Understanding the Propagation of Light

Size: px
Start display at page:

Download "Understanding the Propagation of Light"

Transcription

1 [ Assignment View ] [ Eðlisfræði 2, vor The Nature and Propagation of Light Assignment is due at 2:00am on Wednesday, January 17, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed. The wrong answer penalty is 2% per part. Multiple choice questions are penalized as described in the online help. The unopened hint bonus is 2% per part. You are allowed 4 attempts per answer. The basics of light propagation and waves Understanding the Propagation of Light Learning Goal: To understand ray diagrams, as well as basic reflection and refraction problems. There are two ways of indicating, in a diagram, the path that light follows. One way is by using wavefronts (shown in blue); the other is by using rays (shown in red). Wavefronts represent, in a schematic way, the successive peaks of the electromagnetic wave at a specific time. Light is a transverse wave; it moves perpendicular to the wavefronts. Rays are used to indicate the direction of motion of the light. Ray diagrams are typically used in problems where the wave nature of light is not important, as will be the case in geometric optics. Notice in the diagram that the wavefronts get closer together inside of the glass. This is because the speed of light in glass is less than that in air. The frequency of a wave does not change when it propagates through different media, even though its speed may change. (Waves can be neither created nor destroyed at the boundary between different media; hence, the number of waves that strike the boundary per unit time must equal the number of waves that leave the boundary per unit time.) Let be the wave's speed, its wavelength, and its frequency. These quantities are related via the equation. Note that, if the wave speed decreases, the wavelength must also decrease for the frequency to remain constant. What is the wavelength glass is? of light in glass, if its wavelength in air is, its speed in air is, and its speed in the Hint A.1 How to approach the problem Express your answer in terms of,, and. Two important things happen to light when it strikes a transparent boundary: It gets reflected and it gets refracted. When you see your reflection in glass, you are seeing the result of reflection from a transparent boundary. In the figure, the ray moving toward the air/glass interface is called the incident ray. The ray leaving the boundary in air is called the reflected ray. The ray leaving the boundary inside the glass is 1 of 15 17/4/07 15:51

2 called the refracted ray. Reflection from a mirror and reflection from a transparent boundary both obey the law of reflection:, where is the angle of incidence (the angle between the incoming ray and the normal to the surface), and is the angle of reflection (the angle between the normal line and the reflected ray). Part D If light strikes the air/glass interface at an angle 32.0 to the normal, what is the angle of reflection,? Express your answer in degrees to three significant figures. The second important effect of light striking a transparent boundary is refraction. Refraction is the bending of light caused by the difference in the speed of light between materials. When light moves into a medium with a higher index of refraction (i.e., lower speed of light), the refracted ray has a smaller angle to the normal than the incident ray. Snell's law gives this angle of refraction, :. Since we are assuming that the speed of light in air is very close to the speed of light in vacuum, you will use in this problem. Part E If light strikes the air/glass interface at an incidence angle of 32.0, what is the angle of refraction,? Use 1.50 for the index of refraction of glass. Express your answer in degrees to three significant figures. Wavelength, Frequency, and Speed of Light in Different Media A beam of light from a monochromatic laser shines into a piece of glass. The glass has a thickness and an index of refraction. The wavelength of the laser light in vacuum is and its frequency is. In this problem, the constant should not appear in any of your answers. How long does it take for a short pulse of the light to travel from one end of the glass to the other? Hint A.1 How to approach the problem 2 of 15 17/4/07 15:51

3 Hint A.2 The speed of light.3 Find the speed of light in the glass Express the time in terms of and. An exercise reviewing geometry and reflections, followed by problems in reflection and refraction Geometry and Reflections Learning Goal: To learn and practice the geometry skills necessary for complex reflection setups. The law of reflection has the very simple form where is the angle between the normal and the incident ray and is the angle between the normal and the reflected ray. Although the law itself is easy to use, many realistic situations involve successive reflections from multiple surfaces. The law of reflection does not become any more complicated in such cases, but the geometry of the rays does become complicated. Consider the case of light shining onto a mirror, which is attached to another mirror at some angle, as shown in the figure. In this problem, we will find the angle at which light leaves the arrangement of two mirrors., If the light strikes the first mirror at an angle, what is the reflected angle? Express your answer in terms of. = Now, find the angle (shown in the new figure ) in terms of. You can easily find in terms of, then just substitute your expression from. Hint B.1 Relationship between and 3 of 15 17/4/07 15:51

4 Express your answer in degrees in terms of. Notice that the degrees symbol is already listed for you, so just use the number "23" to indicate 23 degrees. = Now, find the angle shown in the figure in terms of and. Hint C.1 Angles in a triangle Express your answer in degrees in terms of and. = Part D Find the angle shown in the figure in terms of and. You will need to assume that, as it appears in the picture. Hint D.1 Relationship between and Hint D.2 How to find in terms of Express your answer in degrees in terms of and. = Virtually any reflection problem, no matter how intimidating it may seem, can be broken down into simple parts by considering each individual reflection carefully. Diffuse Reflection The law of reflection is quite useful for mirrors and other flat, shiny surfaces. (This sort of reflection is called specular reflection). However, you've likely been told that when you look at something, you are seeing light reflected from the object that you are looking at. This is reflection of a different sort: diffuse reflection. In this 4 of 15 17/4/07 15:51

