AREA OF A SURFACE OF REVOLUTION

Size: px
Start display at page:

Download "AREA OF A SURFACE OF REVOLUTION"

Transcription

1 AREA OF A SURFACE OF REVOLUTION h cut r πr h A surface of revolution is formed when a curve is rotated about a line. Such a surface is the lateral boundar of a solid of revolution of the tpe discussed in Sections 7. and 7.. We want to define the area of a surface of revolution in such a wa that it corresponds to our intuition. If the surface area is A, we can imagine that painting the surface would require the same amount of paint as does a flat region with area A. Let s start with some simple surfaces. The lateral surface area of a circular clinder with radius r and height h is taken to be A rh because we can imagine cutting the clinder and unrolling it (as in Figure ) to obtain a rectangle with dimensions r and h. Likewise, we can take a circular cone with base radius r and slant height l, cut it along the dashed line in Figure, and flatten it to form a sector of a circle with radius l and central angle. We know that, in general, the area of a sector of a circle with radius l and angle is l (see Exercise 67 in Section 6.) and so in this case it is rl A l l r l rl FIGURE Therefore, we define the lateral surface area of a cone to be A rl. πr cut l r l FIGURE l What about more complicated surfaces of revolution? If we follow the strateg we used with arc length, we can approximate the original curve b a polgon. When this polgon is rotated about an axis, it creates a simpler surface whose surface area approximates the actual surface area. B taking a limit, we can determine the exact surface area. The approximating surface, then, consists of a number of bands, each formed b rotating a line segment about an axis. To find the surface area, each of these bands can be considered a portion of a circular cone, as shown in Figure. The area of the band (or frustum of a cone) with slant height l and upper and lower radii r and r is found b subtracting the areas of two cones: r A r l l r l r r l r l r l From similar triangles we have l l l r r FIGURE which gives r l r l r l or r r l r l Putting this in Equation, we get or A r l r l Thomson Brooks-Cole copright 7 A rl where r r r is the average radius of the band.

2 AREA OF A SURFACE OF REVOLUTION =ƒ a b x (a) Surface of revolution Now we appl this formula to our strateg. Consider the surface shown in Figure, which is obtained b rotating the curve f x, a x b, about the x-axis, where f is positive and has a continuous derivative. In order to define its surface area, we divide the interval a, b into n subintervals with endpoints x, x,..., x n and equal width x, as we did in determining arc length. If i f x i, then the point P i x i, i lies on the curve. The part of the surface between x i and x i is approximated b taking the line segment P i P i and rotating it about the x-axis. The result is a band with slant height l P ip i and average radius r i i so, b Formula, its surface area is P i P i- P i P n i i P ip i a b x (b) Approximating band FIGURE As in the proof of Theorem 7.., we have where x i * is some number in x i, x i. When x is small, we have i f x i fx i * and also i f x i fx i *, since f is continuous. Therefore i i P ip i s f x i* x P ip i f x i * s f x i * x and so an approximation to what we think of as the area of the complete surface of revolution is n i f x i * s f x i * x This approximation appears to become better as n l and, recognizing () as a Riemann sum for the function tx f x s f x, we have lim n l n i f x i * s f x i * x b Therefore, in the case where f is positive and has a continuous derivative, we define the surface area of the surface obtained b rotating the curve f x, a x b, about the x-axis as a f x s f x S b a f x s f x With the Leibniz notation for derivatives, this formula becomes 5 S b a d If the curve is described as x t, c d, then the formula for surface area becomes Thomson Brooks-Cole copright 7 6 S d c d d and both Formulas 5 and 6 can be summarized smbolicall, using the notation for arc

3 AREA OF A SURFACE OF REVOLUTION length given in Section 7., as 7 S ds For rotation about the -axis, the surface area formula becomes 8 S x ds where, as before, we can use either ds d or ds d d These formulas can be remembered b thinking of or x as the circumference of a circle traced out b the point x, on the curve as it is rotated about the x-axis or -axis, respectivel (see Figure 5). (x, ) x x (x, ) FIGURE 5 circumference=π (a) Rotation about x-axis: S=j π ds circumference=πx x (b) Rotation about -axis: S=j πx ds EXAMPLE The curve s x, x, is an arc of the circle x. Find the area of the surface obtained b rotating this arc about the x-axis. (The surface is a portion of a sphere of radius. See Figure 6.) SOLUTION We have d x x x s x x and so, b Formula 5, the surface area is S d Thomson Brooks-Cole copright 7 FIGURE 6 Figure 6 shows the portion of the sphere whose surface area is computed in Example. s x x x s x s x 8

4 AREA OF A SURFACE OF REVOLUTION Figure 7 shows the surface of revolution whose area is computed in Example. EXAMPLE The arc of the parabola x from, to, is rotated about the -axis. Find the area of the resulting surface. SOLUTION Using (, ) = we have, from Formula 8, x and d x FIGURE 7 x S x ds x d x s x Substituting u x, we have du 8x. Remembering to change the limits of integration, we have S 7 5 su du [ u ] 5 7 As a check on our answer to Example, notice from Figure 7 that the surface area should be close to that of a circular clinder with the same height and radius halfwa between the upper and lower radius of the surface:. We computed that the surface area was (7s7 5s5).85 6 which seems reasonable. Alternativel, the surface area should be slightl larger than the area of a frustum of a cone with the same top and bottom edges. From Equation, this is..5(s) 9.8 SOLUTION we have Using S x ds 6 x s (7s7 5s5) and x d d d s s d s d su du (7s7 5s5) (where u ) (as in Solution ) Thomson Brooks-Cole copright 7 Another method: Use Formula 6 with x ln. EXAMPLE Find the area of the surface generated b rotating the curve e x, x,about the x-axis. SOLUTION Using Formula 5 with e x and d e x

