Multi-view 3D Models from Single Images with a Convolutional Network

Size: px
Start display at page:

Download "Multi-view 3D Models from Single Images with a Convolutional Network"

Transcription

1 Multi-view 3D Models from Single Images with a Convolutional Network Maxim Tatarchenko University of Freiburg Skoltech - 2nd Christmas Colloquium on Computer Vision

2 Humans have prior knowledge about 3D 2

3 Humans have prior knowledge about 3D Side view? 2

4 Humans have prior knowledge about 3D Side view? 2

5 Humans have prior knowledge about 3D Side view? 2

6 3D-awareness How can we teach similar 3Dawareness to neural networks? 3

7 Convolutional network cat *slides partially provided by Alexey Dosovitskiy 4

8 Up-convolutional network 5

9 Up-convolutions Pooling shrinking the feature maps Unpooling expanding the feature maps Up-convolution Unpooling + Convolution 6

10 Application Generating chairs Alexey Dosovitskiy Jost Tobias Springenberg Thomas Brox 7

11 Cats are complicated 8

12 Chairs are simpler 9

13 Training data Chairs from [Aubry et al. 2014] Cars and tables from ShapeNet Figure from dimatura/seeing3d 10

14 Training data Chairs from [Aubry et al. 2014] Cars and tables from ShapeNet 11

15 CNN for generating objects [1] A. Dosovitskiy, J. T. Springenberg and T. Brox Learning to Generate Chairs with Convolutional Neural Networks, CVPR 2015 [2] A. Dosovitskiy, J. T. Springenberg, M. Tatarchenko and T. Brox Learning to Generate Chairs, Tables and Cars with Convolutional Neural Networks, PAMI

16 Generated images - transformations Translation Rotation Zoom Squeeze Saturation Brightness Color 13

17 Style interpolation - chairs 14

18 Style interpolation - chairs 14

19 Style interpolation - chairs 14

20 Style interpolation - cars 15

21 Style interpolation chairs to tables 16

22 Chair arithmetic 17

23 Viewpoint interpolation transfer learning Source set : 90% styles, all viewpoints available Target set : 10% styles, only some viewpoints available Task: Interpolate missing angles in the target set 15 azimuth angles available 18

24 Viewpoint interpolation transfer learning Source set : 90% styles, all viewpoints available Target set : 10% styles, only some viewpoints available Task: Interpolate missing angles in the target set 15 azimuth angles available 18

25 Viewpoint interpolation transfer learning Source set : 90% styles, all viewpoints available Target set : 10% styles, only some viewpoints available Task: Interpolate missing angles in the target set 15 azimuth angles available 18

26 Viewpoint interpolation transfer learning 8 azimuths available 4 azimuths available 2 azimuths available 1 azimuth available 19

27 Let s add an inference network! 20

28 Novel view prediction Adding an inference net M.Tatarchenko, A. Dosovitskiy, and T. Brox Multi-view 3D Models from Single Images with a Convolutional Network, ECCV

29 Performance on synthetic data 22

30 Performance on synthetic data 22

31 Performance on synthetic data - video 23

32 Segmentation Training data + = Network predictions 24

33 Segmentation - video 25

34 Trained on synthetic, works on natural 26

35 Network learns consistent 3D representation 27

36 Network learns consistent 3D representation 27

37 Network learns consistent 3D representation 27

38 Network learns consistent 3D representation 27

39 3D reconstruction - video 28

40 Comparison with IGN Kulkarni et al., NIPS

41 Comparison with no inference -network Dosovitskiy et al., CVPR

42 Comparison with recurrent network Yang et al., NIPS

43 Comparison with appearance flow Zhou et al., ECCV

44 Informative inputs lead to better predictions 33

45 Informative inputs lead to better predictions 33

46 Informative inputs lead to better predictions 33

47 Informative inputs lead to better predictions 34

48 Informative inputs lead to better predictions 35

49 Interpolation between cars 36

50 Internal representation is invariant 37

51 Internal representation is invariant pairwise distances 37

52 Internal representation is invariant pairwise distances 37

53 Summary High-resolution images can be generated with a convolutional network from a set of high-level parameters Network learns meaningful continuous manifolds Adding an encoder allows to infer 3D representation from a single image Internal 3D representation can be explicitly decoded into a consistent point cloud by fusing multiple output depth maps 38

54 Thank you! Code availble: 39

LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS

LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS Alexey Dosovitskiy, Jost Tobias Springenberg and Thomas Brox University of Freiburg Presented by: Shreyansh Daftry Visual Learning and Recognition

More information

Structured Prediction using Convolutional Neural Networks

Structured Prediction using Convolutional Neural Networks Overview Structured Prediction using Convolutional Neural Networks Bohyung Han bhhan@postech.ac.kr Computer Vision Lab. Convolutional Neural Networks (CNNs) Structured predictions for low level computer

