An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks

Size: px
Start display at page:

Download "An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks"

Transcription

1 An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks Report for Undergraduate Project - CS396A Vinayak Tantia (Roll No: 14805) Guide: Prof Gaurav Sharma CSE, IIT Kanpur, India 1 Introduction and Objective Generative adversarial networks are generative models which have achieved great success in unsupervised learning in various fields including image generation, image styling, inpainting and 3D object generation. My aim through this project was to understand how generative adversarial networks (GANs) work, the techniques used to make it better and its applications in 3D modeling and style transfer. 1.1 Generative Models Generative models compose data which looks like it has been sampled from a dataset (on which it was trained) but actually, has novelties of its own as well. The objective of generative modeling is to help understand the world around us and in the process, create a representation of objects in the world, which enable us to use data better. This is possible because these models are composed of machine learning models like neural networks, which have significantly less parameters than the data we would like to model them with. Thus, we can later use these parameters for various purposes like unsupervised classification of images. 2 Generative Adversarial Networks 2.1 Introduction Generative adversarial models were introduced by Goodfellow et al [3]. They introduce a new process for training generative models - there is a generative model (G) which synthesizes the data, and a discriminative model (D) which tries to identify properties in data to identify fake samples (samples created by the discriminator). The generator is expected to produce novel and different samples each time, so it is supplied with a random noise. G tries to generate fake data (which looks like original) and D tries to identify (given both original and fake data) which is fake and which is original (from the dataset). When D is able to identify the fake data better, G incurs loss corresponding to the mistakes it made, 1

2 and it trains itself using it. Similarly, when G is able to fool D, D incurs loss and uses it to train itself. 2.2 Algorithm Figure 1: Algorithm, taken from [3] 2.3 Theory and Theorems Training G and D can be formulated as a minimax game between G and D with the value function V (G, D) as: min G max V (G, D) = E D x P data (x) log(d(x)) + E z P z(z) log(1 D(G(z))) D tries to assign the value 1 to x, as x is sampled from the original data, and the value 0 to D(G(z)) as G(z) is the fake generated sample. This minimax game satisfies the following properties: The global minima of V(G, D*) satisfies the property that the original data distribution and the generated data distribution are the same. 2

3 This global minima is obtained when G is trained using an optimum discriminator at each step. There were a few hacks needed to make it work: G is trained to maximise log(d(g(z))) instead of minimizing log(1 D(G(z))) to avoid saturation. D is not trained completely in inner loop. D is trained for k steps followed by training G for 1 step. 3 Improving GANs 3.1 Deep Convolutional GANs Introduction GANs needed a lot of hyperparameter tuning in order to produce results. This paper [8] basically solves this problem. CNNs obtain great results on supervised learning tasks, so they incorporate CNNs into GANs and solve the problem of extensive hyperparameter tuning which GANs face Methods Suggested The authors suggest that these methods should be used while training GANs: Deep convolutional neural networks to be used for both generator and discriminator Remove FC and pooling layers and substitute with convolutional layers Use RELUs instead of other activations Use batch normalization after each layer Features of Method Moving along latent space leads to items appearing and disappearing Supports vector addition among latent vectors Discriminator features can be used for other tasks like classification Results Results are displayed from the previous page. 3

4 Figure 2: Sample images generated on LSUN dataset, taken from [8] Figure 3: Discriminator accuracy for classification, taken from [8] Figure 4: Vector arithmetic on latent vectors, taken from [8] 4

5 3.2 Wasserstein GAN [1] Requirement for the paper GANs have achieved great success in generating images but still, they require carefully tuned hyperparameters and need a careful balance between training the discriminator and generator. The reason for this is that when they minimize/maximize the log loss, they are actually minimizing the Jensen-Shannon divergence between the generated distribution and the data distribution. When the distributions are too far apart and the discriminator is trained well, the loss feedback given by the discriminator suffers from vanishing gradient and the generator does not update itself. In order to avoid this, Arjovsky et al suggest new ways to train GANs Proposed Method Propose the training algorithm: Figure 5: Wasserstein-I algorithm, taken from [1] They show that this minimises the Wasserstein-I (Earth-Movers distance) and prove using various theorems that minimizing the Wasserstein-I, is better than minimizing the Jensen-Shannon divergence Benefits Meaningful loss metric Improved stability of the process 5