5 AREA OF A SURFACE OF REVOLUTION 5 we have S d e x s e x e s u du sec d (where u e x ) tan e (where u tan and ) Or use Formula in the Table of Integrals. [sec tan ln sec tan ] (b Example 8 in Section 6.) [sec tan lnsec tan s ln(s )] Since tan e, we have sec tan e and S [es e ln(e s e ) s ln(s )] EXERCISES A Click here for answers. Set up, but do not evaluate, an integral for the area of the surface obtained b rotating the curve about the given axis.. ln x, x ; x-axis. sin x, x ; x-axis. sec x, x ; -axis. e x, ; -axis S Click here for solutions. 7 Use Simpson s Rule with n to approximate the area of the surface obtained b rotating the curve about the x-axis. Compare our answer with the value of the integral produced b our calculator. 7. ln x, 8. x sx, x x 9. sec x, x. s e x, x 5 Find the area of the surface obtained b rotating the curve about the x-axis. 5. x, x 6. 9x 8, 7. sx, 8. cos x, 9. cosh x,. x, 6 x x 9 x 6 x 6 x x. x,. x, CAS CAS Use either a CAS or a table of integrals to find the exact area of the surface obtained b rotating the given curve about the x-axis.. x,. sx, Use a CAS to find the exact area of the surface obtained b rotating the curve about the -axis. If our CAS has trouble evaluating the integral, express the surface area as an integral in the other variable.. x,. lnx, x x x Thomson Brooks-Cole copright 7 6 The given curve is rotated about the -axis. Find the area of the resulting surface.. s x,. x, x 5. x sa, a 6. x a cosha, a a 5. (a) If a, find the area of the surface generated b rotating the loop of the curve a xa x about the x-axis. (b) Find the surface area if the loop is rotated about the -axis. 6. A group of engineers is building a parabolic satellite dish whose shape will be formed b rotating the curve ax about the -axis. If the dish is to have a -ft diameter and a maximum depth of ft, find the value of a and the surface area of the dish.

6 6 AREA OF A SURFACE OF REVOLUTION CAS 7. The ellipse x a b a b is rotated about the x-axis to form a surface called an ellipsoid. Find the surface area of this ellipsoid. 8. Find the surface area of the torus in Exercise in Section If the curve f x, a x b, is rotated about the horizontal line c, where f x c, find a formula for the area of the resulting surface.. Use the result of Exercise 9 to set up an integral to find the area of the surface generated b rotating the curve sx, x,about the line. Then use a CAS to evaluate the integral.. Find the area of the surface obtained b rotating the circle x r about the line r.. Show that the surface area of a zone of a sphere that lies between two parallel planes is S dh, where d is the diameter of the sphere and h is the distance between the planes. (Notice that S depends onl on the distance between the planes and not on their location, provided that both planes intersect the sphere.). Formula is valid onl when f x. Show that when f x is not necessaril positive, the formula for surface area becomes S b a. Let L be the length of the curve f x, a x b, where f is positive and has a continuous derivative. Let S f be the surface area generated b rotating the curve about the x-axis. If c is a positive constant, define tx f x c and let S t be the corresponding surface area generated b the curve tx, a x b. Express in terms of and L. S t f x s f x S f Thomson Brooks-Cole copright 7

7 AREA OF A SURFACE OF REVOLUTION 7 ANSWERS.. S ln xs x Click here for solutions. xs sec x tan x 5. (5s5 )7 7. (7s7 7s7)6 9. [ e e ].. (5s5 s)7 5. a (a) a (b) 56sa 5 7. [ ln(s7 ) ln(s ) s7 s] 6[ln(s ) s] [b a b sin (sa b a)sa b ] 9. x b c f xs f x. r a Thomson Brooks-Cole copright 7

8 8 AREA OF A SURFACE OF REVOLUTION SOLUTIONS. =ln = +() = +() = (ln ) +() [b (7)]. = sec = +() = +(sec tan ) = +(sec tan ) [b (8)] 5. = =.So = +( ) = = 6 5 = 8 +9 [ =+9, =6 ] 5 = = +() =+[( )] =+(). So = 9 = + 9 = + 9 = 8 ( +) 9 + = = =cosh +() =+sinh =cosh.so = cosh cosh = ( + cosh ) = + sinh = + sinh or +. = + = + () = + +() =+ + = +.So = + = + = + =. = = +() =+9.So = +() = +9 = = 8 +9 = = = ( ) () = +() =+ = = + = = = = =.Notethatthisis Thomson Brooks-Cole copright 7 the surface area of a sphere of radius, andthelengthoftheinterval =to = is the length of the interval = to =.

9 AREA OF A SURFACE OF REVOLUTION 9 7. =ln = +() =+ = ln +. Let () =ln +.Since =, = = Then 5 = 5 [() + () + () + +(6) + (8) + ()] 975. The value of the integral produced b a calculator is 96 (to six decimal places). 9. =sec =sec tan +() =+sec tan = sec +sec tan.let() =sec +sec tan. Since =, = =.Then = () The value of the integral produced b a calculator is (to six decimal places) = = +() = +( ) = + = + = + + = [ =, =] + = + = +ln + + = 7 +ln ln = 7 +ln = and = and. = +( ) = + [ 6 =, =6] = = + = [or use CAS] + + ln ln + = 6 + ln + 5. Since,thecurve = ( ) onl has points with. ( ( ).) The curve is smmetric about the x-axis (since the equation is unchanged when is replaced b ). =when =or, so the curve s loop extends from =to =. Thomson Brooks-Cole copright 7 ( )= [( ) ] 6 = ( )() + ( ) ( )[ + ] = 6 = ( ) ( ) = ( ) ( ) 6 6 ( ) the last fraction is = ( )

10 AREA OF A SURFACE OF REVOLUTION + = = = ( +) = for 6=. (a) = = = = ( ) ( + ) = + ( )( +) = 6 + = ( + )= =. Note that we have rotated the top half of the loop about the x-axis. This generatesthefullsurface. (b) We must rotate the full loop about the -axis, so we get double the area obtained b rotating the top half of the loop: = = = + = ( +) = ( + ) = = = + 6 = 5 8 = () = = = + =+ = + = + = + ( ) = + = ( ) The ellipsoid s surface area is twice the area generated b rotating the first quadrant portion of the ellipse about the -axis. Thus, = + ( = ) = ( ) = [ = ] = + sin = ( )+ sin = + sin Thomson Brooks-Cole copright 7 9. The analogue of ( ) in the derivation of () is now ( ), so = lim = [ ( )] +[ ( )] = [ ()] +[ ()].