More information

Deconvolutions in Convolutional Neural Networks

Deconvolutions in Convolutional Neural Networks Overview Deconvolutions in Convolutional Neural Networks Bohyung Han bhhan@postech.ac.kr Computer Vision Lab. Convolutional Neural Networks (CNNs) Deconvolutions in CNNs Applications Network visualization

More information

arxiv: v2 [cs.cv] 2 Aug 2016

arxiv: v2 [cs.cv] 2 Aug 2016 arxiv:1511.06702v2 [cs.cv] 2 Aug 2016 Multi-view 3D Models from Single Images with a Convolutional Network Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox Department of Computer Science University of

More information

arxiv: v1 [cs.lg] 5 Jan 2016

arxiv: v1 [cs.lg] 5 Jan 2016 Weakly-supervised Disentangling with Recurrent Transformations for 3D View Synthesis Jimei Yang 1,3 Scott Reed 2 Ming-Hsuan Yang 1 Honglak Lee 2 arxiv:1601.00706v1 [cs.lg] 5 Jan 2016 1 University of California,

More information

Pixels, voxels, and views: A study of shape representations for single view 3D object shape prediction

Pixels, voxels, and views: A study of shape representations for single view 3D object shape prediction Pixels, voxels, and views: A study of shape representations for single view 3D object shape prediction Daeyun Shin 1 Charless C. Fowlkes 1 Derek Hoiem 2 1 University of California, Irvine 2 University

More information

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks Report for Undergraduate Project - CS396A Vinayak Tantia (Roll No: 14805) Guide: Prof Gaurav Sharma CSE, IIT Kanpur, India

More information

ECCV Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016

ECCV Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016 ECCV 2016 Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016 Fundamental Question What is a good vector representation of an object? Something that can be easily predicted from 2D

More information

Seeing the unseen. Data-driven 3D Understanding from Single Images. Hao Su

Seeing the unseen. Data-driven 3D Understanding from Single Images. Hao Su Seeing the unseen Data-driven 3D Understanding from Single Images Hao Su Image world Shape world 3D perception from a single image Monocular vision a typical prey a typical predator Cited from https://en.wikipedia.org/wiki/binocular_vision

More information

Deep Convolutional Inverse Graphics Network

Deep Convolutional Inverse Graphics Network Deep Convolutional Inverse Graphics Network Tejas D. Kulkarni* 1, William F. Whitney* 2, Pushmeet Kohli 3, Joshua B. Tenenbaum 4 1,2,4 Massachusetts Institute of Technology, Cambridge, USA 3 Microsoft

More information

Capsule Networks. Eric Mintun

Capsule Networks. Eric Mintun Capsule Networks Eric Mintun Motivation An improvement* to regular Convolutional Neural Networks. Two goals: Replace max-pooling operation with something more intuitive. Keep more info about an activated

More information

Lecture 10: Other Applications of CNNs

Lecture 10: Other Applications of CNNs Applications of Convolutional Neural Networks CSED703: Deep Learning for Visual ecognition (207F) Lecture 0: Other Applications of CNNs Bohyung Han Computer Vision Lab. bhhan@postech.ac.kr Face recognition

More information

3D Shape Analysis with Multi-view Convolutional Networks. Evangelos Kalogerakis

3D Shape Analysis with Multi-view Convolutional Networks. Evangelos Kalogerakis 3D Shape Analysis with Multi-view Convolutional Networks Evangelos Kalogerakis 3D model repositories [3D Warehouse - video] 3D geometry acquisition [KinectFusion - video] 3D shapes come in various flavors

More information

(Deep) Learning for Robot Perception and Navigation. Wolfram Burgard

(Deep) Learning for Robot Perception and Navigation. Wolfram Burgard (Deep) Learning for Robot Perception and Navigation Wolfram Burgard Deep Learning for Robot Perception (and Navigation) Lifeng Bo, Claas Bollen, Thomas Brox, Andreas Eitel, Dieter Fox, Gabriel L. Oliveira,

More information

arxiv: v1 [cs.cv] 21 Jun 2017

arxiv: v1 [cs.cv] 21 Jun 2017 Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction arxiv:1706.07036v1 [cs.cv] 21 Jun 2017 Chen-Hsuan Lin, Chen Kong, Simon Lucey The Robotics Institute Carnegie Mellon University

More information

Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction

Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction Chen-Hsuan Lin Chen Kong Simon Lucey The Robotics Institute Carnegie Mellon University chlin@cmu.edu, {chenk,slucey}@cs.cmu.edu

More information

Deep Learning. Deep Learning. Practical Application Automatically Adding Sounds To Silent Movies

Deep Learning. Deep Learning. Practical Application Automatically Adding Sounds To Silent Movies http://blog.csdn.net/zouxy09/article/details/8775360 Automatic Colorization of Black and White Images Automatically Adding Sounds To Silent Movies Traditionally this was done by hand with human effort

