2D transformations Homogeneous coordinates. Uses of Transformations

Size: px
Start display at page:

Download "2D transformations Homogeneous coordinates. Uses of Transformations"

Transcription

1 2D transformations omogeneous coordinates Uses of Transformations Modeling: position and resize parts of a complex model; Viewing: define and position te virtual camera Animation: define ow objects move/cange wit time

2 Transformations Examples of transformations: translation rotation scaling sear Transformations More examples: reflection wit respect to te -axis reflection wit respect to te origin 2

3 Transformations Linear transformations: take straigt lines to straigt lines. All of te examples are linear. Affine transformations: take paralllel lines to parallel lines. All of te examples are affine, an example of linear non-affine is perspective projection. Ortogonal transformations: preserve distances, move all objects as rigid bodies. rotation, translation and reflections are affine. Transformations and matrices An affine transformation can be written as x a = a 2 a a 2 22 x b + b 2 p =Ap Images of basis vectors under affine transformations: e x e = 0 0 = (column form of writing vectors) a Ae x = a 2 a a 2 22 a = 0 a 2 a Ae = a

4 Transformations and matrices Matrices of some transformations: 0 cosα sinα sear sinα cos α s 0 0 s rotation scale b factor s 0 reflection wit respect to te origin 0 0 reflection wit respect to 0 -axis Problem Even for affine transformations we cannot write tem as a single 2x2 matrix; we need an additional vector for translations. We cannot write all linear transformations even in te form Ax +b were A is a 2x2 matrix and b is a 2d vector. Example: perspective projection [x,] [x, ] x = = /x x= equations not linear! 4

5 omogeneous coordinates replace 2d points wit 3d points, last coordinate for a 3d point (x,,w) te corresponding 2d point is (x/w,/w) if w is not zero eac 2d point (x,) corresponds to a line in 3d; all points on tis line can be written as [kx,k,k] for some k. (x,,0) does not correspond to a 2d point, corresponds to a direction (will discuss later) Geometric construction: 3d points are mapped to 2d points b projection to te plane z = from te origin omogeneous coordinates z z= [x,] line corresponding to [x,] From omogeneous to 2d: [x,,w] becomes [x/w,/w] From 2d to omogeneous: [x,] becomes [kx,k,k] (can pick an nonzero k!) x 5

6 omogeneous Transformations An linear transformation can be written in matrix form in omogeneous coordinates. Example : translations z z= [x+t x,+t ] [x,] in om. coords is [x,,] [x,] x x = x+t x =x+ t x = +t = +t w = x = t x x t omogeneous Transformations Example 2: perspective projection z z= x = = /x w = [x,] Can multipl all tree components b te same number -- te 2D point won t cange! Multipl b x. x = x = [x, ] w = x line x= x x = x 0 0 6

7 Matrices of basic transformations FRV ƒ VLQ VLQ FRV rotation V [ V \ scaling W [ W \ translation V skew D D D D D D general affine transform omogeneous line equation Implicit line equation in 2D: (n, q-p) = 0, n = 2D vector, p = 2D point on te line. Goal: rewrite in omogeneous coordinates. z= N z n p x 2D point corresponds to a 3D line troug origin; 2D line corresponds to a plane troug origin In oter words, te 2D line is intersection of a plane troug origin wit te plane z=. 7

8 omogeneous line equation Rewrite te line equation: n,q p) = n x + n + (n, p) = ([n,n (n,p)],[x,, ]) z z= N ( x x, = n x (N, q) were N=[n x,n,-(n,p)] is te normal to te plane corresponding to te line, and q is te omogeneous form of q=[x,]: q=[x,,] p omogeneous form of te line equation: (N,q) = 0 Intersection of two lines z z= N Let omogeneous equations of te two lines be (N,q)=0, and (N 2,q)=0. Te two lines are intersections of planes wit normals N and N 2 wit te plane z=. Intersection of lines = intersection point of te common line of te two planes wit te plane z=. N 2 x Te direction of te common line is te cross product: N N 2 Tis is also (one of possible) omogeneous forms of te intersection point! 8

9 ow to intersect two lines Step : Convert equations to omogeneous form. Step 2: Compute te vector product N N 2 Step 3: Convert N N 2 from omogeneous coordinates to 2D, dividing b te last component (ma be not!) Line troug two points Goal: given two points in omogeneous coordinates, find te omogeneous equation of te line troug tese points, tat is, te vector N in te equation (N,q) = 0 omogeneous form of a point = 3D vector from te origin to te point. Line troug 2 points = p intersection of te plane z spanned b two lines wit te plane z= z= p 2 Normal to tat plane (same as N in te line equation): N x N = p p = [p,p, ] [p,p, ] x x 9

10 Intersection of two lines intersection of two lines troug two pairs of points all given in omogeneous form. Appl formulas for p 4 line troug two points p 2 and for intersection of p 3 lines: p q i q i = (p p 2 ) (p 3 p 4 ) Mapping quads to quads A common operation for texture mapping: find a transformation mapping a rectangular image to a quadrilateral. Goal: solve a somewat more general problem: find a linear transform mapping one quad (A,B,C,D) to anoter (a,b,c,d). Assume all points given in omogeneous coordinates. Idea: to define a 3x3 linear transform (=matrix) M, it is sufficient to define its action on tree vectors. Coose suitable points for wic we know wat te images sould be. 0

11 Transform from 3 points Suppose for known vectors, 2, 3 we know tat te images sould be, 2, 3 : M =, M 2 = 2, M 3 = 3. Combine tree vector equations into one matrix equation: M x z 2x 2 2z 3x 3 3z = x z 2x 2 2z 3x 3 3z matrix matrix solving M=, we get M = - Mapping quads to quads Coosing te 3 points: it turns out, intersections of te sides and diagonals are convenient: We can compute all points using te formula for intersecting 2 lines troug two pairs of points.