11 AREA OF A SURFACE OF REVOLUTION. For the upper semicircle, () =, () =.Thesurfaceareageneratedis = + = = For the lower semicircle, () = and () = Thus, the total area is = + =8,so = =8 sin. In the derivation of (), we computed a tpical contribution to the surface area to be + +. =8 =.,thearea of a frustum of a cone. When () is not necessaril positive, the approximations = ( ) ( ) and = ( ) ( ) must be replaced b = ( ) ( ) and = ( ) ( ). Thus, + ( ) +[ ( )]. Continuingwiththerestofthederivationasbefore,we obtain = () +[ ()]. Thomson Brooks-Cole copright 7

x=2 26. y 3x Use calculus to find the area of the triangle with the given vertices. y sin x cos 2x dx 31. y sx 2 x dx

x=2 26. y 3x Use calculus to find the area of the triangle with the given vertices. y sin x cos 2x dx 31. y sx 2 x dx 4 CHAPTER 6 APPLICATIONS OF INTEGRATION 6. EXERCISES 4 Find the area of the shaded region.. =5-. (4, 4) =. 4. = - = (_, ) = -4 =œ + = + =.,. sin,. cos, sin,, 4. cos, cos, 5., 6., 7.,, 4, 8., 8, 4 4, =_

More information

Volume Worksheets (Chapter 6)

Volume Worksheets (Chapter 6) Volume Worksheets (Chapter 6) Name page contents: date AP Free Response Area Between Curves 3-5 Volume b Cross-section with Riemann Sums 6 Volume b Cross-section Homework 7-8 AP Free Response Volume b

More information

1. Find the lateral (side) surface area of the cone generated by revolving the line segment. Lateral surface area 1 ba se circumference slant height 2

1. Find the lateral (side) surface area of the cone generated by revolving the line segment. Lateral surface area 1 ba se circumference slant height 2 s Section. Area of Surfaces of Revolution. Find the lateral (side) surface area of the cone generated by revolving the line segment y x, x, about the x-axis. Check your answer with the geometry formula

More information

Applications of Integration. Copyright Cengage Learning. All rights reserved.

Applications of Integration. Copyright Cengage Learning. All rights reserved. Applications of Integration Copyright Cengage Learning. All rights reserved. 1 Arc Length and Surfaces of Revolution Copyright Cengage Learning. All rights reserved. 2 Objectives Find the arc length of

More information

Chapter 1: Symmetry and Surface Area

Chapter 1: Symmetry and Surface Area Chapter 1: Symmetry and Surface Area Name: Section 1.1: Line Symmetry Line of symmetry(or reflection): divides a shape or design into two parts. Can be found using: A mirra Folding Counting on a grid Section

More information

MATH 104 Sample problems for first exam - Fall MATH 104 First Midterm Exam - Fall (d) 256 3

MATH 104 Sample problems for first exam - Fall MATH 104 First Midterm Exam - Fall (d) 256 3 MATH 14 Sample problems for first exam - Fall 1 MATH 14 First Midterm Exam - Fall 1. Find the area between the graphs of y = 9 x and y = x + 1. (a) 4 (b) (c) (d) 5 (e) 4 (f) 81. A solid has as its base

More information

LECTURE 3-1 AREA OF A REGION BOUNDED BY CURVES

LECTURE 3-1 AREA OF A REGION BOUNDED BY CURVES 7 CALCULUS II DR. YOU 98 LECTURE 3- AREA OF A REGION BOUNDED BY CURVES If y = f(x) and y = g(x) are continuous on an interval [a, b] and f(x) g(x) for all x in [a, b], then the area of the region between

More information

5/27/12. Objectives 7.1. Area of a Region Between Two Curves. Find the area of a region between two curves using integration.

5/27/12. Objectives 7.1. Area of a Region Between Two Curves. Find the area of a region between two curves using integration. Objectives 7.1 Find the area of a region between two curves using integration. Find the area of a region between intersecting curves using integration. Describe integration as an accumulation process.

More information

Volume by Slicing (Disks & Washers)

Volume by Slicing (Disks & Washers) Volume by Slicing (Disks & Washers) SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference Chapter 6.2 of the recommended textbook (or the equivalent chapter

More information

CHAPTER 6: APPLICATIONS OF INTEGRALS

CHAPTER 6: APPLICATIONS OF INTEGRALS (Exercises for Section 6.1: Area) E.6.1 CHAPTER 6: APPLICATIONS OF INTEGRALS SECTION 6.1: AREA 1) For parts a) and b) below, in the usual xy-plane i) Sketch the region R bounded by the graphs of the given

More information

AP Calculus. Areas and Volumes. Student Handout

AP Calculus. Areas and Volumes. Student Handout AP Calculus Areas and Volumes Student Handout 016-017 EDITION Use the following link or scan the QR code to complete the evaluation for the Study Session https://www.surveymonkey.com/r/s_sss Copyright

More information

If ( ) is approximated by a left sum using three inscribed rectangles of equal width on the x-axis, then the approximation is

If ( ) is approximated by a left sum using three inscribed rectangles of equal width on the x-axis, then the approximation is More Integration Page 1 Directions: Solve the following problems using the available space for scratchwork. Indicate your answers on the front page. Do not spend too much time on any one problem. Note:

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

x + 2 = 0 or Our limits of integration will apparently be a = 2 and b = 4.

x + 2 = 0 or Our limits of integration will apparently be a = 2 and b = 4. QUIZ ON CHAPTER 6 - SOLUTIONS APPLICATIONS OF INTEGRALS; MATH 15 SPRING 17 KUNIYUKI 15 POINTS TOTAL, BUT 1 POINTS = 1% Note: The functions here are continuous on the intervals of interest. This guarantees

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

Applications of Integration. Copyright Cengage Learning. All rights reserved.