More information

Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group

Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group Deep Learning Vladimir Golkov Technical University of Munich Computer Vision Group 1D Input, 1D Output target input 2 2D Input, 1D Output: Data Distribution Complexity Imagine many dimensions (data occupies

More information

Lecture 7: Semantic Segmentation

Lecture 7: Semantic Segmentation Semantic Segmentation CSED703R: Deep Learning for Visual Recognition (207F) Segmenting images based on its semantic notion Lecture 7: Semantic Segmentation Bohyung Han Computer Vision Lab. bhhanpostech.ac.kr

More information

arxiv: v1 [cs.cv] 7 Mar 2017

arxiv: v1 [cs.cv] 7 Mar 2017 Deep View Morphing arxiv:1703.02168v1 [cs.cv] 7 Mar 2017 Dinghuang Ji UNC at Chapel Hill jdh@cs.unc.edu Abstract Recently, convolutional neural networks (CNN) have been successfully applied to view synthesis

More information

Deep Learning for Visual Manipulation and Synthesis

Deep Learning for Visual Manipulation and Synthesis Deep Learning for Visual Manipulation and Synthesis Jun-Yan Zhu 朱俊彦 UC Berkeley 2017/01/11 @ VALSE What is visual manipulation? Image Editing Program input photo User Input result Desired output: stay

More information

3D Deep Learning on Geometric Forms. Hao Su

3D Deep Learning on Geometric Forms. Hao Su 3D Deep Learning on Geometric Forms Hao Su Many 3D representations are available Candidates: multi-view images depth map volumetric polygonal mesh point cloud primitive-based CAD models 3D representation

More information

Learning from 3D Data

Learning from 3D Data Learning from 3D Data Thomas Funkhouser Princeton University* * On sabbatical at Stanford and Google Disclaimer: I am talking about the work of these people Shuran Song Andy Zeng Fisher Yu Yinda Zhang

More information

Visual Computing TUM

Visual Computing TUM Visual Computing Group @ TUM Visual Computing Group @ TUM BundleFusion Real-time 3D Reconstruction Scalable scene representation Global alignment and re-localization TOG 17 [Dai et al.]: BundleFusion Real-time

More information

arxiv: v1 [cs.cv] 11 Apr 2018

arxiv: v1 [cs.cv] 11 Apr 2018 View Extrapolation of Human Body from a Single Image Hao Zhu 1,2 Hao Su 3 Peng Wang 4,5 Xun Cao 1 Ruigang Yang 2,4,5 1 Nanjing University, Nanjing, China 2 University of Kentucky, Lexington, KY, USA 3

More information

Learning to generate 3D shapes

Learning to generate 3D shapes Learning to generate 3D shapes Subhransu Maji College of Information and Computer Sciences University of Massachusetts, Amherst http://people.cs.umass.edu/smaji August 10, 2018 @ Caltech Creating 3D shapes

More information

arxiv: v1 [stat.ml] 16 Nov 2017

arxiv: v1 [stat.ml] 16 Nov 2017 A orward-ackward Approach for Visualizing Information low in Deep Networks arxiv:1711.06221v1 [stat.ml] 16 Nov 2017 Aditya alu, Thanh V. Nguyen, Apurva Kokate, Chinmay Hegde, Soumik Sarkar Iowa State University

More information

DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material

DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material Yi Li 1, Gu Wang 1, Xiangyang Ji 1, Yu Xiang 2, and Dieter Fox 2 1 Tsinghua University, BNRist 2 University of Washington

More information

Recurrent Convolutional Neural Networks for Scene Labeling

Recurrent Convolutional Neural Networks for Scene Labeling Recurrent Convolutional Neural Networks for Scene Labeling Pedro O. Pinheiro, Ronan Collobert Reviewed by Yizhe Zhang August 14, 2015 Scene labeling task Scene labeling: assign a class label to each pixel

More information

Dynamic Routing Between Capsules. Yiting Ethan Li, Haakon Hukkelaas, and Kaushik Ram Ramasamy

Dynamic Routing Between Capsules. Yiting Ethan Li, Haakon Hukkelaas, and Kaushik Ram Ramasamy Dynamic Routing Between Capsules Yiting Ethan Li, Haakon Hukkelaas, and Kaushik Ram Ramasamy Problems & Results Object classification in images without losing information about important parts of the picture.