12 Intersections of sides and diagonals 2 2 D C 3 a d 3 c A B b 2 3 = (B A) (C D) = (A D) (B C) = (A C) (B D) Similar for, 2, 3 To find te matrix M, build matrices and, and compute -. Mapping rectangles to quads Problem: map a square to an arbitrar quadrilateral wit vertices a,b,c,d using a linear map M - M d c - a b 2

13 Points at infinit Idea: look at images of omogeneous points 2 =[,0,0], =[0,,0], 3 =[[0,0,] In tis case te matrix is identit, and M =. Wat are points wit last component zero? [,0,0] [,0,0] [0,0,] intersection of orizontal sides (point at infinit for direction [,0] intersection of vertical sides (point at infinit for direction [0,] intersection of diagonals Mapping rectangles to quads Using formulas for intersections of lines, we get 2 3 = (b a) (c d) = (a d) (b c) = (a c) (b d) Finall, we obtain te transform: 0 0 x 2x 3x M = = 0 0 M z 2z 3z Note te last line is not [0,0,], tis is not an affine transform! 3

14 Texture Mapping Put image on a quadrilateral (can be tougt of as rectangle viewed in perspective) Map image to te square [-,]x[-,] Recall scan conversion: we traverse pixels along scan lines intersecting te quadrilateral; for a pixel p=[i,j] need to determine te pixel [m,n] in te image. to determine color, need te inverse of M : first, find te point q in te square wic is mapped to p b M, second, find te pixel in te image tat maps to q. Texture Mapping m n - (t,r,s) - M M - d a c pixel [i,j] b convert [i,j] to omogeneous form: [i,j,] = p appl M - : [t,r,s] = M - p; we get a point in te square convert back to 2D coordinates: [t/s,r/s] rescale and round to get pixel coordinates: m = (int)( widt*(t/s+)/2.0); n = (int)( eigt*(r/s+)/2.0); 4

15 Putting it all togeter Given a an image of size widt X eigt and four corners of a quadrilateral a, b,c,d in omogeneous coordinates compute te matrix M using intersections of sides, 2 and intersection of diagonals 3 compute te inverse of M scan convert te quadrilateral; for eac pixel to be painted, determine te pixel of te image corresponding to it; use its color to paint te pixel Implementation Representing matrices in C: I recommend against using 2d arras (two man pitfalls) use a d arra wit 9 elements to represent 3 b 3 matrix, and expressions of te tpe m[3*i+j] to address element m[i,j]; note tat indices start from 0. Write a small matrix/vector librar, implementing operations like add two vectors, multipl a vector b a number, multipl a matrix and a vector, dot product, vector product. 5

16 Inverse matrix Code for inverse: D = m[0]*m[4]*m[8] - m[0]*m[5]*m[7] - m[3]*m[]*m[8] + m[3]*m[2]*m[7] + m[6]*m[]*m[5] - m[6]*m[2]*m[4]; minv[0] = (m[4]*m[8]-m[5]*m[7])/d; minv[] = -(m[]*m[8]-m[2]*m[7])/d; minv[2] = (m[]*m[5]-m[2]*m[4])/d; minv[3] = -(m[3]*m[8]-m[5]*m[6])/d; minv[4] = (m[0]*m[8]-m[2]*m[6])/d; minv[5] = -(m[0]*m[5]-m[2]*m[3])/d; minv[6] = (m[3]*m[7]-m[4]*m[6])/d; minv[7] = -(m[0]*m[7]-m[]*m[6])/d; minv[8] = (m[0]*m[4]-m[]*m[3])/d; 6

Uses of Transformations. 2D transformations Homogeneous coordinates. Transformations. Transformations. Transformations. Transformations and matrices

Uses of Transformations. 2D transformations Homogeneous coordinates. Transformations. Transformations. Transformations. Transformations and matrices Uses of Transformations 2D transformations Homogeneous coordinates odeling: position and resie parts of a comple model; Viewing: define and position the virtual camera Animation: define how objects move/change

More information

Affine and Projective Transformations

Affine and Projective Transformations CS 674: Intro to Computer Vision Affine and Projective Transformations Prof. Adriana Kovaska Universit of Pittsburg October 3, 26 Alignment problem We previousl discussed ow to matc features across images,

More information

Transformations. Examples of transformations: shear. scaling

Transformations. Examples of transformations: shear. scaling Transformations Eamples of transformations: translation rotation scaling shear Transformations More eamples: reflection with respect to the y-ais reflection with respect to the origin Transformations Linear

More information

Local features and image matching May 8 th, 2018

Local features and image matching May 8 th, 2018 Local features and image matcing May 8 t, 2018 Yong Jae Lee UC Davis Last time RANSAC for robust fitting Lines, translation Image mosaics Fitting a 2D transformation Homograpy 2 Today Mosaics recap: How