Applications of Integration. Copyright Cengage Learning. All rights reserved. Applications of Integration Copyright Cengage Learning. All rights reserved. Volume: The Disk Method Copyright Cengage Learning. All rights reserved. Objectives Find the volume of a solid of revolution

More information

In this chapter, we will investigate what have become the standard applications of the integral:

In this chapter, we will investigate what have become the standard applications of the integral: Chapter 8 Overview: Applications of Integrals Calculus, like most mathematical fields, began with trying to solve everyday problems. The theory and operations were formalized later. As early as 70 BC,

More information

MAT01B1: Surface Area of Solids of Revolution

MAT01B1: Surface Area of Solids of Revolution MAT01B1: Surface Area of Solids of Revolution Dr Craig 02 October 2018 My details: acraig@uj.ac.za Consulting hours: Monday 14h40 15h25 Thursday 11h20 12h55 Friday 11h20 12h55 Office C-Ring 508 https://andrewcraigmaths.wordpress.com/

More information

I IS II. = 2y"\ V= n{ay 2 l 3 -\y 2 )dy. Jo n [fy 5 ' 3 1

I IS II. = 2y\ V= n{ay 2 l 3 -\y 2 )dy. Jo n [fy 5 ' 3 1 r Exercises 5.2 Figure 530 (a) EXAMPLE'S The region in the first quadrant bounded by the graphs of y = i* and y = 2x is revolved about the y-axis. Find the volume of the resulting solid. SOLUTON The region

More information

Log1 Contest Round 2 Theta Circles, Parabolas and Polygons. 4 points each

Log1 Contest Round 2 Theta Circles, Parabolas and Polygons. 4 points each Name: Units do not have to be included. 016 017 Log1 Contest Round Theta Circles, Parabolas and Polygons 4 points each 1 Find the value of x given that 8 x 30 Find the area of a triangle given that it

More information

Vocabulary. Triangular pyramid Square pyramid Oblique square pyramid Pentagonal pyramid Hexagonal Pyramid

Vocabulary. Triangular pyramid Square pyramid Oblique square pyramid Pentagonal pyramid Hexagonal Pyramid CP1 Math 2 Unit 8: S.A., Volume, Trigonometry: Day 7 Name Surface Area Objectives: Define important vocabulary for 3-dimensional figures Find the surface area for various prisms Generalize a formula for

More information

Section 7.2 Volume: The Disk Method

Section 7.2 Volume: The Disk Method Section 7. Volume: The Disk Method White Board Challenge Find the volume of the following cylinder: No Calculator 6 ft 1 ft V 3 1 108 339.9 ft 3 White Board Challenge Calculate the volume V of the solid

More information

Notice that the height of each rectangle is and the width of each rectangle is.

Notice that the height of each rectangle is and the width of each rectangle is. Math 1410 Worksheet #40: Section 6.3 Name: In some cases, computing the volume of a solid of revolution with cross-sections can be difficult or even impossible. Is there another way to compute volumes

More information

Math 2260 Exam #1 Practice Problem Solutions

Math 2260 Exam #1 Practice Problem Solutions Math 6 Exam # Practice Problem Solutions. What is the area bounded by the curves y x and y x + 7? Answer: As we can see in the figure, the line y x + 7 lies above the parabola y x in the region we care

More information

Area and Volume. where x right and x left are written in terms of y.

Area and Volume. where x right and x left are written in terms of y. Area and Volume Area between two curves Sketch the region and determine the points of intersection. Draw a small strip either as dx or dy slicing. Use the following templates to set up a definite integral:

More information

Volumes of Rotation with Solids of Known Cross Sections

Volumes of Rotation with Solids of Known Cross Sections Volumes of Rotation with Solids of Known Cross Sections In this lesson we are going to learn how to find the volume of a solid which is swept out by a curve revolving about an ais. There are three main

More information

Volume of Cylinders. Volume of Cones. Example Find the volume of the cylinder. Round to the nearest tenth.

Volume of Cylinders. Volume of Cones. Example Find the volume of the cylinder. Round to the nearest tenth. Volume of Cylinders As with prisms, the area of the base of a cylinder tells the number of cubic units in one layer. The height tells how many layers there are in the cylinder. The volume V of a cylinder

More information

Design and Communication Graphics

Design and Communication Graphics An approach to teaching and learning Design and Communication Graphics Solids in Contact Syllabus Learning Outcomes: Construct views of up to three solids having curved surfaces and/or plane surfaces in

More information

V = 2πx(1 x) dx. x 2 dx. 3 x3 0

V = 2πx(1 x) dx. x 2 dx. 3 x3 0 Wednesday, September 3, 215 Page 462 Problem 1 Problem. Use the shell method to set up and evaluate the integral that gives the volume of the solid generated by revolving the region (y = x, y =, x = 2)

More information

Geometry: Semester 2 Practice Final Unofficial Worked Out Solutions by Earl Whitney

Geometry: Semester 2 Practice Final Unofficial Worked Out Solutions by Earl Whitney Geometry: Semester 2 Practice Final Unofficial Worked Out Solutions by Earl Whitney 1. Wrapping a string around a trash can measures the circumference of the trash can. Assuming the trash can is circular,

More information

Geometry 10 and 11 Notes

Geometry 10 and 11 Notes Geometry 10 and 11 Notes Area and Volume Name Per Date 10.1 Area is the amount of space inside of a two dimensional object. When working with irregular shapes, we can find its area by breaking it up into