6 4 Conditional GANs This [6] is an extension to GANs which generates data, conditioned on an input. An input y is fed to both G and D. This can be something like a label for MNIST data. For example, when the label 2 is fed as input, in the form of a 1-hot vector (or maybe in another representation), images similar to MNIST data of the digit 2 are generated. This GAN requires labeled data to generate the images. 5 3D Modeling Given 2D inputs 5.1 Task Input is given as one (or multiple) 2D images. The objective is to generate 3D models of the 2D image given as input. 5.2 Non-GAN approach - Multi-View 3D models from Single Images with A Convolutional Network [10] This approach feeds the input image into the CNN, alongwith an angle at which the 3D model is to be projected. The output is a 2D image, which shows the image in the projected dimension. Multiple such images can be obtained by supplying different angles as input. These images obtained are stitched into a 3D point cloud, which can be later transformed into a mesh. The losses used for this purpose are a Euclidean loss for RGB image and L1 loss for depth image. 3D models are required for training. The model is: Figure 6: Network architecture, taken from [10] 6

7 5.3 Learning a Probabilistic Latent Space of Object Shapes via 3D Generative- Adversarial Modeling [11] Motivation Behind Solving Previous methods leave holes in the object. Also, the images are pretty blurred due to using L1 loss. In order to avoid these problems, the authors thought it best to generate the 3D model directly, instead of stitching 2D images Initial Experiment The authors train a GAN using a 3D model dataset. The motivation behind using the GAN is that it will force the 3D model to look original (without holes and blurs). Initially, they try to train a GAN which generates a voxel representation of a 3D models directly from a latent vector. They achieve success in their endeavor using the following generator: Figure 7: Generator as used in [11]. Discriminator mostly mirrors it Method A 3D model is taken and projected onto a 2D image, which is given as input. This is encoded into a latent vector so that the 3D model can be generated from that latent vector. An encoding layer E is added for this purpose. This latent vector is then used as input to the generator Losses Used The loss used for training is L = L 3D GAN + α 1 L KL + α 2 L recon L 3D GAN = log D(x) + log(1 D(G(z))). This loss ensures that the 3D model generated looks realistic. 7

8 L KL = D KL (q(z y) p(z)). q(z y) is the variational distribution. This loss ensures that this distribution is close to the latent vector distribution. L recon = G(E(y)) x This ensures that the 3D model generated represents the 2D image and not a random 3D model Benefits This is the first method to combine the benefits of GANs and volumetric CNNs for 3D modeling. The discrinator learnt (in an unsupervised manner) can be used for applications in 3D object recognition D Modeling Using 2D images Objective Gadelha et al [2] propose a method to learn 3D distributions using only 2D images. They want to induce a distribution of 3D structures given 2D views from multiple viewpoints. They are motivated by the observation that humans can predict what a chair would like if they view multiple 2D images of it, so why not a GAN? They train a GAN using multiple 2D images and force it to generate 3D models which capture the underlying distribution Method The generator, given an input vector, produces a 32x32x32 object. The 3D model obtained is passed into a projection module, which gives a 2D image as output. The discriminator is asked to infer whether this 2D image is real or fake. The projection module is also differentiable, making the entire model differentiable. Thus, using the feedback given to the output 2D image, the parameters for generating the 3D model are modified. This is their model: Figure 8: Network architecture, taken from [2] 8