More information

Understanding deep features with computer-generated imagery

Understanding deep features with computer-generated imagery Understanding deep features with computer-generated imagery Mathieu Aubry École des Ponts ParisTech UC Berkeley mathieu.aubry@imagine.enpc.fr Bryan C. Russell Adobe Research brussell@adobe.com Abstract

More information

arxiv: v1 [cs.cv] 10 Sep 2018

arxiv: v1 [cs.cv] 10 Sep 2018 Deep Single-View 3D Object Reconstruction with Visual Hull Embedding Hanqing Wang 1 Jiaolong Yang 2 Wei Liang 1 Xin Tong 2 1 Beijing Institute of Technology 2 Microsoft Research {hanqingwang,liangwei}@bit.edu.cn

More information

Single Image 3D Interpreter Network

Single Image 3D Interpreter Network Single Image 3D Interpreter Network Jiajun Wu* Josh Tenenbaum Tianfan Xue* Joseph Lim Antonio Torralba ECCV 2016 Yuandong Tian Bill Freeman (* equal contributions) What do we see from these images? Motivation

More information

Restricted Boltzmann Machines. Shallow vs. deep networks. Stacked RBMs. Boltzmann Machine learning: Unsupervised version

Restricted Boltzmann Machines. Shallow vs. deep networks. Stacked RBMs. Boltzmann Machine learning: Unsupervised version Shallow vs. deep networks Restricted Boltzmann Machines Shallow: one hidden layer Features can be learned more-or-less independently Arbitrary function approximator (with enough hidden units) Deep: two

More information

SurfNet: Generating 3D shape surfaces using deep residual networks-supplementary Material

SurfNet: Generating 3D shape surfaces using deep residual networks-supplementary Material SurfNet: Generating 3D shape surfaces using deep residual networks-supplementary Material Ayan Sinha MIT Asim Unmesh IIT Kanpur Qixing Huang UT Austin Karthik Ramani Purdue sinhayan@mit.edu a.unmesh@gmail.com

More information

AUTOMATIC 3D HUMAN ACTION RECOGNITION Ajmal Mian Associate Professor Computer Science & Software Engineering

AUTOMATIC 3D HUMAN ACTION RECOGNITION Ajmal Mian Associate Professor Computer Science & Software Engineering AUTOMATIC 3D HUMAN ACTION RECOGNITION Ajmal Mian Associate Professor Computer Science & Software Engineering www.csse.uwa.edu.au/~ajmal/ Overview Aim of automatic human action recognition Applications

More information

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU,

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU, Machine Learning 10-701, Fall 2015 Deep Learning Eric Xing (and Pengtao Xie) Lecture 8, October 6, 2015 Eric Xing @ CMU, 2015 1 A perennial challenge in computer vision: feature engineering SIFT Spin image

More information

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE MODEL Given a training dataset, x, try to estimate the distribution, Pdata(x) Explicitly or Implicitly (GAN) Explicitly

More information

Supplementary: Cross-modal Deep Variational Hand Pose Estimation

Supplementary: Cross-modal Deep Variational Hand Pose Estimation Supplementary: Cross-modal Deep Variational Hand Pose Estimation Adrian Spurr, Jie Song, Seonwook Park, Otmar Hilliges ETH Zurich {spurra,jsong,spark,otmarh}@inf.ethz.ch Encoder/Decoder Linear(512) Table

More information

R-FCN: Object Detection with Really - Friggin Convolutional Networks

R-FCN: Object Detection with Really - Friggin Convolutional Networks R-FCN: Object Detection with Really - Friggin Convolutional Networks Jifeng Dai Microsoft Research Li Yi Tsinghua Univ. Kaiming He FAIR Jian Sun Microsoft Research NIPS, 2016 Or Region-based Fully Convolutional

More information

Computer Vision: Making machines see

Computer Vision: Making machines see Computer Vision: Making machines see Roberto Cipolla Department of Engineering http://www.eng.cam.ac.uk/~cipolla/people.html http://www.toshiba.eu/eu/cambridge-research- Laboratory/ Vision: what is where

More information

CS468: 3D Deep Learning on Point Cloud Data. class label part label. Hao Su. image. May 10, 2017

CS468: 3D Deep Learning on Point Cloud Data. class label part label. Hao Su. image. May 10, 2017 CS468: 3D Deep Learning on Point Cloud Data class label part label Hao Su image. May 10, 2017 Agenda Point cloud generation Point cloud analysis CVPR 17, Point Set Generation Pipeline render CVPR 17, Point

More information

Mask R-CNN. Kaiming He, Georgia, Gkioxari, Piotr Dollar, Ross Girshick Presenters: Xiaokang Wang, Mengyao Shi Feb. 13, 2018

Mask R-CNN. Kaiming He, Georgia, Gkioxari, Piotr Dollar, Ross Girshick Presenters: Xiaokang Wang, Mengyao Shi Feb. 13, 2018 Mask R-CNN Kaiming He, Georgia, Gkioxari, Piotr Dollar, Ross Girshick Presenters: Xiaokang Wang, Mengyao Shi Feb. 13, 2018 1 Common computer vision tasks Image Classification: one label is generated for