More information

AP CALCULUS BC PACKET 2 FOR UNIT 4 SECTIONS 6.1 TO 6.3 PREWORK FOR UNIT 4 PT 2 HEIGHT UNDER A CURVE

AP CALCULUS BC PACKET 2 FOR UNIT 4 SECTIONS 6.1 TO 6.3 PREWORK FOR UNIT 4 PT 2 HEIGHT UNDER A CURVE AP CALCULUS BC PACKET FOR UNIT 4 SECTIONS 6. TO 6.3 PREWORK FOR UNIT 4 PT HEIGHT UNDER A CURVE Find an expression for the height of an vertical segment that can be drawn into the shaded region... = x =

More information

Surface Area of Circular Solids - Lesson 12-3

Surface Area of Circular Solids - Lesson 12-3 Surface Area of Circular Solids - Lesson 12-3 Today we talked about the surface area of circular solids. We started by defining spheres, hemispheres, cylinders, and cones: Baroody Page 1 of 10 Baroody

More information

USING THE DEFINITE INTEGRAL

USING THE DEFINITE INTEGRAL Print this page Chapter Eight USING THE DEFINITE INTEGRAL 8.1 AREAS AND VOLUMES In Chapter 5, we calculated areas under graphs using definite integrals. We obtained the integral by slicing up the region,

More information

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations.

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations. Objectives Sketch the graph of a curve given by a set of parametric equations. Eliminate the parameter in a set of parametric equations. Find a set of parametric equations to represent a curve. Understand

More information

Chapter 7 curve. 3. x=y-y 2, x=0, about the y axis. 6. y=x, y= x,about y=1

Chapter 7 curve. 3. x=y-y 2, x=0, about the y axis. 6. y=x, y= x,about y=1 Chapter 7 curve Find the volume of the solid obtained by rotating the region bounded by the given cures about the specified line. Sketch the region, the solid, and a typical disk or washer.. y-/, =, =;

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION The volume of a sphere is the limit of sums of volumes of approimating clinders. In this chapter we eplore some of the applications of the definite integral b using it to

More information

Further Volume and Surface Area

Further Volume and Surface Area 1 Further Volume and Surface Area Objectives * To find the volume and surface area of spheres, cones, pyramids and cylinders. * To solve problems involving volume and surface area of spheres, cones, pyramids

More information

Moore Catholic High School Math Department

Moore Catholic High School Math Department Moore Catholic High School Math Department Geometry Vocabulary The following is a list of terms and properties which are necessary for success in a Geometry class. You will be tested on these terms during

More information

Chapter 8: Applications of Definite Integrals

Chapter 8: Applications of Definite Integrals Name: Date: Period: AP Calc AB Mr. Mellina Chapter 8: Applications of Definite Integrals v v Sections: 8.1 Integral as Net Change 8.2 Areas in the Plane v 8.3 Volumes HW Sets Set A (Section 8.1) Pages

More information

Aim: How do we find the volume of a figure with a given base? Get Ready: The region R is bounded by the curves. y = x 2 + 1

Aim: How do we find the volume of a figure with a given base? Get Ready: The region R is bounded by the curves. y = x 2 + 1 Get Ready: The region R is bounded by the curves y = x 2 + 1 y = x + 3. a. Find the area of region R. b. The region R is revolved around the horizontal line y = 1. Find the volume of the solid formed.

More information

S8.6 Volume. Section 1. Surface area of cuboids: Q1. Work out the surface area of each cuboid shown below:

S8.6 Volume. Section 1. Surface area of cuboids: Q1. Work out the surface area of each cuboid shown below: Things to Learn (Key words, Notation & Formulae) Complete from your notes Radius- Diameter- Surface Area- Volume- Capacity- Prism- Cross-section- Surface area of a prism- Surface area of a cylinder- Volume

More information

FURTHER MATHS. WELCOME TO A Level FURTHER MATHEMATICS AT CARDINAL NEWMAN CATHOLIC SCHOOL

FURTHER MATHS. WELCOME TO A Level FURTHER MATHEMATICS AT CARDINAL NEWMAN CATHOLIC SCHOOL FURTHER MATHS WELCOME TO A Level FURTHER MATHEMATICS AT CARDINAL NEWMAN CATHOLIC SCHOOL This two-year Edexcel Pearson syllabus is intended for high ability candidates who have achieved, or are likely to

More information

Math 113 Exam 1 Practice

Math 113 Exam 1 Practice Math Exam Practice January 6, 00 Exam will cover sections 6.-6.5 and 7.-7.5 This sheet has three sections. The first section will remind you about techniques and formulas that you should know. The second

More information

12 m. 30 m. The Volume of a sphere is 36 cubic units. Find the length of the radius.

12 m. 30 m. The Volume of a sphere is 36 cubic units. Find the length of the radius. NAME DATE PER. REVIEW #18: SPHERES, COMPOSITE FIGURES, & CHANGING DIMENSIONS PART 1: SURFACE AREA & VOLUME OF SPHERES Find the measure(s) indicated. Answers to even numbered problems should be rounded

More information

Volume by Slicing (Disks & Washers)

Volume by Slicing (Disks & Washers) Volume by Slicing Disks & Washers) SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference Chapter 6. of the recommended textbook or the equivalent chapter in

More information

The radius for a regular polygon is the same as the radius of the circumscribed circle.

The radius for a regular polygon is the same as the radius of the circumscribed circle. Perimeter and Area The perimeter and area of geometric shapes are basic properties that we need to know. The more complex a shape is, the more complex the process can be in finding its perimeter and area.

More information

Properties of a Circle Diagram Source:

Properties of a Circle Diagram Source: Properties of a Circle Diagram Source: http://www.ricksmath.com/circles.html Definitions: Circumference (c): The perimeter of a circle is called its circumference Diameter (d): Any straight line drawn

More information

Parallel Lines Investigation

Parallel Lines Investigation Year 9 - The Maths Knowledge Autumn 1 (x, y) Along the corridor, up the stairs (3,1) x = 3 Gradient (-5,-2) (0,0) y-intercept Vertical lines are always x = y = 6 Horizontal lines are always y = Parallel

More information

Calculators ARE NOT Permitted On This Portion Of The Exam 28 Questions - 55 Minutes

Calculators ARE NOT Permitted On This Portion Of The Exam 28 Questions - 55 Minutes 1 of 11 1) Give f(g(1)), given that Calculators ARE NOT Permitted On This Portion Of The Exam 28 Questions - 55 Minutes 2) Find the slope of the tangent line to the graph of f at x = 4, given that 3) Determine

More information

A plane that is to the base of the figure will create a cross section that is the same shape as the base.