9 6 3D CNNs A drawback of the above methods is that they can generate only 32x32x32 models, due to computation and memory limitations. In order to avoid these limitations, we searched for sparse 3D CNNs. We saw the use of 3D CNNs in 3D classification. 6.1 Pointnet [7] Motivation Building a model for 3D classification and segmentation, which takes only point clouds as input Method Takes a set of points, applies a function h to each of them, and then applies a function g (something like max pooling or average pooling) which takes h(x 1 ), h(x 2 ),... as input. Get a feature vector and apply FC layers after this for classification. This is not suitable for our case as we cannot use the CNN-GAN with it. 6.2 Octnet [9] Motivation Voxel representations have a lot of empty space. They wish to use this sparsity in order to speed up classification for 3D voxels Method Each 3D voxel grid is divided into 8 octets - each carries 0 or 1, depending on whether the entire octet is empty. It is not divided more than 3 times, as access time increases on doing so. 7 Style Transfer We now move to the task of style transfer. 7.1 Task The objective is to take an image of a particular style and transform it to another similar style. For example, take an image clicked during the day and transform it so that it appears like it has been clicked during the night. 9

10 Figure 9: Style Transfer Example, taken from [12] 7.2 Perceptual Losses This work [5] targets image to image trainslation and style transfer problems. Typically, L1 losses are used between input and output images to maintain similarity. This paper suggests a new way of calculating losses - pass the 2 images (between which loss is to be calculated) through a CNN, take the higher level features (those in later layers) and take the differences between those as the loss). 7.3 Supervised Style Transfer Objective This work [4] uses conditional GANs for image translation task, to avoid hand-designed loss functions for each different set of categories, eg, same loss can be used while transferring an image from edges to photographs, and from night to day Model They modify a conventional model, which encodes the 2D image into a latent vector, and then converts it to another style - introducing skip layers from encoder to generator in order to avoid information loss in different layers. Their objective is that the core information, must be passed through the latent vector, other information can be passed using these U- layers, to make the image quality crisp. They also use 70x70 patches in the discriminator, instead of having a discriminator run on the whole image Results Results are in figure

11 Figure 10: Results, taken from [4] 7.4 Unsupervised Style Transfer Motivation Paired data is difficult to find. So, they suggest an unsupervised method to make it work Method For each set of domains, a set of functions f and g are learnt. f takes an image from domain 1 to domain 2 and g does vice-versa. The main changes they made are - they constrain f(g(x)) to be equal to x in order for their to be similarity between input and stylised image. They also use least square loss instead of log loss for GANs following along the lines of the Wasserstein GAN and Least-Squares GAN. They update their discriminators using a history of generated images. References [1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. arxiv preprint arxiv: , [2] M. Gadelha, S. Maji, and R. Wang. 3d shape induction from 2d views of multiple objects. arxiv preprint arxiv: , [3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages , [4] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial networks. arxiv preprint arxiv: ,

12 [5] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In European Conference on Computer Vision, pages Springer International Publishing, [6] M. Mirza and S. Osindero. Conditional generative adversarial nets. arxiv preprint arxiv: , [7] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d classification and segmentation. arxiv preprint arxiv: , [8] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arxiv preprint arxiv: , [9] G. Riegler, A. O. Ulusoy, and A. Geiger. Octnet: Learning deep 3d representations at high resolutions. arxiv preprint arxiv: , [10] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Multi-view 3d models from single images with a convolutional network. In European Conference on Computer Vision, pages Springer International Publishing, [11] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum. Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In Advances In Neural Information Processing Systems, pages 82 90, [12] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. arxiv preprint arxiv: ,

Paired 3D Model Generation with Conditional Generative Adversarial Networks

Paired 3D Model Generation with Conditional Generative Adversarial Networks Accepted to 3D Reconstruction in the Wild Workshop European Conference on Computer Vision (ECCV) 2018 Paired 3D Model Generation with Conditional Generative Adversarial Networks Cihan Öngün Alptekin Temizel

More information

arxiv: v1 [cs.cv] 5 Jul 2017

arxiv: v1 [cs.cv] 5 Jul 2017 AlignGAN: Learning to Align Cross- Images with Conditional Generative Adversarial Networks Xudong Mao Department of Computer Science City University of Hong Kong xudonmao@gmail.com Qing Li Department of