5 problem, you will see how diffuse reflection actually arises from the same law of reflection that you are accustomed to for reflections from mirrors. Consider a spotlight shining onto a horizontal mirror. If the light from the spotlight strikes the mirror at an angle to the normal, what angle to the normal would you expect for the reflected rays? Express your answer in terms of. This simple rule of reflection no longer seems to hold for diffuse reflection. Consider the same spotlight but now reflecting from the surface of a table. Unlike the light reflected from the mirror, the light reflected from the table seems to go in all directions. If it didn't, then you'd only be able to see tables when you were at a specific angle to the lights above you! To understand why the light reflects in all directions, you must first look at a slightly simpler problem. Consider a flat surface, inclined downward from the horizontal by an angle. The red line represents the surface and the red dotted line indicates the normal to this surface (the normal line). The two blue dashed lines represent horizontal and vertical. The angle between the incoming ray and the vertical is. Throughout this problem, assume that is larger than but smaller than. (If you wish, you can determine the correct sign rules to generalize your results later.) Find the angle between the reflected ray and the vertical. Hint B.1 How to approach the problem.2 Find the angle between the normal line and vertical.3 Find the angle between the incoming ray and the normal line.4 Find the angle between the normal line and the reflected ray Express the angle between the reflected ray and the vertical in terms of and. 5 of 15 17/4/07 15:51

6 Underwater Optics Your eye is designed to work in air. Surrounding it with water impairs its ability to form images. Consequently, scuba divers wear masks to allow them to form images properly underwater. However, this does affect the perception of distance, as you will calculate. Consider a flat piece of plastic (index of refraction ) with water (index of refraction ) on one side and air (index of refraction ) on the other. If light is to move from the water into the air, it will be refracted twice: once at the water/plastic interface and once at the plastic/air interface. If the light strikes the plastic (from the water) at an angle, at what angle the air)? Hint A.1 Angles inside the plastic does it emerge from the plastic (into Hint A.2 Important theorem from geometry.3 Find the angle in the plastic Express your answer in terms of,,, and. Remember that the inverse sine of a number should be entered as asin(x) in the answer box. Humans estimate distance based on several different factors, such as shadows and relative positions. The most important method for estimating distance, triangulation, is performed unconsciously. Triangulation is based on the fact that light from distant objects strikes each eye at a slightly different angle. Your brain can then use that information to determine the angle as shown in the figure. In the figure, points L and R represent your left and right eyes, respectively. The distance between your eyes is, and the distance to the object, point O, is. What is the distance to the object in terms of and? Express your answer in terms of and. 6 of 15 17/4/07 15:51

7 Your eyes determine by assuming that and (in the figure) are equal. This is true, unless the light rays are bent before they reach your eyes, as they are if you're wearing a scuba mask underwater. Underwater, the situation changes, as shown in the figure. Your eyes will calculate an apparent distance the angle that reaches your eyes, instead of the correct geometric angle. This is the same that you calculated in. Note that there are no important geometric considerations arising from the refraction except the substitution of for, because the refraction takes place so close to your eyes. If the problem discussed someone looking out of the porthole of a submarine, the geometry would become more complicated. using Part D Find the ratio. Since we are dealing with small angles, you may use the approximations and. Part D.1 Use the small-angle approximations Part D.2 Find Express your answer in terms of and. Part E A Sparkling Diamond A beam of white light is incident on the surface of a diamond at an angle. Since the index of refraction depends on the light's wavelength, the different colors that comprise white light will spread out as they pass through the diamond. The indices of refraction in diamond are for red light, and for blue light. The surrounding air has. Note that the angles in the figure are not to scale. Calculate, the speed of red light in the diamond. To four significant figures,. Express your answer in meters per second to four significant digits. Calculate, the speed of blue light in the diamond. To four significant figures,. Express your answer in meters per second to four significant digits. 7 of 15 17/4/07 15:51

8 Derive a formula for, the angle between the red and blue refracted rays in the diamond..1 Apply Snell's law for blue light.2 Apply Snell's law for red light.3 Compare the angles Express the angle in terms of,, and. Use. Remember that the proper way to enter the inverse sine of in this case is asin(x). Part D Part E Now consider, the angle at which the blue refracted ray hits the bottom surface of the diamond. If is larger than the critical angle, the light will not be refracted out into the air, but instead it will be totally internally reflected back into the diamond. Find. Part E.1 Find the refracted angle when Part E.2 Apply Snell's law Express your answer in degrees to four significant figures. Part F Is Light Reflected or Refracted? When light propagates through two adjacent materials that have different optical properties, some interesting phenomena occur at the interface separating the two materials. For example, consider a ray of light that travels from air into the water of a lake. As the ray strikes the air-water interface (the surface of the lake), it is partly reflected back into the air and partly refracted or transmitted into the water. This explains why on the surface of a lake sometimes you see the reflection of the surrounding landscape and other times the underwater vegetation. These effects on light propagation occur because light travels at different speeds depending on the medium. The index of refraction of a material, denoted by, gives an indication of the speed of light in the material. It is defined as the ratio of the speed of light in vacuum to the speed in the material, or. 8 of 15 17/4/07 15:51

9 When light propagates from a material with a given index of refraction into a material with a smaller index of refraction, the speed of light Hint A.1 Index of refraction The index of refraction of a material is defined as the ratio of the speed of light in vacuum to the speed in that particular material, or Since it is the ratio of two positive quantities that have the same units, the index of refraction is a pure (positive) number. Note that the speed of light in a certain material is inversely proportional to the index of refraction of that material.. increases. What is the minimum value that the index of refraction can have? Hint B.1 How to approach the problem between 0 and 1 The index of refraction of a material is always a positive number greater than 1 that tells us how fast the light travels in the material. The greater the index of refraction of a material, the more slowly light travels in the material. An example of reflection and refraction of light is shown in the figure. An incident ray of light traveling in the upper material strikes the interface with the lower material. The reflected ray travels back in the upper material, while the refracted ray passes into the lower material. Experimental studies have shown that the incident, reflected, and refracted rays and the normal to the interface all lie in the same plane. Moreover, the angle that the reflected ray makes with the normal to the interface, called the angle of reflection, is always equal to the angle of incidence. (Both of these angles are measured between the light ray and the normal to the interface separating the two materials.) This is known as the law of reflection. The direction of propagation of the refracted ray, instead, is given by the angle that the refracted ray makes with the normal to the interface, which is called the angle of refraction. The angle of refraction depends on the angle of incidence and the indices of refraction of the two materials. In particular, if we let be the index of refraction of the upper material and the index of refraction of the lower material, then the angle of incidence,, and the angle of refraction,, satisfy the relation This is the law of refraction, also known as Snell's law. Now consider a ray of light that propagates from water ( ) to air ( ). If the incident ray strikes the water-air interface at an angle, which of the following relations regarding the angle of refraction,, is correct?. 9 of 15 17/4/07 15:51