A plane that is to the base of the figure will create a cross section that is the same shape as the base. Objective: 9.1 3 Notes: Surface Area of Solids Name Cross Sections: A cuts through a solid figure to create a cross section. Depending on the way in which the plane cuts through the figure will determine

More information

Birkdale High School - Higher Scheme of Work

Birkdale High School - Higher Scheme of Work Birkdale High School - Higher Scheme of Work Module 1 - Integers and Decimals Understand and order integers (assumed) Use brackets and hierarchy of operations (BODMAS) Add, subtract, multiply and divide

More information

Study Guide for Test 2

Study Guide for Test 2 Study Guide for Test Math 6: Calculus October, 7. Overview Non-graphing calculators will be allowed. You will need to know the following:. Set Pieces 9 4.. Trigonometric Substitutions (Section 7.).. Partial

More information

Algebra II. Slide 1 / 162. Slide 2 / 162. Slide 3 / 162. Trigonometric Functions. Trig Functions

Algebra II. Slide 1 / 162. Slide 2 / 162. Slide 3 / 162. Trigonometric Functions. Trig Functions Slide 1 / 162 Algebra II Slide 2 / 162 Trigonometric Functions 2015-12-17 www.njctl.org Trig Functions click on the topic to go to that section Slide 3 / 162 Radians & Degrees & Co-terminal angles Arc

More information

Name Class. (a) (b) (c) 2. Find the volume of the solid formed by revolving the region bounded by the graphs of

Name Class. (a) (b) (c) 2. Find the volume of the solid formed by revolving the region bounded by the graphs of Applications of Integration Test Form A. Determine the area of the region bounded by the graphs of y x 4x and y x 4. (a) 9 9 (b) 6 (c). Find the volume of the solid formed by revolving the region bounded

More information

Unit #13 : Integration to Find Areas and Volumes, Volumes of Revolution

Unit #13 : Integration to Find Areas and Volumes, Volumes of Revolution Unit #13 : Integration to Find Areas and Volumes, Volumes of Revolution Goals: Beabletoapplyaslicingapproachtoconstructintegralsforareasandvolumes. Be able to visualize surfaces generated by rotating functions

More information

青藜苑教育 Volume of cylinder = r h 965 = r = 6 r 965 = r 9.98 = r = r So the radius of the cylinde

青藜苑教育 Volume of cylinder = r h 965 = r = 6 r 965 = r 9.98 = r = r So the radius of the cylinde 青藜苑教育 www.thetopedu.com 00-6895997 095457 Further Volume and Surface Area Objectives * To find the volume and surface area of spheres, cones, pyramids and cylinders. * To solve problems involving volume

More information

5 Applications of Definite Integrals

5 Applications of Definite Integrals 5 Applications of Definite Integrals The previous chapter introduced the concepts of a definite integral as an area and as a limit of Riemann sums, demonstrated some of the properties of integrals, introduced

More information

VOLUME OF A REGION CALCULATOR EBOOK

VOLUME OF A REGION CALCULATOR EBOOK 19 March, 2018 VOLUME OF A REGION CALCULATOR EBOOK Document Filetype: PDF 390.92 KB 0 VOLUME OF A REGION CALCULATOR EBOOK How do you calculate volume. A solid of revolution is a solid formed by revolving

More information

To find the surface area and volume of a sphere

To find the surface area and volume of a sphere To find the surface area and volume of a sphere Sphere set of all points in space equidistant from a given point called the center. Surface Area Formula: S.A. = 4πr 2 r Volume Formula: V = 4 πr 3 3 Great

More information

SP about Rectangular Blocks

SP about Rectangular Blocks 1 3D Measure Outcomes Recognise and draw the nets of prisms, cylinders, and cones. Solve problems about the surface area and volume of rectangular blocks, cylinders, right cones, prisms, spheres, and solids

More information

Curvilinear Coordinates

Curvilinear Coordinates Curvilinear Coordinates Cylindrical Coordinates A 3-dimensional coordinate transformation is a mapping of the form T (u; v; w) = hx (u; v; w) ; y (u; v; w) ; z (u; v; w)i Correspondingly, a 3-dimensional

More information

QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 252 FALL 2008 KUNIYUKI SCORED OUT OF 125 POINTS MULTIPLIED BY % POSSIBLE

QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 252 FALL 2008 KUNIYUKI SCORED OUT OF 125 POINTS MULTIPLIED BY % POSSIBLE QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 5 FALL 8 KUNIYUKI SCORED OUT OF 15 POINTS MULTIPLIED BY.84 15% POSSIBLE 1) Reverse the order of integration, and evaluate the resulting double integral: 16 y dx dy. Give

More information

Algebra II Trigonometric Functions

Algebra II Trigonometric Functions Slide 1 / 162 Slide 2 / 162 Algebra II Trigonometric Functions 2015-12-17 www.njctl.org Slide 3 / 162 Trig Functions click on the topic to go to that section Radians & Degrees & Co-terminal angles Arc

More information

Geometry. Cluster: Experiment with transformations in the plane. G.CO.1 G.CO.2. Common Core Institute

Geometry. Cluster: Experiment with transformations in the plane. G.CO.1 G.CO.2. Common Core Institute Geometry Cluster: Experiment with transformations in the plane. G.CO.1: Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of