More information

MAPI Computer Vision

MAPI Computer Vision MAPI Computer Vision Multiple View Geometry In tis module we intend to present several tecniques in te domain of te 3D vision Manuel Joao University of Mino Dep Industrial Electronics - Applications -

More information

Haar Transform CS 430 Denbigh Starkey

Haar Transform CS 430 Denbigh Starkey Haar Transform CS Denbig Starkey. Background. Computing te transform. Restoring te original image from te transform 7. Producing te transform matrix 8 5. Using Haar for lossless compression 6. Using Haar

More information

12.2 Investigate Surface Area

12.2 Investigate Surface Area Investigating g Geometry ACTIVITY Use before Lesson 12.2 12.2 Investigate Surface Area MATERIALS grap paper scissors tape Q U E S T I O N How can you find te surface area of a polyedron? A net is a pattern

More information

19.2 Surface Area of Prisms and Cylinders

19.2 Surface Area of Prisms and Cylinders Name Class Date 19 Surface Area of Prisms and Cylinders Essential Question: How can you find te surface area of a prism or cylinder? Resource Locker Explore Developing a Surface Area Formula Surface area

More information

You should be able to visually approximate the slope of a graph. The slope m of the graph of f at the point x, f x is given by

You should be able to visually approximate the slope of a graph. The slope m of the graph of f at the point x, f x is given by Section. Te Tangent Line Problem 89 87. r 5 sin, e, 88. r sin sin Parabola 9 9 Hperbola e 9 9 9 89. 7,,,, 5 7 8 5 ortogonal 9. 5, 5,, 5, 5. Not multiples of eac oter; neiter parallel nor ortogonal 9.,,,

More information

4.1 Tangent Lines. y 2 y 1 = y 2 y 1

4.1 Tangent Lines. y 2 y 1 = y 2 y 1 41 Tangent Lines Introduction Recall tat te slope of a line tells us ow fast te line rises or falls Given distinct points (x 1, y 1 ) and (x 2, y 2 ), te slope of te line troug tese two points is cange

More information

2 The Derivative. 2.0 Introduction to Derivatives. Slopes of Tangent Lines: Graphically

2 The Derivative. 2.0 Introduction to Derivatives. Slopes of Tangent Lines: Graphically 2 Te Derivative Te two previous capters ave laid te foundation for te study of calculus. Tey provided a review of some material you will need and started to empasize te various ways we will view and use

More information

NOTES: A quick overview of 2-D geometry

NOTES: A quick overview of 2-D geometry NOTES: A quick overview of 2-D geometry Wat is 2-D geometry? Also called plane geometry, it s te geometry tat deals wit two dimensional sapes flat tings tat ave lengt and widt, suc as a piece of paper.

More information

Measuring Length 11and Area

Measuring Length 11and Area Measuring Lengt 11and Area 11.1 Areas of Triangles and Parallelograms 11.2 Areas of Trapezoids, Romuses, and Kites 11.3 Perimeter and Area of Similar Figures 11.4 Circumference and Arc Lengt 11.5 Areas

More information

Numerical Derivatives

Numerical Derivatives Lab 15 Numerical Derivatives Lab Objective: Understand and implement finite difference approximations of te derivative in single and multiple dimensions. Evaluate te accuracy of tese approximations. Ten

More information

THANK YOU FOR YOUR PURCHASE!

THANK YOU FOR YOUR PURCHASE! THANK YOU FOR YOUR PURCHASE! Te resources included in tis purcase were designed and created by me. I ope tat you find tis resource elpful in your classroom. Please feel free to contact me wit any questions

More information

3.6 Directional Derivatives and the Gradient Vector

3.6 Directional Derivatives and the Gradient Vector 288 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.6 Directional Derivatives and te Gradient Vector 3.6.1 Functions of two Variables Directional Derivatives Let us first quickly review, one more time, te

More information

Section 1.2 The Slope of a Tangent

Section 1.2 The Slope of a Tangent Section 1.2 Te Slope of a Tangent You are familiar wit te concept of a tangent to a curve. Wat geometric interpretation can be given to a tangent to te grap of a function at a point? A tangent is te straigt

More information

MAC-CPTM Situations Project

MAC-CPTM Situations Project raft o not use witout permission -P ituations Project ituation 20: rea of Plane Figures Prompt teacer in a geometry class introduces formulas for te areas of parallelograms, trapezoids, and romi. e removes

More information

Areas of Parallelograms and Triangles. To find the area of parallelograms and triangles

Areas of Parallelograms and Triangles. To find the area of parallelograms and triangles 10-1 reas of Parallelograms and Triangles ommon ore State Standards G-MG..1 Use geometric sapes, teir measures, and teir properties to descrie ojects. G-GPE..7 Use coordinates to compute perimeters of

More information

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR 13.5 Directional Derivatives and te Gradient Vector Contemporary Calculus 1 13.5 DIRECTIONAL DERIVATIVES and te GRADIENT VECTOR Directional Derivatives In Section 13.3 te partial derivatives f x and f

More information

2.8 The derivative as a function

2.8 The derivative as a function CHAPTER 2. LIMITS 56 2.8 Te derivative as a function Definition. Te derivative of f(x) istefunction f (x) defined as follows f f(x + ) f(x) (x). 0 Note: tis differs from te definition in section 2.7 in