10 .1 Find an expression for the ratio of the sines of and When light propagates from a certain material to another one that has a smaller index of refraction, that is,, the speed of propagation of the light rays increases and the angle of refraction is always greater than the angle of incidence. This means that the rays are always bent away from the normal to the interface separating the two media. Part D Consider a ray of light that propagates from water ( ) to glass ( ). If the incident ray strikes the water-glass interface at an angle, which of the following relations regarding the angle of refraction is correct? Part D.1 Find an expression for the ratio of the sines of Let the index of refraction of water be of the sine of to the sine of. and and that of glass be. Use Snell's law to find an expression for the ratio Express your answer in terms of some or all of the variables,, and. = Now, note that for the water-glass interface. Therefore,. When light propagates from a certain material to another one that has a greater index of refraction, that is,, the speed of propagation of the light rays decreases and the angle of refraction is always smaller than the angle of incidence. This means that the rays are always bent toward the normal to the interface separating the two media. Part E Consider a ray of light that propagates from air ( ) to any one of the materials listed below. Assuming that the ray strikes the interface with any of the listed materials always at the same angle, in which material will the direction of propagation of the ray change the most due to refraction? Hint E.1 How to approach the problem Part E.2 Find an expression for the sine of the angle of refraction ice ( ) water ( ) turpentine ( ) glass ( ) diamond ( ) The greater the change in index of refraction, the greater the change in the direction of propagation of light. To avoid or minimize undesired bending of the light rays, light should travel through materials with matching indices of refraction. Is light always both reflected and refracted at the interface separating two different materials? To answer this question, let's consider the case of light propagating from a certain material to another material with a smaller index of refraction (i.e., ). 10 of 15 17/4/07 15:51

11 Part F In the case of, if the incidence angle is increased, the angle of refraction Hint F.1 How to approach the question Recall that, according to Snell's law, the sine of the angle of refraction is directly proportional to the sine of the angle of incidence. Thus, as the angle of incidence is increased, the angle of refraction changes accordingly. Moreover, since the angle of refraction is greater than the angle of incidence, as you found in, the angle of refraction can reach its maximum value sooner than the angle of incidence. increases up to a maximum value of 90 degrees. Since the light is propagating into a material with a smaller index of refraction, the angle of refraction,, is always greater than the angle of incidence,. Therefore, as is increased, at some point will reach its maximum value of 90 and the refracted ray will travel along the interface. The angle of incidence for which is called the critical angle. For any angle of incidence greater than, no refraction occurs. The ray no longer passes into the second material. Instead, it is completely reflected back into the original material. This phenomenon is called total internal reflection and occurs only when light encounters an interface with a second material with a smaller index of refraction than the original material. Part G What is the critical angle with index of refraction of 1.00? for light propagating from a material with index of refraction of 1.50 to a material Part G.1 Find an expression for the sine of the angle of incidence Express your answer in radians. = In conclusion, light is always both reflected and refracted, except in the special situation when the conditions for total internal reflection occur. In that case, there is no refracted ray and the incident ray is completely reflected. More advanced topics and applications Scattering and polarized light The process of scattering of light by a molecule (Rayleigh scattering) is an important physical phenomenon. Instead of thinking of scattering as light simply bouncing off the molecule, one should think of it as an absorption followed by reradiation of light. The probability for light to be scattered is proportional to the inverse of the wavelength to the fourth power,. This means that the shorter wavelengths (toward blue) get scattered more strongly than the longer wavelengths (toward red). Rayleigh scattering can explain why the daytime sky looks blue, the sunset looks red, and clouds are white. In the afternoon you observe mostly scattered light (blue); in the evening you see mostly transmitted light (red). The clouds have higher concentration of water and ice droplets. This means that light gets rescattered many times and all wavelengths get a chance to scatter out of the clouds, adding up to white light. Another effect that can be explained by light scattering is polarization. When you look at the sky with Polaroid sunglasses it appears darker or brighter from different angles. This is because the scattered light is partially polarized. The white light scattered from the clouds is unpolarized, because the light scatters randomly, multiple times. The direction of its polarization becomes random and thus the light is unpolarized. This effect can be useful 11 of 15 17/4/07 15:51

12 for making dramatic photographs of the sky. Consider a photographer who wants to take a picture of an interesting cloud formation. To increase the ratio of the clouds' intensity to that of the blue sky the photographer uses a polarizing filter. How would the photographer use the polarizing filter to find out the direction of polarization of the light coming from the blue sky? Her only reference is the polarization axis of the filter. Rotate the filter until the light's intensity is minimum; light's polarization is along filter's axis. Rotate the filter until the light's intensity is maximum; light's polarization is along filter's axis. Find the angle between the filter's polarizing axis and the direction of polarization of light necessary to increase the ratio of the clouds' intensity to that of the blue sky so that it is three times the normal value..1 Find the intensity of light from the sky through the polarizing filter What is, the intensity of light from the blue sky after it passes through the photographer's polarizing filter with the polarizing axis at an angle to the direction of the light's polarization? The intensity of light from the sky before it passes through the filter is. Hint B.1.a Polarizers and electric fields Hint B.1.b Definition of intensity Express your answer in terms of and. =.2 Find the intensity of light from the the clouds through the polarizing filter What is, the intensity of light from the clouds after it passes through the photographer's polarizing filter? The intensity of light from the clouds before it passes through the filter is. Assume that light from the clouds in unpolarized. Hint B.2.a Components of randomly polarized light When light is described as unpolarized this means that it has a random polarization, that is, no preferred axis. Randomly polarized light has an equal chance of having components parallel to or perpendicular to the polarizing axis of the filter. Express your answer in terms of. = Hint B.3 Ratio You need to find an angle at which. Substitute expressions for and that you have found. Express your answer in degrees to three significant figures. = of 15 17/4/07 15:51