More information

MA 114 Worksheet #17: Average value of a function

MA 114 Worksheet #17: Average value of a function Spring 2019 MA 114 Worksheet 17 Thursday, 7 March 2019 MA 114 Worksheet #17: Average value of a function 1. Write down the equation for the average value of an integrable function f(x) on [a, b]. 2. Find

More information

A lg e b ra II. Trig o n o m e tric F u n c tio

A lg e b ra II. Trig o n o m e tric F u n c tio 1 A lg e b ra II Trig o n o m e tric F u n c tio 2015-12-17 www.njctl.org 2 Trig Functions click on the topic to go to that section Radians & Degrees & Co-terminal angles Arc Length & Area of a Sector

More information

20 Calculus and Structures

20 Calculus and Structures 0 Calculus and Structures CHAPTER FUNCTIONS Calculus and Structures Copright LESSON FUNCTIONS. FUNCTIONS A function f is a relationship between an input and an output and a set of instructions as to how

More information

S3 (3.1) N5 Volume.notebook April 30, 2018

S3 (3.1) N5 Volume.notebook April 30, 2018 Daily Practice 16.3.2018 Q1. Multiply out and simplify (3x - 2)(x 2-7x + 3) Daily Practice 19.3.2018 Q1. Multiply out and simplify (2x + 3)(x 2 + 7x + 4) Q2. Factorise fully 3x 2-75 Q2. Simplify x 3 (x

More information

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL 5

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL 5 UNIVERSITI TEKNOLOGI MALAYSIA SSE 189 ENGINEERING MATHEMATIS TUTORIAL 5 1. Evaluate the following surface integrals (i) (x + y) ds, : part of the surface 2x+y+z = 6 in the first octant. (ii) (iii) (iv)

More information

Chapter 6 Some Applications of the Integral

Chapter 6 Some Applications of the Integral Chapter 6 Some Applications of the Integral More on Area More on Area Integrating the vertical separation gives Riemann Sums of the form More on Area Example Find the area A of the set shaded in Figure

More information

Common Core Specifications for Geometry

Common Core Specifications for Geometry 1 Common Core Specifications for Geometry Examples of how to read the red references: Congruence (G-Co) 2-03 indicates this spec is implemented in Unit 3, Lesson 2. IDT_C indicates that this spec is implemented

More information

Volumes of Solids of Revolution

Volumes of Solids of Revolution Volumes of Solids of Revolution Farid Aliniaeifard York University http://math.yorku.ca/ faridanf April 27, 2016 Overview What is a solid of revolution? Method of Rings or Method of Disks Method of Cylindrical

More information

Geometry Surface Area and Volume of Pyramids and Cones.

Geometry Surface Area and Volume of Pyramids and Cones. Geometry 11.6 Surface Area and Volume of Pyramids and Cones mbhaub@mpsaz.org 11.6 Essential Question How do you find the surface area and volume of a pyramid or a cone? Geometry 1.3 Surface Area of Pyramids

More information

When discussing 3-D solids, it is natural to talk about that solid s Surface Area, which is the sum of the areas of all its outer surfaces or faces.

When discussing 3-D solids, it is natural to talk about that solid s Surface Area, which is the sum of the areas of all its outer surfaces or faces. Lesson 3 Lesson 3, page 1 of 10 Glencoe Geometry Chapter 11. Nets & Surface Area When discussing 3-D solids, it is natural to talk about that solid s Surface Area, which is the sum of the areas of all

More information

1. Fill in the right hand side of the following equation by taking the derivative: (x sin x) =

1. Fill in the right hand side of the following equation by taking the derivative: (x sin x) = 7.1 What is x cos x? 1. Fill in the right hand side of the following equation by taking the derivative: (x sin x = 2. Integrate both sides of the equation. Instructor: When instructing students to integrate

More information

Name Date Period. Worksheet 6.3 Volumes Show all work. No calculator unless stated. Multiple Choice

Name Date Period. Worksheet 6.3 Volumes Show all work. No calculator unless stated. Multiple Choice Name Date Period Worksheet 6. Volumes Show all work. No calculator unless stated. Multiple Choice. (Calculator Permitted) The base of a solid S is the region enclosed by the graph of y ln x, the line x

More information

Double Integrals over Polar Coordinate

Double Integrals over Polar Coordinate 1. 15.4 DOUBLE INTEGRALS OVER POLAR COORDINATE 1 15.4 Double Integrals over Polar Coordinate 1. Polar Coordinates. The polar coordinates (r, θ) of a point are related to the rectangular coordinates (x,y)

More information

A trigonometric ratio is a,

A trigonometric ratio is a, ALGEBRA II Chapter 13 Notes The word trigonometry is derived from the ancient Greek language and means measurement of triangles. Section 13.1 Right-Triangle Trigonometry Objectives: 1. Find the trigonometric

More information

Surfaces. U (x; y; z) = k. Indeed, many of the most familiar surfaces are level surfaces of functions of 3 variables.

Surfaces. U (x; y; z) = k. Indeed, many of the most familiar surfaces are level surfaces of functions of 3 variables. Surfaces Level Surfaces One of the goals of this chapter is to use di erential calculus to explore surfaces, in much the same way that we used di erential calculus to study curves in the rst chapter. In

More information

Geometry B. The University of Texas at Austin Continuing & Innovative Education K 16 Education Center 1

Geometry B. The University of Texas at Austin Continuing & Innovative Education K 16 Education Center 1 Geometry B Credit By Exam This Credit By Exam can help you prepare for the exam by giving you an idea of what you need to study, review, and learn. To succeed, you should be thoroughly familiar with the

More information

To find the surface area of a pyramid and a cone

To find the surface area of a pyramid and a cone 11-3 Surface Areas of Pyramids and Cones Common Core State Standards G-MG.A.1 Use geometric shapes, their measures, and their properties to describe objects. MP 1, MP 3, MP 4, MP 6, MP 7 Objective To find

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 1

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 1 EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 1 TUTORIAL 4 AREAS AND VOLUMES Determine the fundamental algebraic laws and apply algebraic manipulation techniques to the solution