More information

4.2 The Derivative. f(x + h) f(x) lim

4.2 The Derivative. f(x + h) f(x) lim 4.2 Te Derivative Introduction In te previous section, it was sown tat if a function f as a nonvertical tangent line at a point (x, f(x)), ten its slope is given by te it f(x + ) f(x). (*) Tis is potentially

More information

CHAPTER 7: TRANSCENDENTAL FUNCTIONS

CHAPTER 7: TRANSCENDENTAL FUNCTIONS 7.0 Introduction and One to one Functions Contemporary Calculus 1 CHAPTER 7: TRANSCENDENTAL FUNCTIONS Introduction In te previous capters we saw ow to calculate and use te derivatives and integrals of

More information

MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2

MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2 MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2 Note: Tere will be a very sort online reading quiz (WebWork) on eac reading assignment due one our before class on its due date. Due dates can be found

More information

Section 3. Imaging With A Thin Lens

Section 3. Imaging With A Thin Lens Section 3 Imaging Wit A Tin Lens 3- at Ininity An object at ininity produces a set o collimated set o rays entering te optical system. Consider te rays rom a inite object located on te axis. Wen te object

More information

All truths are easy to understand once they are discovered; the point is to discover them. Galileo

All truths are easy to understand once they are discovered; the point is to discover them. Galileo Section 7. olume All truts are easy to understand once tey are discovered; te point is to discover tem. Galileo Te main topic of tis section is volume. You will specifically look at ow to find te volume

More information

12.2 TECHNIQUES FOR EVALUATING LIMITS

12.2 TECHNIQUES FOR EVALUATING LIMITS Section Tecniques for Evaluating Limits 86 TECHNIQUES FOR EVALUATING LIMITS Wat ou sould learn Use te dividing out tecnique to evaluate its of functions Use te rationalizing tecnique to evaluate its of

More information

12.2 Techniques for Evaluating Limits

12.2 Techniques for Evaluating Limits 335_qd /4/5 :5 PM Page 863 Section Tecniques for Evaluating Limits 863 Tecniques for Evaluating Limits Wat ou sould learn Use te dividing out tecnique to evaluate its of functions Use te rationalizing

More information

Lecture 4: Geometry II

Lecture 4: Geometry II Lecture 4: Geometry II LPSS MATHCOUNTS 19 May 2004 Some Well-Known Pytagorean Triples A Pytagorean triple is a set of tree relatively prime 1 natural numers a,, and c satisfying a 2 + 2 = c 2 : 3 2 + 4

More information

Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number

Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number Sofia Burille Mentor: Micael Natanson September 15, 2014 Abstract Given a grap, G, wit a set of vertices, v, and edges, various

More information

RECONSTRUCTING OF A GIVEN PIXEL S THREE- DIMENSIONAL COORDINATES GIVEN BY A PERSPECTIVE DIGITAL AERIAL PHOTOS BY APPLYING DIGITAL TERRAIN MODEL

RECONSTRUCTING OF A GIVEN PIXEL S THREE- DIMENSIONAL COORDINATES GIVEN BY A PERSPECTIVE DIGITAL AERIAL PHOTOS BY APPLYING DIGITAL TERRAIN MODEL IV. Évfolyam 3. szám - 2009. szeptember Horvát Zoltán orvat.zoltan@zmne.u REONSTRUTING OF GIVEN PIXEL S THREE- DIMENSIONL OORDINTES GIVEN Y PERSPETIVE DIGITL ERIL PHOTOS Y PPLYING DIGITL TERRIN MODEL bsztrakt/bstract

More information

Hash-Based Indexes. Chapter 11. Comp 521 Files and Databases Spring

Hash-Based Indexes. Chapter 11. Comp 521 Files and Databases Spring Has-Based Indexes Capter 11 Comp 521 Files and Databases Spring 2010 1 Introduction As for any index, 3 alternatives for data entries k*: Data record wit key value k

More information

Multi-Stack Boundary Labeling Problems

Multi-Stack Boundary Labeling Problems Multi-Stack Boundary Labeling Problems Micael A. Bekos 1, Micael Kaufmann 2, Katerina Potika 1 Antonios Symvonis 1 1 National Tecnical University of Atens, Scool of Applied Matematical & Pysical Sciences,

More information

CS770/870 Spring 2017 Transformations

CS770/870 Spring 2017 Transformations CS770/870 Spring 2017 Transformations Coordinate sstems 2D Transformations Homogeneous coordinates Matrices, vectors, points 01/29/2017 1 Coordinate Sstems Coordinate sstems used in graphics Screen coordinates:

More information

Lesson 6 MA Nick Egbert

Lesson 6 MA Nick Egbert Overview From kindergarten we all know ow to find te slope of a line: rise over run, or cange in over cange in. We want to be able to determine slopes of functions wic are not lines. To do tis we use te

More information

Chapter K. Geometric Optics. Blinn College - Physics Terry Honan

Chapter K. Geometric Optics. Blinn College - Physics Terry Honan Capter K Geometric Optics Blinn College - Pysics 2426 - Terry Honan K. - Properties of Ligt Te Speed of Ligt Te speed of ligt in a vacuum is approximately c > 3.0µ0 8 mês. Because of its most fundamental

More information

Homework 5: Transformations in geometry

Homework 5: Transformations in geometry Math 21b: Linear Algebra Spring 2018 Homework 5: Transformations in geometry This homework is due on Wednesday, February 7, respectively on Thursday February 8, 2018. 1 a) Find the reflection matrix at

More information

Piecewise Polynomial Interpolation, cont d

Piecewise Polynomial Interpolation, cont d Jim Lambers MAT 460/560 Fall Semester 2009-0 Lecture 2 Notes Tese notes correspond to Section 4 in te text Piecewise Polynomial Interpolation, cont d Constructing Cubic Splines, cont d Having determined

More information

Materials: Whiteboard, TI-Nspire classroom set, quadratic tangents program, and a computer projector.