13 Birefringence in Calcite Calcite ( ) is a crystal with abnormally large birefringence. The index of refraction for light with electric field parallel to the optical axis (called extraordinary waves or e-waves) is The index of refraction for light with electric field perpendicular to the optical axis (called ordinary waves or o-waves) is Find the critical angle for e-waves in calcite. Hint A.1 Snell's law Hint A.2 Definition of critical angle Express your answer in degrees to four significant figures. Part D Part E Cerenkov Radiation Electromagnetic radiation is emitted when a charged particle moves through a medium faster then the local speed of light (which is always lower then the speed of light in vacuum). This radiation is known as Cerenkov radiation. Cerenkov radiation is found in many interesting places such as particle detectors and nuclear reactors and can even be seen by astronauts when cosmic rays traverse their eyes. It should be stressed that the particle is never going faster then the speed of light in vacuum (or ), just faster then the speed of light in the material (which is always less then ). The creation of Cerenkov radiation occurs in much the same way that a sonic boom is created when a plane is moving faster then the speed of sound in the air. The various wavefronts that propagate in the material add coherently to create an effective shock wave. In this problem you will become familiar with this type of radiation and learn how to use its properties to get information about the particles that created it. What is the threshold velocity for creating Cerenkov light of a charged particle as it travels through water (which has an index of refraction )? Express your answer as a multiple of to three significant figures. What is the threshold velocity for creating Cerenkov light of a charged particle as it travels through ethanol (with index of refraction )? Express your answer as a multiple of to three significant figures. 13 of 15 17/4/07 15:51

14 Which of the following best explains why neutrally charged particles can't give off Cerenkov radiation? Answer not displayed When a charged particle passes straight through a medium faster than the local speed of light, it will emit the Cerenkov radiation in a cone. Next we will calculate how the cone angle is correlated to the speed of the particle. Part D If a particle is traveling straight through a material with index of refraction at a speed, what is the angle that the cone of light makes with the particle's trajectory? In other words what is the angle between the vector of the propagating Cerenkov radiation and the vector in the direction of the propagating particle? Hint D.1 Geometry of the problem Hint D.2 Using the geometry Express your answer in terms of,, and. Ring-imaging Cerenkov detectors are devices that can accurately measure the velocity of charged particles as they pass through them. They are very useful as subdetectors in large particle detector systems. Let us look at what decisions need to go into designing a Cerenkov detector. Part E Suppose you wish to accurately measure the speed of high energy particles with velocities greater then 98% the speed of light in vacuum. You can use a ring-imaging Cerenkov detector consisting of a thin slab of material separated from an array of photomultiplier tubes (devices used to detect weak light signals) by an arbitrary open space. The detector works on the principle that the Cerenkov radiation emitted in the thin slab will be a cone of light that can be measured with the array of photomultiplier tubes. Your photomultiplier tubes, having a finite width, can only resolve a finite change in the angle of the ring created by the Cerenkov radiation. Use these constraints and the equation for from Part D to determine which of the following substrate materials is best suited to giving you the greatest precision in determining particle velocity. Hint E.1 Using example velocities Answer not displayed Part F 14 of 15 17/4/07 15:51

15 Part G Summary 3 of 10 problems complete (24.89% avg. score) 9.38 of 12 points 15 of 15 17/4/07 15:51

Understanding Fraunhofer Diffraction

Understanding Fraunhofer Diffraction [ Assignment View ] [ Eðlisfræði 2, vor 2007 36. Diffraction Assignment is due at 2:00am on Wednesday, January 17, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed.

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Lecture 7 Notes: 07 / 11. Reflection and refraction

Lecture 7 Notes: 07 / 11. Reflection and refraction Lecture 7 Notes: 07 / 11 Reflection and refraction When an electromagnetic wave, such as light, encounters the surface of a medium, some of it is reflected off the surface, while some crosses the boundary

More information

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface Chapter 8 GEOMETRICAL OPTICS Introduction Reflection and refraction at boundaries. Reflection at a single surface Refraction at a single boundary Dispersion Summary INTRODUCTION It has been shown that

More information

Chapter 35. The Nature of Light and the Laws of Geometric Optics

Chapter 35. The Nature of Light and the Laws of Geometric Optics Chapter 35 The Nature of Light and the Laws of Geometric Optics Introduction to Light Light is basic to almost all life on Earth. Light is a form of electromagnetic radiation. Light represents energy transfer

More information

1.! Questions about reflected intensity. [Use the formulas on p. 8 of Light.] , no matter

1.! Questions about reflected intensity. [Use the formulas on p. 8 of Light.] , no matter Reading: Light Key concepts: Huygens s principle; reflection; refraction; reflectivity; total reflection; Brewster angle; polarization by absorption, reflection and Rayleigh scattering. 1.! Questions about

More information

Chapter 12 Notes: Optics

Chapter 12 Notes: Optics Chapter 12 Notes: Optics How can the paths traveled by light rays be rearranged in order to form images? In this chapter we will consider just one form of electromagnetic wave: visible light. We will be

More information

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Light Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Facts About Light The speed of light, c, is constant in a vacuum. Light can be: REFLECTED ABSORBED REFRACTED

More information

Reflection and Refraction of Light

Reflection and Refraction of Light PC1222 Fundamentals of Physics II Reflection and Refraction of Light 1 Objectives Investigate for reflection of rays from a plane surface, the dependence of the angle of reflection on the angle of incidence.

More information

At the interface between two materials, where light can be reflected or refracted. Within a material, where the light can be scattered or absorbed.