More information

Learning to generate with adversarial networks

Learning to generate with adversarial networks Learning to generate with adversarial networks Gilles Louppe June 27, 2016 Problem statement Assume training samples D = {x x p data, x X } ; We want a generative model p model that can draw new samples

More information

Progress on Generative Adversarial Networks

Progress on Generative Adversarial Networks Progress on Generative Adversarial Networks Wangmeng Zuo Vision Perception and Cognition Centre Harbin Institute of Technology Content Image generation: problem formulation Three issues about GAN Discriminate

More information

Learning Adversarial 3D Model Generation with 2D Image Enhancer

Learning Adversarial 3D Model Generation with 2D Image Enhancer The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18) Learning Adversarial 3D Model Generation with 2D Image Enhancer Jing Zhu, Jin Xie, Yi Fang NYU Multimedia and Visual Computing Lab

More information

arxiv: v1 [eess.sp] 23 Oct 2018

arxiv: v1 [eess.sp] 23 Oct 2018 Reproducing AmbientGAN: Generative models from lossy measurements arxiv:1810.10108v1 [eess.sp] 23 Oct 2018 Mehdi Ahmadi Polytechnique Montreal mehdi.ahmadi@polymtl.ca Mostafa Abdelnaim University de Montreal

More information

Generative Adversarial Network

Generative Adversarial Network Generative Adversarial Network Many slides from NIPS 2014 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio Generative adversarial

More information

arxiv: v1 [cs.cv] 16 Jul 2017

arxiv: v1 [cs.cv] 16 Jul 2017 enerative adversarial network based on resnet for conditional image restoration Paper: jc*-**-**-****: enerative Adversarial Network based on Resnet for Conditional Image Restoration Meng Wang, Huafeng

More information

Deep Fakes using Generative Adversarial Networks (GAN)

Deep Fakes using Generative Adversarial Networks (GAN) Deep Fakes using Generative Adversarial Networks (GAN) Tianxiang Shen UCSD La Jolla, USA tis038@eng.ucsd.edu Ruixian Liu UCSD La Jolla, USA rul188@eng.ucsd.edu Ju Bai UCSD La Jolla, USA jub010@eng.ucsd.edu

More information

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs Generative Modeling with Convolutional Neural Networks Denis Dus Data Scientist at InData Labs What we will discuss 1. 2. 3. 4. Discriminative vs Generative modeling Convolutional Neural Networks How to

More information

arxiv: v1 [cs.cv] 7 Mar 2018

arxiv: v1 [cs.cv] 7 Mar 2018 Accepted as a conference paper at the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) 2018 Inferencing Based on Unsupervised Learning of Disentangled

More information

Unsupervised Learning

Unsupervised Learning Deep Learning for Graphics Unsupervised Learning Niloy Mitra Iasonas Kokkinos Paul Guerrero Vladimir Kim Kostas Rematas Tobias Ritschel UCL UCL/Facebook UCL Adobe Research U Washington UCL Timetable Niloy

More information

arxiv: v1 [cs.ne] 11 Jun 2018

arxiv: v1 [cs.ne] 11 Jun 2018 Generative Adversarial Network Architectures For Image Synthesis Using Capsule Networks arxiv:1806.03796v1 [cs.ne] 11 Jun 2018 Yash Upadhyay University of Minnesota, Twin Cities Minneapolis, MN, 55414

More information

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE MODEL Given a training dataset, x, try to estimate the distribution, Pdata(x) Explicitly or Implicitly (GAN) Explicitly

More information

Inverting The Generator Of A Generative Adversarial Network

Inverting The Generator Of A Generative Adversarial Network 1 Inverting The Generator Of A Generative Adversarial Network Antonia Creswell and Anil A Bharath, Imperial College London arxiv:1802.05701v1 [cs.cv] 15 Feb 2018 Abstract Generative adversarial networks

More information

Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction

Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction Chen-Hsuan Lin Chen Kong Simon Lucey The Robotics Institute Carnegie Mellon University chlin@cmu.edu, {chenk,slucey}@cs.cmu.edu