Materials: Whiteboard, TI-Nspire classroom set, quadratic tangents program, and a computer projector. Adam Clinc Lesson: Deriving te Derivative Grade Level: 12 t grade, Calculus I class Materials: Witeboard, TI-Nspire classroom set, quadratic tangents program, and a computer projector. Goals/Objectives:

More information

N-Views (1) Homographies and Projection

N-Views (1) Homographies and Projection CS 4495 Computer Vision N-Views (1) Homographies and Projection Aaron Bobick School of Interactive Computing Administrivia PS 2: Get SDD and Normalized Correlation working for a given windows size say

More information

Read pages in the book, up to the investigation. Pay close attention to Example A and how to identify the height.

Read pages in the book, up to the investigation. Pay close attention to Example A and how to identify the height. C 8 Noteseet L Key In General ON LL PROBLEMS!!. State te relationsip (or te formula).. Sustitute in known values. 3. Simplify or Solve te equation. Use te order of operations in te correct order. Order

More information

z = x 2 xy + y 2 clf // c6.1(2)contour Change to make a contour plot of z=xy.

z = x 2 xy + y 2 clf // c6.1(2)contour Change to make a contour plot of z=xy. 190 Lecture 6 3D equations formatting Open Lecture 6. See Capter 3, 10 of text for details. Draw a contour grap and a 3D grap of z = 1 x 2 y 2 = an upper emispere. For Classwork 1 and 2, you will grap

More information

Homework 5: Transformations in geometry

Homework 5: Transformations in geometry Math b: Linear Algebra Spring 08 Homework 5: Transformations in geometry This homework is due on Wednesday, February 7, respectively on Thursday February 8, 08. a) Find the reflection matrix at the line

More information

3-D D Euclidean Space - Vectors

3-D D Euclidean Space - Vectors 3-D D Euclidean Space - Vectors Rigid Body Motion and Image Formation A free vector is defined by a pair of points : Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Coordinates of the vector : 3D Rotation

More information

1.4 RATIONAL EXPRESSIONS

1.4 RATIONAL EXPRESSIONS 6 CHAPTER Fundamentals.4 RATIONAL EXPRESSIONS Te Domain of an Algebraic Epression Simplifying Rational Epressions Multiplying and Dividing Rational Epressions Adding and Subtracting Rational Epressions

More information

Interference and Diffraction of Light

Interference and Diffraction of Light Interference and Diffraction of Ligt References: [1] A.P. Frenc: Vibrations and Waves, Norton Publ. 1971, Capter 8, p. 280-297 [2] PASCO Interference and Diffraction EX-9918 guide (written by Ann Hanks)

More information

Computer Vision Lecture 13

Computer Vision Lecture 13 Computer Vision Lecture 3 Recognition wit Local Features 5.2.205 astian Leibe RWTH acen ttp://www.vision.rwt-aacen.de/ leibe@vision.rwt-aacen.de Course Outline Image Processing asics Segmentation & Grouping

More information

Linear Interpolating Splines

Linear Interpolating Splines Jim Lambers MAT 772 Fall Semester 2010-11 Lecture 17 Notes Tese notes correspond to Sections 112, 11, and 114 in te text Linear Interpolating Splines We ave seen tat ig-degree polynomial interpolation

More information

When the dimensions of a solid increase by a factor of k, how does the surface area change? How does the volume change?

When the dimensions of a solid increase by a factor of k, how does the surface area change? How does the volume change? 8.4 Surface Areas and Volumes of Similar Solids Wen te dimensions of a solid increase by a factor of k, ow does te surface area cange? How does te volume cange? 1 ACTIVITY: Comparing Surface Areas and

More information

Hash-Based Indexes. Chapter 11. Comp 521 Files and Databases Fall

Hash-Based Indexes. Chapter 11. Comp 521 Files and Databases Fall Has-Based Indexes Capter 11 Comp 521 Files and Databases Fall 2012 1 Introduction Hasing maps a searc key directly to te pid of te containing page/page-overflow cain Doesn t require intermediate page fetces

More information

CE 221 Data Structures and Algorithms

CE 221 Data Structures and Algorithms CE Data Structures and Algoritms Capter 4: Trees (AVL Trees) Text: Read Weiss, 4.4 Izmir University of Economics AVL Trees An AVL (Adelson-Velskii and Landis) tree is a binary searc tree wit a balance

More information

8/6/2010 Assignment Previewer

8/6/2010 Assignment Previewer Week 4 Friday Homework (1321979) Question 1234567891011121314151617181920 1. Question DetailsSCalcET6 2.7.003. [1287988] Consider te parabola y 7x - x 2. (a) Find te slope of te tangent line to te parabola