At the interface between two materials, where light can be reflected or refracted. Within a material, where the light can be scattered or absorbed. At the interface between two materials, where light can be reflected or refracted. Within a material, where the light can be scattered or absorbed. The eye sees by focusing a diverging bundle of rays from

More information

PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v.

PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v. Refraction Index of refraction When an EM wave travels in a vacuum, its speed is: c = 3.00 x 10 8 m/s. In any other medium, light generally travels at a slower speed. The speed of light v in a material

More information

LECTURE 37: Ray model of light and Snell's law

LECTURE 37: Ray model of light and Snell's law Lectures Page 1 Select LEARNING OBJECTIVES: LECTURE 37: Ray model of light and Snell's law Understand when the ray model of light is applicable. Be able to apply Snell's Law of Refraction to any system.

More information

OpenStax-CNX module: m Polarization * Bobby Bailey. Based on Polarization by OpenStax

OpenStax-CNX module: m Polarization * Bobby Bailey. Based on Polarization by OpenStax OpenStax-CNX module: m52456 1 27.9 Polarization * Bobby Bailey Based on Polarization by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract

More information

Dispersion Polarization

Dispersion Polarization Dispersion Polarization Phys Phys 2435: 22: Chap. 33, 31, Pg 1 Dispersion New Topic Phys 2435: Chap. 33, Pg 2 The Visible Spectrum Remember that white light contains all the colors of the s p e c t r u

More information

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image.

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image. I. What is GEOMTERIC OPTICS GEOMETRIC OPTICS In geometric optics, LIGHT is treated as imaginary rays. How these rays interact with at the interface of different media, including lenses and mirrors, is

More information

Chapter 33 cont. The Nature of Light and Propagation of Light (lecture 2) Dr. Armen Kocharian

Chapter 33 cont. The Nature of Light and Propagation of Light (lecture 2) Dr. Armen Kocharian Chapter 33 cont The Nature of Light and Propagation of Light (lecture 2) Dr. Armen Kocharian Polarization of Light Waves The direction of polarization of each individual wave is defined to be the direction

More information

Wavefronts and Rays. When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to

Wavefronts and Rays. When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to Chapter 33: Optics Wavefronts and Rays When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to Neglect the wave nature of light. Consider

More information

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well Pre AP Physics Light & Optics Chapters 14-16 Light is an electromagnetic wave Electromagnetic waves: Oscillating electric and magnetic fields that are perpendicular to the direction the wave moves Difference

More information

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal.

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal. Diffraction Chapter 38 Huygens construction may be used to find the wave observed on the downstream side of an aperture of any shape. Diffraction The interference pattern encodes the shape as a Fourier

More information

Rules for Deviation of Light Rays During Refraction

Rules for Deviation of Light Rays During Refraction REFLECTION OF LIGHT Refraction of light is the phenomenon due to which a ray of light deviates from its path, at the surface of separation of two media, when the ray of light is travelling from one optical

More information

SESSION 5: INVESTIGATING LIGHT. Key Concepts. X-planation. Physical Sciences Grade In this session we:

SESSION 5: INVESTIGATING LIGHT. Key Concepts. X-planation. Physical Sciences Grade In this session we: SESSION 5: INVESTIGATING LIGHT Key Concepts In this session we: Explain what light is, where light comes from and why it is important Identify what happens when light strikes the surface of different objects

More information

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles.

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. Optics 1- Light Nature: a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. The particles were either emitted by the object being viewed or emanated from

More information

Chapter 22. Reflection and Refraction of Light

Chapter 22. Reflection and Refraction of Light Chapter 22 Reflection and Refraction of Light Nature of Light Light has a dual nature. Particle Wave Wave characteristics will be discussed in this chapter. Reflection Refraction These characteristics

More information

AP Practice Test ch 22

AP Practice Test ch 22 AP Practice Test ch 22 Multiple Choice 1. Tripling the wavelength of the radiation from a monochromatic source will change the energy content of the individually radiated photons by what factor? a. 0.33

More information

Lecture Ray Model of Light. Physics Help Q&A: tutor.leiacademy.org

Lecture Ray Model of Light. Physics Help Q&A: tutor.leiacademy.org Lecture 1201 Ray Model of Light Physics Help Q&A: tutor.leiacademy.org Reflection of Light A ray of light, the incident ray, travels in a medium. When it encounters a boundary with a second medium, part

More information

Chapter 38. Diffraction Patterns and Polarization

Chapter 38. Diffraction Patterns and Polarization Chapter 38 Diffraction Patterns and Polarization Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This

More information

Reflection, Refraction and Polarization of Light Physics 246

Reflection, Refraction and Polarization of Light Physics 246 Reflection, Refraction and Polarization of Light Physics 46 In today's laboratory several properties of light, including the laws of reflection, refraction, total internal reflection and polarization,

More information

Polarization. Bởi: OpenStaxCollege

Polarization. Bởi: OpenStaxCollege Polarization Bởi: OpenStaxCollege Polaroid sunglasses are familiar to most of us. They have a special ability to cut the glare of light reflected from water or glass (see [link]). Polaroids have this ability

More information

Prac%ce Quiz 6. These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar.

Prac%ce Quiz 6. These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar. Prac%ce Quiz 6 These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar. B You see an airplane straight overhead at an altitude of 5.2km. Sound

More information

L 32 Light and Optics [3]

L 32 Light and Optics [3] L 32 Light and Optics [3] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky red sunsets Light and

More information

Prac%ce Quiz 6. These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar.