More information

Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks

Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks Alexey Dosovitskiy, Philipp Fischer, Jost Tobias Springenberg, Martin Riedmiller, Thomas Brox arxiv:46.699v2 [cs.lg]

More information

Deep 3D Machine Learning for Reconstruction and Repair of 3D Surfaces

Deep 3D Machine Learning for Reconstruction and Repair of 3D Surfaces Deep 3D Machine Learning for Reconstruction and Repair of 3D Surfaces TalkID 23152 This session will give the audience a quick overview of recent developments in the field of 3D surface analysis with deep

More information

Supplemental Material for End-to-End Learning of Video Super-Resolution with Motion Compensation

Supplemental Material for End-to-End Learning of Video Super-Resolution with Motion Compensation Supplemental Material for End-to-End Learning of Video Super-Resolution with Motion Compensation Osama Makansi, Eddy Ilg, and Thomas Brox Department of Computer Science, University of Freiburg 1 Computation

More information

LEARNING RIGIDITY IN DYNAMIC SCENES FOR SCENE FLOW ESTIMATION

LEARNING RIGIDITY IN DYNAMIC SCENES FOR SCENE FLOW ESTIMATION LEARNING RIGIDITY IN DYNAMIC SCENES FOR SCENE FLOW ESTIMATION Kihwan Kim, Senior Research Scientist Zhaoyang Lv, Kihwan Kim, Alejandro Troccoli, Deqing Sun, James M. Rehg, Jan Kautz CORRESPENDECES IN COMPUTER

More information

Deep Models for 3D Reconstruction

Deep Models for 3D Reconstruction Deep Models for 3D Reconstruction Andreas Geiger Autonomous Vision Group, MPI for Intelligent Systems, Tübingen Computer Vision and Geometry Group, ETH Zürich October 12, 2017 Max Planck Institute for

More information

arxiv: v2 [cs.cv] 19 Jun 2018

arxiv: v2 [cs.cv] 19 Jun 2018 RenderNet: A deep convolutional network for differentiable rendering from 3D shapes arxiv:1806.06575v2 [cs.cv] 19 Jun 2018 Thu Nguyen-Phuoc University of Bath T.Nguyen.Phuoc@bath.ac.uk Chuan Li Lambda

More information

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia Deep learning for dense per-pixel prediction Chunhua Shen The University of Adelaide, Australia Image understanding Classification error Convolution Neural Networks 0.3 0.2 0.1 Image Classification [Krizhevsky

More information

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

Tag Disentangled Generative Adversarial Networks for Object Image Re-rendering

Tag Disentangled Generative Adversarial Networks for Object Image Re-rendering Tag Disentangled Generative Adversarial Networks for Object Image Re-rendering Chaoyue Wang, Chaohui Wang, Chang Xu, Dacheng Tao Centre for Artificial Intelligence, School of Software, University of Technology

More information

Multi-view to Novel view: Synthesizing novel views with Self-Learned Confidence

Multi-view to Novel view: Synthesizing novel views with Self-Learned Confidence Multi-view to Novel view: Synthesizing novel views with Self-Learned Confidence Shao-Hua Sun 1 Minyoung Huh 2 Yuan-Hong Liao 3 Ning Zhang 4 Joseph J. Lim 1 University of Southern California 1 Carnegie

More information

Dynamic Routing Between Capsules

Dynamic Routing Between Capsules Report Explainable Machine Learning Dynamic Routing Between Capsules Author: Michael Dorkenwald Supervisor: Dr. Ullrich Köthe 28. Juni 2018 Inhaltsverzeichnis 1 Introduction 2 2 Motivation 2 3 CapusleNet

More information

3 Object Detection. BVM 2018 Tutorial: Advanced Deep Learning Methods. Paul F. Jaeger, Division of Medical Image Computing

3 Object Detection. BVM 2018 Tutorial: Advanced Deep Learning Methods. Paul F. Jaeger, Division of Medical Image Computing 3 Object Detection BVM 2018 Tutorial: Advanced Deep Learning Methods Paul F. Jaeger, of Medical Image Computing What is object detection? classification segmentation obj. detection (1 label per pixel)

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

MOTION ESTIMATION USING CONVOLUTIONAL NEURAL NETWORKS. Mustafa Ozan Tezcan

MOTION ESTIMATION USING CONVOLUTIONAL NEURAL NETWORKS. Mustafa Ozan Tezcan MOTION ESTIMATION USING CONVOLUTIONAL NEURAL NETWORKS Mustafa Ozan Tezcan Boston University Department of Electrical and Computer Engineering 8 Saint Mary s Street Boston, MA 2215 www.bu.edu/ece Dec. 19,