More information

(i) Find the exact value of p. [4] Show that the area of the shaded region bounded by the curve, the x-axis and the line

(i) Find the exact value of p. [4] Show that the area of the shaded region bounded by the curve, the x-axis and the line H Math : Integration Apps 0. M p The diagram shows the curve e e and its maimum point M. The -coordinate of M is denoted b p. (i) Find the eact value of p. [] (ii) Show that the area of the shaded region

More information

MATH 104 First Midterm Exam - Fall (d) A solid has as its base the region in the xy-plane the region between the curve y = 1 x2

MATH 104 First Midterm Exam - Fall (d) A solid has as its base the region in the xy-plane the region between the curve y = 1 x2 MATH 14 First Midterm Exam - Fall 214 1. Find the area between the graphs of y = x 2 + x + 5 and y = 2x 2 x. 1. Find the area between the graphs of y = x 2 + 4x + 6 and y = 2x 2 x. 1. Find the area between

More information

Perimeter. Area. Surface Area. Volume. Circle (circumference) C = 2πr. Square. Rectangle. Triangle. Rectangle/Parallelogram A = bh

Perimeter. Area. Surface Area. Volume. Circle (circumference) C = 2πr. Square. Rectangle. Triangle. Rectangle/Parallelogram A = bh Perimeter Circle (circumference) C = 2πr Square P = 4s Rectangle P = 2b + 2h Area Circle A = πr Triangle A = bh Rectangle/Parallelogram A = bh Rhombus/Kite A = d d Trapezoid A = b + b h A area a apothem

More information

3 Identify shapes as two-dimensional (lying in a plane, flat ) or three-dimensional ( solid ).

3 Identify shapes as two-dimensional (lying in a plane, flat ) or three-dimensional ( solid ). Geometry Kindergarten Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres). 1 Describe objects in the environment using names of shapes,

More information

Geometry I Can Statements I can describe the undefined terms: point, line, and distance along a line in a plane I can describe the undefined terms:

Geometry I Can Statements I can describe the undefined terms: point, line, and distance along a line in a plane I can describe the undefined terms: Geometry I Can Statements I can describe the undefined terms: point, line, and distance along a line in a plane I can describe the undefined terms: point, line, and distance along a line in a plane I can

More information

Supporting planning for shape, space and measures in Key Stage 4: objectives and key indicators

Supporting planning for shape, space and measures in Key Stage 4: objectives and key indicators 1 of 7 Supporting planning for shape, space and measures in Key Stage 4: objectives and key indicators This document provides objectives to support planning for shape, space and measures in Key Stage 4.

More information

Areas of Rectangles and Parallelograms

Areas of Rectangles and Parallelograms CONDENSED LESSON 8.1 Areas of Rectangles and Parallelograms In this lesson, you Review the formula for the area of a rectangle Use the area formula for rectangles to find areas of other shapes Discover

More information

SOLID SHAPES M.K. HOME TUITION. Mathematics Revision Guides. Level: GCSE Foundation Tier

SOLID SHAPES M.K. HOME TUITION. Mathematics Revision Guides. Level: GCSE Foundation Tier Mathematics Revision Guides Solid Shapes Page 1 of 15 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Foundation Tier SOLID SHAPES Version: 1. Date: 10-11-2015 Mathematics Revision Guides Solid

More information

Mathematics 134 Calculus 2 With Fundamentals Exam 2 Answers/Solutions for Sample Questions March 2, 2018

Mathematics 134 Calculus 2 With Fundamentals Exam 2 Answers/Solutions for Sample Questions March 2, 2018 Sample Exam Questions Mathematics 1 Calculus 2 With Fundamentals Exam 2 Answers/Solutions for Sample Questions March 2, 218 Disclaimer: The actual exam questions may be organized differently and ask questions

More information

Common Core Cluster. Experiment with transformations in the plane. Unpacking What does this standard mean that a student will know and be able to do?

Common Core Cluster. Experiment with transformations in the plane. Unpacking What does this standard mean that a student will know and be able to do? Congruence G.CO Experiment with transformations in the plane. G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,

More information

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods)

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods) (Section 6.: Volumes of Solids of Revolution: Disk / Washer Methods) 6.. PART E: DISK METHOD vs. WASHER METHOD When using the Disk or Washer Method, we need to use toothpicks that are perpendicular to

More information

Reteaching Golden Ratio

Reteaching Golden Ratio Name Date Class Golden Ratio INV 11 You have investigated fractals. Now ou will investigate the golden ratio. The Golden Ratio in Line Segments The golden ratio is the irrational number 1 5. c On the line

More information

Maths Year 11 Mock Revision list

Maths Year 11 Mock Revision list Maths Year 11 Mock Revision list F = Foundation Tier = Foundation and igher Tier = igher Tier Number Tier Topic know and use the word integer and the equality and inequality symbols use fractions, decimals

More information

Length and Area. Charles Delman. April 20, 2010

Length and Area. Charles Delman. April 20, 2010 Length and Area Charles Delman April 20, 2010 What is the length? Unit Solution Unit 5 (linear) units What is the length? Unit Solution Unit 5 2 = 2 1 2 (linear) units What is the perimeter of the shaded

More information

Unit 4 End-of-Unit Assessment Study Guide

Unit 4 End-of-Unit Assessment Study Guide Circles Unit 4 End-of-Unit Assessment Study Guide Definitions Radius (r) = distance from the center of a circle to the circle s edge Diameter (d) = distance across a circle, from edge to edge, through

More information

Surface Area and Volume

Surface Area and Volume Surface Area and Volume Day 1 - Surface Area of Prisms Surface Area = The total area of the surface of a three-dimensional object (Or think of it as the amount of paper you ll need to wrap the shape.)

More information

MATHEMATICS FOR ENGINEERING TRIGONOMETRY

MATHEMATICS FOR ENGINEERING TRIGONOMETRY MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL SOME MORE RULES OF TRIGONOMETRY This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves

More information