Prac%ce Quiz 6. These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar. Prac%ce Quiz 6 These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar. You see an airplane straight overhead at an altitude of 5.2km. Sound

More information

Introduction to Light

Introduction to Light Introduction to Light Light is basic to almost all life on Earth. Light is a form of electromagnetic radiation. Light represents energy transfer from the source to the observer. Images in mirrors Reflection

More information

Chapter 24. Geometric optics. Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24

Chapter 24. Geometric optics. Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24 Chapter 24 Geometric optics Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24 A Brief History of Light 1000 AD It was proposed that light consisted of tiny particles

More information

Reflection, Refraction and Polarization of Light

Reflection, Refraction and Polarization of Light Reflection, Refraction and Polarization of Light Physics 246/Spring2012 In today's laboratory several properties of light, including the laws of reflection, refraction, total internal reflection and polarization,

More information

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3 Chapter 20 Classic and Modern Optics Dr. Armen Kocharian Electromagnetic waves and matter: A Brief History of Light 1000 AD It was proposed that light consisted

More information

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview Chapter 23 Ray Optics Chapter Goal: To understand and apply the ray model of light. Slide 23-2 Chapter 23 Preview Slide 23-3 Chapter 23 Preview Slide 23-4 1 Chapter 23 Preview Slide 23-5 Chapter 23 Preview

More information

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Photons with particle-like nature

More information

Internal Reflection. Total Internal Reflection. Internal Reflection in Prisms. Fiber Optics. Pool Checkpoint 3/20/2013. Physics 1161: Lecture 18

Internal Reflection. Total Internal Reflection. Internal Reflection in Prisms. Fiber Optics. Pool Checkpoint 3/20/2013. Physics 1161: Lecture 18 Physics 1161: Lecture 18 Internal Reflection Rainbows, Fiber Optics, Sun Dogs, Sun Glasses sections 26-8 & 25-5 Internal Reflection in Prisms Total Internal Reflection Recall Snell s Law: n 1 sin( 1 )=

More information

(Equation 24.1: Index of refraction) We can make sense of what happens in Figure 24.1

(Equation 24.1: Index of refraction) We can make sense of what happens in Figure 24.1 24-1 Refraction To understand what happens when light passes from one medium to another, we again use a model that involves rays and wave fronts, as we did with reflection. Let s begin by creating a short

More information

Name Section Date. Experiment Reflection and Refraction

Name Section Date. Experiment Reflection and Refraction Name Section Date Introduction: Experiment Reflection and Refraction The travel of light is often represented in geometric optics by a light ray, a line that is drawn to represent the straight-line movement

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

10.5 Polarization of Light

10.5 Polarization of Light 10.5 Polarization of Light Electromagnetic waves have electric and magnetic fields that are perpendicular to each other and to the direction of propagation. These fields can take many different directions

More information

Phys 102 Lecture 17 Introduction to ray optics

Phys 102 Lecture 17 Introduction to ray optics Phys 102 Lecture 17 Introduction to ray optics 1 Physics 102 lectures on light Light as a wave Lecture 15 EM waves Lecture 16 Polarization Lecture 22 & 23 Interference & diffraction Light as a ray Lecture

More information

Reflection and Refraction. Chapter 29

Reflection and Refraction. Chapter 29 Reflection and Refraction Chapter 29 Reflection When a wave reaches a boundary between two media, some or all of the wave bounces back into the first medium. Reflection The angle of incidence is equal

More information

3 Interactions of Light Waves

3 Interactions of Light Waves CHAPTER 22 3 Interactions of Light Waves SECTION The Nature of Light BEFORE YOU READ After you read this section, you should be able to answer these questions: How does reflection affect the way we see

More information

Lecture 16: Geometrical Optics. Reflection Refraction Critical angle Total internal reflection. Polarisation of light waves

Lecture 16: Geometrical Optics. Reflection Refraction Critical angle Total internal reflection. Polarisation of light waves Lecture 6: Geometrical Optics Reflection Refraction Critical angle Total internal reflection Polarisation of light waves Geometrical Optics Optics Branch of Physics, concerning the interaction of light

More information

Lecture 14: Refraction

Lecture 14: Refraction Lecture 14: Refraction We know from experience that there are several transparent substances through which light can travel air, water, and glass are three examples When light passes from one such medium

More information

Image Formation by Refraction

Image Formation by Refraction Image Formation by Refraction If you see a fish that appears to be swimming close to the front window of the aquarium, but then look through the side of the aquarium, you ll find that the fish is actually

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 14: PROPERTIES OF LIGHT This lecture will help you understand: Reflection Refraction Dispersion Total Internal Reflection Lenses Polarization Properties of Light

More information

PHYSICS 116 POLARIZATION AND LIGHT MEASUREMENTS

PHYSICS 116 POLARIZATION AND LIGHT MEASUREMENTS Name Date Lab Time Lab TA PHYSICS 116 POLARIZATION AND LIGHT MEASUREMENTS I. POLARIZATION Natural unpolarized light is made up of waves vibrating in all directions. When a beam of unpolarized light is

More information

PHY 1160C Homework Chapter 23: Reflection and Refraction of Light Ch 23: 8, 10, 14, 20, 26, 28, 33,38, 43, 45, 52

PHY 1160C Homework Chapter 23: Reflection and Refraction of Light Ch 23: 8, 10, 14, 20, 26, 28, 33,38, 43, 45, 52 PHY 1160C Homework Chapter 3: Reflection and Refraction of Light Ch 3: 8, 10, 14, 0, 6, 8, 33,38, 43, 45, 5 3.8 What is the speed of light in water (n = 1.33)? n = c/v v = c/n v = (3.00 x 10 8 m/s)/(1.33)

More information

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17 Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 17 Dispersion (23.5) The speed of light in a material depends on its wavelength White light is a mixture of wavelengths

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

Physics 1C. Lecture 22A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 1C. Lecture 22A. There are two ways of spreading light: to be the candle or the mirror that reflects it. --Edith Wharton Physics 1C Lecture 22A "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton The Nature of Light An interesting question developed as to the nature of

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

Refraction of Light. c = m / s. n = c v. The index of refraction is never less than 1. Some common indices of refraction are listed below.

