Motion Estimation Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides. 1 Why estimate motion? We live in a 4-D world Wide applications Object

More information

Recognizing Deformable Shapes. Salvador Ruiz Correa Ph.D. UW EE

Recognizing Deformable Shapes. Salvador Ruiz Correa Ph.D. UW EE Recognizing Deformable Shapes Salvador Ruiz Correa Ph.D. UW EE Input 3-D Object Goal We are interested in developing algorithms for recognizing and classifying deformable object shapes from range data.

More information

An introduction to 3D image reconstruction and understanding concepts and ideas

An introduction to 3D image reconstruction and understanding concepts and ideas Introduction to 3D image reconstruction An introduction to 3D image reconstruction and understanding concepts and ideas Samuele Carli Martin Hellmich 5 febbraio 2013 1 icsc2013 Carli S. Hellmich M. (CERN)

More information

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University.

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University. 3D Computer Vision Structured Light II Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Introduction

More information

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Abstract. Finding meaningful 1-1 correspondences between hippocampal (HP) surfaces is an important but difficult

More information

Functionality Preserving Shape Style Transfer

Functionality Preserving Shape Style Transfer Functionality Preserving Shape Style Transfer Zhaoliang Lun1 1 Evangelos Kalogerakis1 Rui Wang1 2 University of Massachusetts Amherst Alla Sheffer2 University of British Columbia Figure 1: Our algorithm

More information

CS 395T Numerical Optimization for Graphics and AI (3D Vision) Qixing Huang August 29 th 2018

CS 395T Numerical Optimization for Graphics and AI (3D Vision) Qixing Huang August 29 th 2018 CS 395T Numerical Optimization for Graphics and AI (3D Vision) Qixing Huang August 29 th 2018 3D Vision Understanding geometric relations between images and the 3D world between images Obtaining 3D information

More information

Warping and Morphing. Ligang Liu Graphics&Geometric Computing Lab USTC

Warping and Morphing. Ligang Liu Graphics&Geometric Computing Lab USTC Warping and Morphing Ligang Liu Graphics&Geometric Computing Lab USTC http://staff.ustc.edu.cn/~lgliu Metamorphosis "transformation of a shape and its visual attributes" Intrinsic in our environment Deformations

More information

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov Shape Matching & Correspondence CS 468 Geometry Processing Algorithms Maks Ovsjanikov Wednesday, October 27 th 2010 Overall Goal Given two shapes, find correspondences between them. Overall Goal Given

More information

Deep Learning for Virtual Shopping. Dr. Jürgen Sturm Group Leader RGB-D

Deep Learning for Virtual Shopping. Dr. Jürgen Sturm Group Leader RGB-D Deep Learning for Virtual Shopping Dr. Jürgen Sturm Group Leader RGB-D metaio GmbH Augmented Reality with the Metaio SDK: IKEA Catalogue App Metaio: Augmented Reality Metaio SDK for ios, Android and Windows

More information

Derivative Delay Embedding: Online Modeling of Streaming Time Series

Derivative Delay Embedding: Online Modeling of Streaming Time Series Derivative Delay Embedding: Online Modeling of Streaming Time Series Zhifei Zhang (PhD student), Yang Song, Wei Wang, and Hairong Qi Department of Electrical Engineering & Computer Science Outline 1. Challenges

More information

Classifying Images with Visual/Textual Cues. By Steven Kappes and Yan Cao

Classifying Images with Visual/Textual Cues. By Steven Kappes and Yan Cao Classifying Images with Visual/Textual Cues By Steven Kappes and Yan Cao Motivation Image search Building large sets of classified images Robotics Background Object recognition is unsolved Deformable shaped

More information

Deep Learning Shape Priors for Object Segmentation

Deep Learning Shape Priors for Object Segmentation 2013 IEEE Conference on Computer Vision and Pattern Recognition Deep Learning Shape Priors for Object Segmentation Fei Chen a,c Huimin Yu a,b Roland Hu a Xunxun Zeng d a Department of Information Science

More information

Dimension Reduction of Image Manifolds

Dimension Reduction of Image Manifolds Dimension Reduction of Image Manifolds Arian Maleki Department of Electrical Engineering Stanford University Stanford, CA, 9435, USA E-mail: arianm@stanford.edu I. INTRODUCTION Dimension reduction of datasets

More information