More information

The Three Dimensional Coordinate System

The Three Dimensional Coordinate System The Three-Dimensional Coordinate System The Three Dimensional Coordinate System You can construct a three-dimensional coordinate system by passing a z-axis perpendicular to both the x- and y-axes at the

More information

Vector Processing Contours

Vector Processing Contours Vector Processing Contours Andrey Kirsanov Department of Automation and Control Processes MAMI Moscow State Tecnical University Moscow, Russia AndKirsanov@yandex.ru A.Vavilin and K-H. Jo Department of

More information

ANTENNA SPHERICAL COORDINATE SYSTEMS AND THEIR APPLICATION IN COMBINING RESULTS FROM DIFFERENT ANTENNA ORIENTATIONS

ANTENNA SPHERICAL COORDINATE SYSTEMS AND THEIR APPLICATION IN COMBINING RESULTS FROM DIFFERENT ANTENNA ORIENTATIONS NTNN SPHRICL COORDINT SSTMS ND THIR PPLICTION IN COMBINING RSULTS FROM DIFFRNT NTNN ORINTTIONS llen C. Newell, Greg Hindman Nearfield Systems Incorporated 133. 223 rd St. Bldg. 524 Carson, C 9745 US BSTRCT

More information

CT5510: Computer Graphics. Transformation BOCHANG MOON

CT5510: Computer Graphics. Transformation BOCHANG MOON CT5510: Computer Graphics Transformation BOCHANG MOON 2D Translation Transformations such as rotation and scale can be represented using a matrix M.., How about translation? No way to express this using

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t 2 R 3,t 3 Camera 1 Camera

More information

Section 2.3: Calculating Limits using the Limit Laws

Section 2.3: Calculating Limits using the Limit Laws Section 2.3: Calculating Limits using te Limit Laws In previous sections, we used graps and numerics to approimate te value of a it if it eists. Te problem wit tis owever is tat it does not always give

More information

( ) C 2 ( ) C 1. cllqfkd=rkabo=^uf^i=il^a=^ka=jljbkq=er. KlingnerF=

( ) C 2 ( ) C 1. cllqfkd=rkabo=^uf^i=il^a=^ka=jljbkq=er. KlingnerF= cllqfkd=rkabo=^uf^i=il^a=^ka=jljbkq=er. KlingnerF= A reinfoced concrete footing needs to be designed to support column A3 in te indicated drawing. According to te preliminary structural analysis tat was

More information

Short on camera geometry and camera calibration

Short on camera geometry and camera calibration Short on camera geometry and camera calibration Maria Magnusson, maria.magnusson@liu.se Computer Vision Laboratory, Department of Electrical Engineering, Linköping University, Sweden Report No: LiTH-ISY-R-3070

More information

Classify solids. Find volumes of prisms and cylinders.

Classify solids. Find volumes of prisms and cylinders. 11.4 Volumes of Prisms and Cylinders Essential Question How can you find te volume of a prism or cylinder tat is not a rigt prism or rigt cylinder? Recall tat te volume V of a rigt prism or a rigt cylinder

More information

( )( ) ( ) MTH 95 Practice Test 1 Key = 1+ x = f x. g. ( ) ( ) The only zero of f is 7 2. The only solution to g( x ) = 4 is 2.

( )( ) ( ) MTH 95 Practice Test 1 Key = 1+ x = f x. g. ( ) ( ) The only zero of f is 7 2. The only solution to g( x ) = 4 is 2. Mr. Simonds MTH 95 Class MTH 95 Practice Test 1 Key 1. a. g ( ) ( ) + 4( ) 4 1 c. f ( x) 7 7 7 x 14 e. + 7 + + 4 f g 1+ g. f 4 + 4 7 + 1+ i. g ( 4) ( 4) + 4( 4) k. g( x) x 16 + 16 0 x 4 + 4 4 0 x 4x+ 4

More information

Areas of Triangles and Parallelograms. Bases of a parallelogram. Height of a parallelogram THEOREM 11.3: AREA OF A TRIANGLE. a and its corresponding.

Areas of Triangles and Parallelograms. Bases of a parallelogram. Height of a parallelogram THEOREM 11.3: AREA OF A TRIANGLE. a and its corresponding. 11.1 Areas of Triangles and Parallelograms Goal p Find areas of triangles and parallelograms. Your Notes VOCABULARY Bases of a parallelogram Heigt of a parallelogram POSTULATE 4: AREA OF A SQUARE POSTULATE

More information

The (, D) and (, N) problems in double-step digraphs with unilateral distance

The (, D) and (, N) problems in double-step digraphs with unilateral distance Electronic Journal of Grap Teory and Applications () (), Te (, D) and (, N) problems in double-step digraps wit unilateral distance C Dalfó, MA Fiol Departament de Matemàtica Aplicada IV Universitat Politècnica

More information

Engineering Mechanics (Statics) (Centroid) Dr. Hayder A. Mehdi

Engineering Mechanics (Statics) (Centroid) Dr. Hayder A. Mehdi Engineering Mecanics (Statics) (Centroid) Dr. Hader A. Medi Centroid of an Area: If an area lies in te x plane and is ounded te curve = f (x), as sown in te following figure ten its centroid will e in