Refraction of Light. c = m / s. n = c v. The index of refraction is never less than 1. Some common indices of refraction are listed below. Refraction of Light The speed of light in a vacuum is c = 3.00 10 8 m / s In air, the speed is only slightly less. In other transparent materials, such as glass and water, the speed is always less than

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

Blue Skies Blue Eyes Blue Butterflies

Blue Skies Blue Eyes Blue Butterflies Blue Skies Blue Eyes Blue Butterflies Friday, April 19 Homework #9 due in class Lecture: Blue Skies, Blue Eyes & Blue Butterflies: Interaction of electromagnetic waves with matter. Week of April 22 Lab:

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 28: REFLECTION & REFRACTION This lecture will help you understand: Reflection Principle of Least Time Law of Reflection Refraction Cause of Refraction Dispersion

More information

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) s Problem 1 (5x2 = 10 points) Label the following statements as True or False, with a one- or two-sentence explanation for why you chose

More information

Homework Set 3 Due Thursday, 07/14

Homework Set 3 Due Thursday, 07/14 Homework Set 3 Due Thursday, 07/14 Problem 1 A room contains two parallel wall mirrors, on opposite walls 5 meters apart. The mirrors are 8 meters long. Suppose that one person stands in a doorway, in

More information

Polarization of waves on ropes

Polarization of waves on ropes Polarization of waves on ropes Youtube clip one: the gentleman excites first a wave of vertical polarization, and next of horizontal polarization. Youtube clip two: vertical, horizontal, and even circular

More information

Polarization. Components of Polarization: Malus Law. VS203B Lecture Notes Spring, Topic: Polarization

Polarization. Components of Polarization: Malus Law. VS203B Lecture Notes Spring, Topic: Polarization VS03B Lecture Notes Spring, 013 011 Topic: Polarization Polarization Recall that I stated that we had to model light as a transverse wave so that we could use the model to explain polarization. The electric

More information

Chapter 24 - The Wave Nature of Light

Chapter 24 - The Wave Nature of Light Chapter 24 - The Wave Nature of Light Summary Four Consequences of the Wave nature of Light: Diffraction Dispersion Interference Polarization Huygens principle: every point on a wavefront is a source of

More information

LIGHT. Descartes particle theory, however, could not be used to explain diffraction of light.

LIGHT. Descartes particle theory, however, could not be used to explain diffraction of light. 1 LIGHT Theories of Light In the 17 th century Descartes, a French scientist, formulated two opposing theories to explain the nature of light. These two theories are the particle theory and the wave theory.

More information

Light and the Properties of Reflection & Refraction

Light and the Properties of Reflection & Refraction Light and the Properties of Reflection & Refraction OBJECTIVE To study the imaging properties of a plane mirror. To prove the law of reflection from the previous imaging study. To study the refraction

More information

Physics 10. Lecture 28A. "If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed?

Physics 10. Lecture 28A. If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed? Physics 10 Lecture 28A "If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed?" --Steven Wright The Nature of Light From now on we will have to treat light as

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

More information

Geometrical Optics INTRODUCTION. Wave Fronts and Rays

Geometrical Optics INTRODUCTION. Wave Fronts and Rays Geometrical Optics INTRODUCTION In this experiment, the optical characteristics of mirrors, lenses, and prisms will be studied based on using the following physics definitions and relationships plus simple

More information

Textbook Reference: Glencoe Physics: Chapters 16-18

Textbook Reference: Glencoe Physics: Chapters 16-18 Honors Physics-121B Geometric Optics Introduction: A great deal of evidence suggests that light travels in straight lines. A source of light like the sun casts distinct shadows. We can hear sound from

More information

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1 PHY 112: Light, Color and Vision Lecture 11 Prof. Clark McGrew Physics D 134 Review for Exam Lecture 11 PHY 112 Lecture 1 From Last Time Lenses Ray tracing a Convex Lens Announcements The midterm is Thursday

More information

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Brief History of the Nature of Light Up until 19 th century, light was modeled as a stream of particles. Newton was a proponent of

More information

University Physics 227N/232N Chapters 30-32: Optics Homework Optics 1 Due This Friday at Class Time Quiz This Friday

University Physics 227N/232N Chapters 30-32: Optics Homework Optics 1 Due This Friday at Class Time Quiz This Friday University Physics 227N/232N Chapters 30-32: Optics Homework Optics 1 Due This Friday at Class Time Quiz This Friday Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2014-odu

More information

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19 Lecture 17: Recursive Ray Tracing Where is the way where light dwelleth? Job 38:19 1. Raster Graphics Typical graphics terminals today are raster displays. A raster display renders a picture scan line

More information

Michelson Interferometer

Michelson Interferometer Michelson Interferometer The Michelson interferometer uses the interference of two reflected waves The third, beamsplitting, mirror is partially reflecting ( half silvered, except it s a thin Aluminum

More information

Chapter 33 The Nature and Propagation of Light by C.-R. Hu

Chapter 33 The Nature and Propagation of Light by C.-R. Hu Chapter 33 The Nature and Propagation of Light by C.-R. Hu Light is a transverse wave of the electromagnetic field. In 1873, James C. Maxwell predicted it from the Maxwell equations. The speed of all electromagnetic

More information

Refraction of Light. This bending of the ray is called refraction

Refraction of Light. This bending of the ray is called refraction Refraction & Lenses Refraction of Light When a ray of light traveling through a transparent medium encounters a boundary leading into another transparent medium, part of the ray is reflected and part of

More information

CHAP: REFRACTION OF LIGHT AT PLANE SURFACES

CHAP: REFRACTION OF LIGHT AT PLANE SURFACES CHAP: REFRACTION OF LIGHT AT PLANE SURFACES Ex : 4A Q: 1 The change in the direction of the path of light, when it passes from one transparent medium to another transparent medium, is called refraction

More information

SNC2D PHYSICS 4/27/2013. LIGHT & GEOMETRIC OPTICS L Light Rays & Reflection (P ) Light Rays & Reflection. The Ray Model of Light