More information

arxiv: v2 [cs.lg] 17 Dec 2018

arxiv: v2 [cs.lg] 17 Dec 2018 Lu Mi 1 * Macheng Shen 2 * Jingzhao Zhang 2 * 1 MIT CSAIL, 2 MIT LIDS {lumi, macshen, jzhzhang}@mit.edu The authors equally contributed to this work. This report was a part of the class project for 6.867

More information

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION Yen-Cheng Liu 1, Wei-Chen Chiu 2, Sheng-De Wang 1, and Yu-Chiang Frank Wang 1 1 Graduate Institute of Electrical Engineering,

More information

Introduction to Generative Adversarial Networks

Introduction to Generative Adversarial Networks Introduction to Generative Adversarial Networks Luke de Oliveira Vai Technologies Lawrence Berkeley National Laboratory @lukede0 @lukedeo lukedeo@vaitech.io https://ldo.io 1 Outline Why Generative Modeling?

More information

A New CGAN Technique for Constrained Topology Design Optimization. Abstract

A New CGAN Technique for Constrained Topology Design Optimization. Abstract A New CGAN Technique for Constrained Topology Design Optimization M.-H. Herman Shen 1 and Liang Chen Department of Mechanical and Aerospace Engineering The Ohio State University Abstract This paper presents

More information

Introduction to Generative Adversarial Networks

Introduction to Generative Adversarial Networks Introduction to Generative Adversarial Networks Ian Goodfellow, OpenAI Research Scientist NIPS 2016 Workshop on Adversarial Training Barcelona, 2016-12-9 Adversarial Training A phrase whose usage is in

More information

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION 2017 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 25 28, 2017, TOKYO, JAPAN DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION Yen-Cheng Liu 1,

More information

arxiv: v1 [cs.cv] 21 Jun 2017

arxiv: v1 [cs.cv] 21 Jun 2017 Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction arxiv:1706.07036v1 [cs.cv] 21 Jun 2017 Chen-Hsuan Lin, Chen Kong, Simon Lucey The Robotics Institute Carnegie Mellon University

More information

Lecture 19: Generative Adversarial Networks

Lecture 19: Generative Adversarial Networks Lecture 19: Generative Adversarial Networks Roger Grosse 1 Introduction Generative modeling is a type of machine learning where the aim is to model the distribution that a given set of data (e.g. images,

More information

SYNTHESIS OF IMAGES BY TWO-STAGE GENERATIVE ADVERSARIAL NETWORKS. Qiang Huang, Philip J.B. Jackson, Mark D. Plumbley, Wenwu Wang

SYNTHESIS OF IMAGES BY TWO-STAGE GENERATIVE ADVERSARIAL NETWORKS. Qiang Huang, Philip J.B. Jackson, Mark D. Plumbley, Wenwu Wang SYNTHESIS OF IMAGES BY TWO-STAGE GENERATIVE ADVERSARIAL NETWORKS Qiang Huang, Philip J.B. Jackson, Mark D. Plumbley, Wenwu Wang Centre for Vision, Speech and Signal Processing University of Surrey, Guildford,

More information

Deep Learning Approaches to 3D Shape Completion

Deep Learning Approaches to 3D Shape Completion Deep Learning Approaches to 3D Shape Completion Prafull Sharma Stanford University prafull7@stanford.edu Jarrod Cingel Stanford University jcingel@stanford.edu Abstract This project explores various methods

More information

CAPNet: Continuous Approximation Projection For 3D Point Cloud Reconstruction Using 2D Supervision

CAPNet: Continuous Approximation Projection For 3D Point Cloud Reconstruction Using 2D Supervision CAPNet: Continuous Approximation Projection For 3D Point Cloud Reconstruction Using 2D Supervision Navaneet K L *, Priyanka Mandikal * and R. Venkatesh Babu Video Analytics Lab, IISc, Bangalore, India