More information

GAL: Geometric Adversarial Loss for Single-View 3D-Object Reconstruction

GAL: Geometric Adversarial Loss for Single-View 3D-Object Reconstruction GAL: Geometric Adversarial Loss for Single-View 3D-Object Reconstruction Li Jiang 1, Shaoshuai Shi 1, Xiaojuan Qi 1, and Jiaya Jia 1,2 1 The Chinese University of Hong Kong 2 Tencent YouTu Lab {lijiang,

More information

Paper Motivation. Fixed geometric structures of CNN models. CNNs are inherently limited to model geometric transformations

Paper Motivation. Fixed geometric structures of CNN models. CNNs are inherently limited to model geometric transformations Paper Motivation Fixed geometric structures of CNN models CNNs are inherently limited to model geometric transformations Higher-level features combine lower-level features at fixed positions as a weighted

More information

arxiv: v1 [cs.cv] 11 Aug 2017

arxiv: v1 [cs.cv] 11 Aug 2017 Augmentor: An Image Augmentation Library for Machine Learning arxiv:1708.04680v1 [cs.cv] 11 Aug 2017 Marcus D. Bloice Christof Stocker marcus.bloice@medunigraz.at stocker.christof@gmail.com Andreas Holzinger

More information

3D Shape Segmentation with Projective Convolutional Networks

3D Shape Segmentation with Projective Convolutional Networks 3D Shape Segmentation with Projective Convolutional Networks Evangelos Kalogerakis 1 Melinos Averkiou 2 Subhransu Maji 1 Siddhartha Chaudhuri 3 1 University of Massachusetts Amherst 2 University of Cyprus

More information

Object Detection. Part1. Presenter: Dae-Yong

Object Detection. Part1. Presenter: Dae-Yong Object Part1 Presenter: Dae-Yong Contents 1. What is an Object? 2. Traditional Object Detector 3. Deep Learning-based Object Detector What is an Object? Subset of Object Recognition What is an Object?

More information

Perceiving the 3D World from Images and Videos. Yu Xiang Postdoctoral Researcher University of Washington

Perceiving the 3D World from Images and Videos. Yu Xiang Postdoctoral Researcher University of Washington Perceiving the 3D World from Images and Videos Yu Xiang Postdoctoral Researcher University of Washington 1 2 Act in the 3D World Sensing & Understanding Acting Intelligent System 3D World 3 Understand

More information

3D Object Recognition and Scene Understanding from RGB-D Videos. Yu Xiang Postdoctoral Researcher University of Washington

3D Object Recognition and Scene Understanding from RGB-D Videos. Yu Xiang Postdoctoral Researcher University of Washington 3D Object Recognition and Scene Understanding from RGB-D Videos Yu Xiang Postdoctoral Researcher University of Washington 1 2 Act in the 3D World Sensing & Understanding Acting Intelligent System 3D World

More information

Large-scale Video Classification with Convolutional Neural Networks

Large-scale Video Classification with Convolutional Neural Networks Large-scale Video Classification with Convolutional Neural Networks Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, Li Fei-Fei Note: Slide content mostly from : Bay Area

More information

Supplementary Material for Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains

Supplementary Material for Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains Supplementary Material for Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains Jiahao Pang 1 Wenxiu Sun 1 Chengxi Yang 1 Jimmy Ren 1 Ruichao Xiao 1 Jin Zeng 1 Liang Lin 1,2 1 SenseTime Research

More information

arxiv: v1 [cs.cv] 5 Jul 2017

arxiv: v1 [cs.cv] 5 Jul 2017 AlignGAN: Learning to Align Cross- Images with Conditional Generative Adversarial Networks Xudong Mao Department of Computer Science City University of Hong Kong xudonmao@gmail.com Qing Li Department of

More information

Unsupervised Learning

Unsupervised Learning Deep Learning for Graphics Unsupervised Learning Niloy Mitra Iasonas Kokkinos Paul Guerrero Vladimir Kim Kostas Rematas Tobias Ritschel UCL UCL/Facebook UCL Adobe Research U Washington UCL Timetable Niloy

More information

RTSR: Enhancing Real-time H.264 Video Streaming using Deep Learning based Video Super Resolution Spring 2017 CS570 Project Presentation June 8, 2017

RTSR: Enhancing Real-time H.264 Video Streaming using Deep Learning based Video Super Resolution Spring 2017 CS570 Project Presentation June 8, 2017 RTSR: Enhancing Real-time H.264 Video Streaming using Deep Learning based Video Super Resolution Spring 2017 CS570 Project Presentation June 8, 2017 Team 16 Soomin Kim Leslie Tiong Youngki Kwon Insu Jang

More information

Emphasizing 3D Properties in Recurrent Multi-View Aggregation for 3D Shape Retrieval

Emphasizing 3D Properties in Recurrent Multi-View Aggregation for 3D Shape Retrieval The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18) Emphasizing 3D Properties in Recurrent Multi-View Aggregation for 3D Shape Retrieval Cheng Xu, Biao Leng, Cheng Zhang, Xiaochen Zhou