SNC2D PHYSICS 4/27/2013. LIGHT & GEOMETRIC OPTICS L Light Rays & Reflection (P ) Light Rays & Reflection. The Ray Model of Light SNC2D PHYSICS LIGHT & GEOMETRIC OPTICS L Light Rays & Reflection (P.402-409) Light Rays & Reflection A driver adjusts her rearview mirror. The mirror allows her to see the cars behind her. Mirrors help

More information

Red Orange the reflected ray. Yellow Green and the normal. Blue Indigo line. Colours of visible reflection

Red Orange the reflected ray. Yellow Green and the normal. Blue Indigo line. Colours of visible reflection distance the carrying the moves away from rest position Brightness Loudness The angle between the incident ray and the normal line Amplitude Amplitude of a light Amplitude of a sound incidence Angle between

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #7: Reflection & Refraction

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #7: Reflection & Refraction NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #7: Reflection & Refraction Lab Writeup Due: Mon/Wed/Thu/Fri, March 26/28/29/30, 2018 Background Light

More information

Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors

Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors Ray Optics Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors 1 Ray optics Optical imaging and color in medicine Integral

More information

Science 8 Chapter 5 Section 1

Science 8 Chapter 5 Section 1 Science 8 Chapter 5 Section 1 The Ray Model of Light (pp. 172-187) Models of Light wave model of light: a model in which light is a type of wave that travels through space and transfers energy from one

More information

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light. Chapter 7: Geometrical Optics The branch of physics which studies the properties of light using the ray model of light. Overview Geometrical Optics Spherical Mirror Refraction Thin Lens f u v r and f 2

More information

Engineering Physics 1 Dr. M. K. Srivastava Department of Physics Indian Institute of Technology- Roorkee. Module-01 Lecture 03 Double Refraction

Engineering Physics 1 Dr. M. K. Srivastava Department of Physics Indian Institute of Technology- Roorkee. Module-01 Lecture 03 Double Refraction Engineering Physics 1 Dr. M. K. Srivastava Department of Physics Indian Institute of Technology- Roorkee Module-01 Lecture 03 Double Refraction Okay, this is the third lecture of the five lecture series

More information

Physics 4C Chapter 33: Electromagnetic Waves

Physics 4C Chapter 33: Electromagnetic Waves Physics 4C Chapter 33: Electromagnetic Waves Our greatest glory is not in never failing, but in rising up every time we fail. Ralph Waldo Emerson If you continue to do what you've always done, you'll continue

More information

Reflection & refraction

Reflection & refraction 2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Reflection & refraction Reflection revision Reflection is the bouncing of light rays off a surface Reflection from a mirror: Normal

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

Unit 9 Light & Optics

Unit 9 Light & Optics Unit 9 Light & Optics 1 A quick review of the properties of light. Light is a form of electromagnetic radiation Light travels as transverse waves having wavelength and frequency. fλ=c The velocity of EMR

More information

Optics: Reflection and Refraction (approx. completion time: 2.5 h) (3/28/11)

Optics: Reflection and Refraction (approx. completion time: 2.5 h) (3/28/11) Optics: Reflection and Refraction (approx. completion time: 2.5 h) (3/28/11) Introduction In this lab you will investigate the reflection and refraction of light. Reflection of light from a surface is

More information

9. RAY OPTICS AND OPTICAL INSTRUMENTS

9. RAY OPTICS AND OPTICAL INSTRUMENTS 9. RAY OPTICS AND OPTICAL INSTRUMENTS 1. Define the terms (a) ray of light & (b) beam of light A ray is defined as the straight line path joining the two points by which light is travelling. A beam is

More information

Unit 5.A Properties of Light Essential Fundamentals of Light 1. Electromagnetic radiation has oscillating magnetic and electric components.

Unit 5.A Properties of Light Essential Fundamentals of Light 1. Electromagnetic radiation has oscillating magnetic and electric components. Unit 5.A Properties of Light Essential Fundamentals of Light 1. Electromagnetic radiation has oscillating magnetic and electric components. Early Booklet E.C.: + 1 Unit 5.A Hwk. Pts.: / 18 Unit 5.A Lab

More information

OPSE FINAL EXAM Fall CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed.

OPSE FINAL EXAM Fall CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed. CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED.

More information

Reflection and Refraction

Reflection and Refraction rev 05/2018 Equipment List and Refraction Qty Items Part Numbers 1 Light Source, Basic Optics OS-8517 1 Ray Optics Set OS-8516 2 White paper, sheet 1 Metric ruler 1 Protractor Introduction The purpose

More information

Physics 1C. Lecture 25B. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 1C. Lecture 25B. There are two ways of spreading light: to be the candle or the mirror that reflects it. --Edith Wharton Physics 1C Lecture 25B "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton Refraction of Light When light passes from one medium to another, it is

More information

The Propagation of Light:

The Propagation of Light: Lecture 8 Chapter 4 The Propagation of Light: Transmission Reflection Refraction Macroscopic manifestations of scattering and interference occurring at the atomic level Reflection Reflection Inside the

More information

4.5 Images Formed by the Refraction of Light

4.5 Images Formed by the Refraction of Light Figure 89: Practical structure of an optical fibre. Absorption in the glass tube leads to a gradual decrease in light intensity. For optical fibres, the glass used for the core has minimum absorption at

More information

PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4)

PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4) 1 PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4) The first three lectures in this unit dealt with what is for called geometric optics. Geometric optics, treats light as a collection of rays that travel in straight

More information

REFLECTION & REFRACTION

REFLECTION & REFRACTION REFLECTION & REFRACTION OBJECTIVE: To study and verify the laws of reflection and refraction using a plane mirror and a glass block. To see the virtual images that can be formed by the reflection and refraction

More information

Physics 1502: Lecture 28 Today s Agenda

Physics 1502: Lecture 28 Today s Agenda Physics 1502: Lecture 28 Today s Agenda Announcements: Midterm 2: Monday Nov. 16 Homework 08: due next Friday Optics Waves, Wavefronts, and Rays Reflection Index of Refraction 1 Waves, Wavefronts, and

More information