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Projective 3D Geometry (Back to Chapter 2) Lecture 6 2 Singular Value Decomposition Given a

More information

2D transformations: An introduction to the maths behind computer graphics

2D transformations: An introduction to the maths behind computer graphics 2D transformations: An introduction to the maths behind computer graphics Lecturer: Dr Dan Cornford d.cornford@aston.ac.uk http://wiki.aston.ac.uk/dancornford CS2150, Computer Graphics, Aston University,

More information

Jorge Salvador Marques, geometric camera model

Jorge Salvador Marques, geometric camera model geometric camera model image acquisition 6 years ago today curc of te Holy Spirit, Brunellesci, 436 te camera projects 3D points into an image plane geometric primitives and transformations How do we see

More information

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah Camera Models and Image Formation Srikumar Ramalingam School of Computing University of Utah srikumar@cs.utah.edu Reference Most slides are adapted from the following notes: Some lecture notes on geometric

More information

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG.

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG. Computer Vision Coordinates Prof. Flávio Cardeal DECOM / CEFET- MG cardeal@decom.cefetmg.br Abstract This lecture discusses world coordinates and homogeneous coordinates, as well as provides an overview

More information

Section 1.1 The Distance and Midpoint Formulas; Graphing Utilities; Introduction to Graphing Equations

Section 1.1 The Distance and Midpoint Formulas; Graphing Utilities; Introduction to Graphing Equations Section 1.1 The Distance and Midpoint Formulas; Graphing Utilities; Introduction to Graphing Equations origin (x, y) Ordered pair (x-coordinate, y-coordinate) (abscissa, ordinate) x axis Rectangular or

More information

Cubic smoothing spline

Cubic smoothing spline Cubic smooting spline Menu: QCExpert Regression Cubic spline e module Cubic Spline is used to fit any functional regression curve troug data wit one independent variable x and one dependent random variable

More information

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah Camera Models and Image Formation Srikumar Ramalingam School of Computing University of Utah srikumar@cs.utah.edu VisualFunHouse.com 3D Street Art Image courtesy: Julian Beaver (VisualFunHouse.com) 3D

More information

The Euler and trapezoidal stencils to solve d d x y x = f x, y x

The Euler and trapezoidal stencils to solve d d x y x = f x, y x restart; Te Euler and trapezoidal stencils to solve d d x y x = y x Te purpose of tis workseet is to derive te tree simplest numerical stencils to solve te first order d equation y x d x = y x, and study

More information

6 Computing Derivatives the Quick and Easy Way

6 Computing Derivatives the Quick and Easy Way Jay Daigle Occiental College Mat 4: Calculus Experience 6 Computing Derivatives te Quick an Easy Way In te previous section we talke about wat te erivative is, an we compute several examples, an ten we

More information

COMP 175 COMPUTER GRAPHICS. Ray Casting. COMP 175: Computer Graphics April 26, Erik Anderson 09 Ray Casting

COMP 175 COMPUTER GRAPHICS. Ray Casting. COMP 175: Computer Graphics April 26, Erik Anderson 09 Ray Casting Ray Casting COMP 175: Computer Graphics April 26, 2018 1/41 Admin } Assignment 4 posted } Picking new partners today for rest of the assignments } Demo in the works } Mac demo may require a new dylib I

More information

3D Transformations. CS 4620 Lecture 10. Cornell CS4620 Fall 2014 Lecture Steve Marschner (with previous instructors James/Bala)

3D Transformations. CS 4620 Lecture 10. Cornell CS4620 Fall 2014 Lecture Steve Marschner (with previous instructors James/Bala) 3D Transformations CS 4620 Lecture 10 1 Translation 2 Scaling 3 Rotation about z axis 4 Rotation about x axis 5 Rotation about y axis 6 Properties of Matrices Translations: linear part is the identity

More information

Texture Mapping. Texture (images) lecture 16. Texture mapping Aliasing (and anti-aliasing) Adding texture improves realism.

Texture Mapping. Texture (images) lecture 16. Texture mapping Aliasing (and anti-aliasing) Adding texture improves realism. lecture 16 Texture mapping Aliasing (and anti-aliasing) Texture (images) Texture Mapping Q: Why do we need texture mapping? A: Because objects look fake and boring without it. Adding texture improves realism.

More information

lecture 16 Texture mapping Aliasing (and anti-aliasing)

lecture 16 Texture mapping Aliasing (and anti-aliasing) lecture 16 Texture mapping Aliasing (and anti-aliasing) Texture (images) Texture Mapping Q: Why do we need texture mapping? A: Because objects look fake and boring without it. Adding texture improves realism.