More information

A Papier-Mâché Approach to Learning 3D Surface Generation

A Papier-Mâché Approach to Learning 3D Surface Generation A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix 1, Matthew Fisher 2, Vladimir G. Kim 2, Bryan C. Russell 2, Mathieu Aubry 1 1 LIGM (UMR 8049), École des Ponts, UPE, 2 Adobe Research

More information

Photo-realistic Renderings for Machines Seong-heum Kim

Photo-realistic Renderings for Machines Seong-heum Kim Photo-realistic Renderings for Machines 20105034 Seong-heum Kim CS580 Student Presentations 2016.04.28 Photo-realistic Renderings for Machines Scene radiances Model descriptions (Light, Shape, Material,

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta Encoder-Decoder Networks for Semantic Segmentation Sachin Mehta Outline > Overview of Semantic Segmentation > Encoder-Decoder Networks > Results What is Semantic Segmentation? Input: RGB Image Output:

More information

POINT CLOUD DEEP LEARNING

POINT CLOUD DEEP LEARNING POINT CLOUD DEEP LEARNING Innfarn Yoo, 3/29/28 / 57 Introduction AGENDA Previous Work Method Result Conclusion 2 / 57 INTRODUCTION 3 / 57 2D OBJECT CLASSIFICATION Deep Learning for 2D Object Classification

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

Yiqi Yan. May 10, 2017

Yiqi Yan. May 10, 2017 Yiqi Yan May 10, 2017 P a r t I F u n d a m e n t a l B a c k g r o u n d s Convolution Single Filter Multiple Filters 3 Convolution: case study, 2 filters 4 Convolution: receptive field receptive field

More information

Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients

Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients ThreeDimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients Authors: Zhile Ren, Erik B. Sudderth Presented by: Shannon Kao, Max Wang October 19, 2016 Introduction Given an

More information

Large-Scale Point Cloud Classification Benchmark

Large-Scale Point Cloud Classification Benchmark Large-Scale Point Cloud Classification Benchmark www.semantic3d.net IGP & CVG, ETH Zürich www.semantic3d.net, info@semantic3d.net 7/6/2016 1 Timo Hackel Nikolay Savinov Ľubor Ladický Jan Dirk Wegner Konrad

More information

Learning Dense Correspondence via 3D-guided Cycle Consistency

Learning Dense Correspondence via 3D-guided Cycle Consistency Learning Dense Correspondence via 3D-guided Cycle Consistency Tinghui Zhou UC Berkeley Philipp Krähenbühl UC Berkeley Mathieu Aubry ENPC ParisTech Qixing Huang TTI-Chicago Alexei A. Efros UC Berkeley Abstract

More information

DeMoN: Depth and Motion Network for Learning Monocular Stereo Supplementary Material

DeMoN: Depth and Motion Network for Learning Monocular Stereo Supplementary Material Learning rate : Depth and Motion Network for Learning Monocular Stereo Supplementary Material A. Network Architecture Details Our network is a chain of encoder-decoder networks. Figures 15 and 16 explain

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Announcements Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Seminar registration period starts on Friday We will offer a lab course in the summer semester Deep Robot Learning Topic:

More information

END-TO-END CHINESE TEXT RECOGNITION

END-TO-END CHINESE TEXT RECOGNITION END-TO-END CHINESE TEXT RECOGNITION Jie Hu 1, Tszhang Guo 1, Ji Cao 2, Changshui Zhang 1 1 Department of Automation, Tsinghua University 2 Beijing SinoVoice Technology November 15, 2017 Presentation at

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period starts

More information

Matryoshka Networks: Predicting 3D Geometry via Nested Shape Layers

Matryoshka Networks: Predicting 3D Geometry via Nested Shape Layers Matryoshka Networks: Predicting 3D Geometry via Nested Shape Layers Stephan R. Richter 1,2 Stefan Roth 1 1 TU Darmstadt 2 Intel Labs Figure 1. Exemplary shape reconstructions from a single by our Matryoshka

More information

CAPNet: Continuous Approximation Projection For 3D Point Cloud Reconstruction Using 2D Supervision

CAPNet: Continuous Approximation Projection For 3D Point Cloud Reconstruction Using 2D Supervision CAPNet: Continuous Approximation Projection For 3D Point Cloud Reconstruction Using 2D Supervision Navaneet K L *, Priyanka Mandikal *, Mayank Agarwal, and R. Venkatesh Babu Video Analytics Lab, CDS, Indian

More information

A Deep Learning Approach to Vehicle Speed Estimation

A Deep Learning Approach to Vehicle Speed Estimation A Deep Learning Approach to Vehicle Speed Estimation Benjamin Penchas bpenchas@stanford.edu Tobin Bell tbell@stanford.edu Marco Monteiro marcorm@stanford.edu ABSTRACT Given car dashboard video footage,

More information

Conditional Random Fields as Recurrent Neural Networks

Conditional Random Fields as Recurrent Neural Networks BIL722 - Deep Learning for Computer Vision Conditional Random Fields as Recurrent Neural Networks S. Zheng, S. Jayasumana, B. Romera-Paredes V. Vineet, Z. Su, D. Du, C. Huang, P.H.S. Torr Introduction

More information

3D Attention-Driven Depth Acquisition for Object Identification

3D Attention-Driven Depth Acquisition for Object Identification 3D Attention-Driven Depth Acquisition for Object Identification Kai Xu, Yifei Shi, Lintao Zheng, Junyu Zhang, Min Liu, Hui Huang, Hao Su, Daniel Cohen-Or and Baoquan Chen National University of Defense

More information

arxiv: v2 [cs.cv] 24 Jul 2017

arxiv: v2 [cs.cv] 24 Jul 2017 One-Step Time-Dependent Future Video Frame Prediction with a Convolutional Encoder-Decoder Neural Network Vedran Vukotić 1,2,3, Silvia-Laura Pintea 2, Christian Raymond 1,3, Guillaume Gravier 1,4, and

More information

Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing

Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing Chi Li 1, M. Zeeshan Zia 2, Quoc-Huy Tran 2, Xiang Yu 2, Gregory D. Hager 1 and Manmohan Chandraker 2,3 1 Johns Hopkins University

More information

Single-shot Extrinsic Calibration of a Generically Configured RGB-D Camera Rig from Scene Constraints

Single-shot Extrinsic Calibration of a Generically Configured RGB-D Camera Rig from Scene Constraints Single-shot Extrinsic Calibration of a Generically Configured RGB-D Camera Rig from Scene Constraints Jiaolong Yang*, Yuchao Dai^, Hongdong Li^, Henry Gardner^ and Yunde Jia* *Beijing Institute of Technology

More information

From 3D descriptors to monocular 6D pose: what have we learned?

From 3D descriptors to monocular 6D pose: what have we learned? ECCV Workshop on Recovering 6D Object Pose From 3D descriptors to monocular 6D pose: what have we learned? Federico Tombari CAMP - TUM Dynamic occlusion Low latency High accuracy, low jitter No expensive

More information

The Hilbert Problems of Computer Vision. Jitendra Malik UC Berkeley & Google, Inc.

The Hilbert Problems of Computer Vision. Jitendra Malik UC Berkeley & Google, Inc. The Hilbert Problems of Computer Vision Jitendra Malik UC Berkeley & Google, Inc. This talk The computational power of the human brain Research is the art of the soluble Hilbert problems, circa 2004 Hilbert

More information

Deformable Part Models

Deformable Part Models CS 1674: Intro to Computer Vision Deformable Part Models Prof. Adriana Kovashka University of Pittsburgh November 9, 2016 Today: Object category detection Window-based approaches: Last time: Viola-Jones

More information

CS6501: Deep Learning for Visual Recognition. Object Detection I: RCNN, Fast-RCNN, Faster-RCNN

CS6501: Deep Learning for Visual Recognition. Object Detection I: RCNN, Fast-RCNN, Faster-RCNN CS6501: Deep Learning for Visual Recognition Object Detection I: RCNN, Fast-RCNN, Faster-RCNN Today s Class Object Detection The RCNN Object Detector (2014) The Fast RCNN Object Detector (2015) The Faster

More information

Deep Learning. Visualizing and Understanding Convolutional Networks. Christopher Funk. Pennsylvania State University.

Deep Learning. Visualizing and Understanding Convolutional Networks. Christopher Funk. Pennsylvania State University. Visualizing and Understanding Convolutional Networks Christopher Pennsylvania State University February 23, 2015 Some Slide Information taken from Pierre Sermanet (Google) presentation on and Computer

More information

Depth Estimation from a Single Image Using a Deep Neural Network Milestone Report

Depth Estimation from a Single Image Using a Deep Neural Network Milestone Report Figure 1: The architecture of the convolutional network. Input: a single view image; Output: a depth map. 3 Related Work In [4] they used depth maps of indoor scenes produced by a Microsoft Kinect to successfully

More information

CAPNet: Continuous Approximation Projection For 3D Point Cloud Reconstruction Using 2D Supervision

CAPNet: Continuous Approximation Projection For 3D Point Cloud Reconstruction Using 2D Supervision CAPNet: Continuous Approximation Projection For 3D Point Cloud Reconstruction Using 2D Supervision Navaneet K L *, Priyanka Mandikal * and R. Venkatesh Babu Video Analytics Lab, IISc, Bangalore, India

More information

Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning

Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning Allan Zelener Dissertation Proposal December 12 th 2016 Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning Overview 1. Introduction to 3D Object Identification

More information