More information

2D/3D Geometric Transformations and Scene Graphs

2D/3D Geometric Transformations and Scene Graphs 2D/3D Geometric Transformations and Scene Graphs Week 4 Acknowledgement: The course slides are adapted from the slides prepared by Steve Marschner of Cornell University 1 A little quick math background

More information

Transforms. COMP 575/770 Spring 2013

Transforms. COMP 575/770 Spring 2013 Transforms COMP 575/770 Spring 2013 Transforming Geometry Given any set of points S Could be a 2D shape, a 3D object A transform is a function T that modifies all points in S: T S S T v v S Different transforms

More information

3D Transformations. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 11

3D Transformations. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 11 3D Transformations CS 4620 Lecture 11 1 Announcements A2 due tomorrow Demos on Monday Please sign up for a slot Post on piazza 2 Translation 3 Scaling 4 Rotation about z axis 5 Rotation about x axis 6

More information

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into 2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into the viewport of the current application window. A pixel

More information

Perspective Mappings. Contents

Perspective Mappings. Contents Perspective Mappings David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy

More information

Today. Today. Introduction. Matrices. Matrices. Computergrafik. Transformations & matrices Introduction Matrices

Today. Today. Introduction. Matrices. Matrices. Computergrafik. Transformations & matrices Introduction Matrices Computergrafik Matthias Zwicker Universität Bern Herbst 2008 Today Transformations & matrices Introduction Matrices Homogeneous Affine transformations Concatenating transformations Change of Common coordinate

More information

DD2429 Computational Photography :00-19:00

DD2429 Computational Photography :00-19:00 . Examination: DD2429 Computational Photography 202-0-8 4:00-9:00 Each problem gives max 5 points. In order to pass you need about 0-5 points. You are allowed to use the lecture notes and standard list

More information

1999, Denis Zorin. Ray tracing

1999, Denis Zorin. Ray tracing Ray tracing Ray tracing shadow rays normal reflected ray pixel ray camera normal Ray casting/ray tracing Iterate over pixels, not objects. Effects that are difficult with Z-buffer, are easy with ray tracing:

More information

Algebra Area of Triangles

Algebra Area of Triangles LESSON 0.3 Algera Area of Triangles FOCUS COHERENCE RIGOR LESSON AT A GLANCE F C R Focus: Common Core State Standards Learning Ojective 6.G.A. Find te area of rigt triangles, oter triangles, special quadrilaterals,

More information

VOLUMES. The volume of a cylinder is determined by multiplying the cross sectional area by the height. r h V. a) 10 mm 25 mm.

VOLUMES. The volume of a cylinder is determined by multiplying the cross sectional area by the height. r h V. a) 10 mm 25 mm. OLUME OF A CYLINDER OLUMES Te volume of a cylinder is determined by multiplying te cross sectional area by te eigt. r Were: = volume r = radius = eigt Exercise 1 Complete te table ( =.14) r a) 10 mm 5

More information

EXERCISES 6.1. Cross-Sectional Areas. 6.1 Volumes by Slicing and Rotation About an Axis 405

EXERCISES 6.1. Cross-Sectional Areas. 6.1 Volumes by Slicing and Rotation About an Axis 405 6. Volumes b Slicing and Rotation About an Ais 5 EXERCISES 6. Cross-Sectional Areas In Eercises and, find a formula for te area A() of te crosssections of te solid perpendicular to te -ais.. Te solid lies

More information

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6 Math background 2D Geometric Transformations CS 4620 Lecture 6 Read: Chapter 2: Miscellaneous Math Chapter 5: Linear Algebra Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector

More information

You Try: A. Dilate the following figure using a scale factor of 2 with center of dilation at the origin.

You Try: A. Dilate the following figure using a scale factor of 2 with center of dilation at the origin. 1 G.SRT.1-Some Tings To Know Dilations affect te size of te pre-image. Te pre-image will enlarge or reduce by te ratio given by te scale factor. A dilation wit a scale factor of 1> x >1enlarges it. A dilation

More information

2D Object Definition (1/3)

2D Object Definition (1/3) 2D Object Definition (1/3) Lines and Polylines Lines drawn between ordered points to create more complex forms called polylines Same first and last point make closed polyline or polygon Can intersect itself

More information

Geometric Transformations

Geometric Transformations Geometric Transformations CS 4620 Lecture 9 2017 Steve Marschner 1 A little quick math background Notation for sets, functions, mappings Linear and affine transformations Matrices Matrix-vector multiplication

More information

3-Dimensional Viewing

3-Dimensional Viewing CHAPTER 6 3-Dimensional Vieing Vieing and projection Objects in orld coordinates are projected on to the vie plane, hich is defined perpendicular to the vieing direction along the v -ais. The to main tpes

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 7: Image Alignment and Panoramas What s inside your fridge? http://www.cs.washington.edu/education/courses/cse590ss/01wi/ Projection matrix intrinsics projection

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometry and Camera Calibration 3D Coordinate Systems Right-handed vs. left-handed x x y z z y 2D Coordinate Systems 3D Geometry Basics y axis up vs. y axis down Origin at center vs. corner Will often

More information

Image and Multidimensional Signal Processing

Image and Multidimensional Signal Processing Image and Multidimensional Signal Processing Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ Interpolation and Spatial Transformations 2 Image Interpolation

More information

Chapter 34. Images. Two Types of Images. A Common Mirage. Plane Mirrors, Extended Object. Plane Mirrors, Point Object

Chapter 34. Images. Two Types of Images. A Common Mirage. Plane Mirrors, Extended Object. Plane Mirrors, Point Object Capter Images One o te most important uses o te basic laws governing ligt is te production o images. Images are critical to a variety o ields and industries ranging rom entertainment, security, and medicine

More information

2.3 Additional Relations

2.3 Additional Relations 3 2.3 Additional Relations Figure 2.3 identiies additional relations, indicating te locations o te object and image, and te ratio o teir eigts (magniication) and orientations. Ray enters te lens parallel

More information