More information

Deep Learning for Visual Manipulation and Synthesis

Deep Learning for Visual Manipulation and Synthesis Deep Learning for Visual Manipulation and Synthesis Jun-Yan Zhu 朱俊彦 UC Berkeley 2017/01/11 @ VALSE What is visual manipulation? Image Editing Program input photo User Input result Desired output: stay

More information

Image Restoration with Deep Generative Models

Image Restoration with Deep Generative Models Image Restoration with Deep Generative Models Raymond A. Yeh *, Teck-Yian Lim *, Chen Chen, Alexander G. Schwing, Mark Hasegawa-Johnson, Minh N. Do Department of Electrical and Computer Engineering, University

More information

Learning to generate 3D shapes

Learning to generate 3D shapes Learning to generate 3D shapes Subhransu Maji College of Information and Computer Sciences University of Massachusetts, Amherst http://people.cs.umass.edu/smaji August 10, 2018 @ Caltech Creating 3D shapes

More information

Lecture 3 GANs and Their Applications in Image Generation

Lecture 3 GANs and Their Applications in Image Generation Lecture 3 GANs and Their Applications in Image Generation Lin ZHANG, PhD School of Software Engineering Tongji University Fall 2017 Outline Introduction Theoretical Part Application Part Existing Implementations

More information

CS230: Lecture 4 Attacking Networks with Adversarial Examples - Generative Adversarial Networks

CS230: Lecture 4 Attacking Networks with Adversarial Examples - Generative Adversarial Networks Go to www.menti.com and use the code 91 41 37 CS230: Lecture 4 Attacking Networks with Adversarial Examples - Generative Adversarial Networks Kian Katanforoosh Today s outline I. Attacking NNs with Adversarial

More information

Generative Models II. Phillip Isola, MIT, OpenAI DLSS 7/27/18

Generative Models II. Phillip Isola, MIT, OpenAI DLSS 7/27/18 Generative Models II Phillip Isola, MIT, OpenAI DLSS 7/27/18 What s a generative model? For this talk: models that output high-dimensional data (Or, anything involving a GAN, VAE, PixelCNN, etc) Useful

More information

Visual Recommender System with Adversarial Generator-Encoder Networks

Visual Recommender System with Adversarial Generator-Encoder Networks Visual Recommender System with Adversarial Generator-Encoder Networks Bowen Yao Stanford University 450 Serra Mall, Stanford, CA 94305 boweny@stanford.edu Yilin Chen Stanford University 450 Serra Mall

More information

arxiv: v1 [cs.cv] 1 Nov 2018

arxiv: v1 [cs.cv] 1 Nov 2018 Examining Performance of Sketch-to-Image Translation Models with Multiclass Automatically Generated Paired Training Data Dichao Hu College of Computing, Georgia Institute of Technology, 801 Atlantic Dr

More information

arxiv: v1 [cs.cv] 17 Nov 2016

arxiv: v1 [cs.cv] 17 Nov 2016 Inverting The Generator Of A Generative Adversarial Network arxiv:1611.05644v1 [cs.cv] 17 Nov 2016 Antonia Creswell BICV Group Bioengineering Imperial College London ac2211@ic.ac.uk Abstract Anil Anthony

More information

Learning Descriptor Networks for 3D Shape Synthesis and Analysis

Learning Descriptor Networks for 3D Shape Synthesis and Analysis Learning Descriptor Networks for 3D Shape Synthesis and Analysis Jianwen Xie 1, Zilong Zheng 2, Ruiqi Gao 2, Wenguan Wang 2,3, Song-Chun Zhu 2, Ying Nian Wu 2 1 Hikvision Research Institute 2 University

More information

Autoencoders. Stephen Scott. Introduction. Basic Idea. Stacked AE. Denoising AE. Sparse AE. Contractive AE. Variational AE GAN.

Autoencoders. Stephen Scott. Introduction. Basic Idea. Stacked AE. Denoising AE. Sparse AE. Contractive AE. Variational AE GAN. Stacked Denoising Sparse Variational (Adapted from Paul Quint and Ian Goodfellow) Stacked Denoising Sparse Variational Autoencoding is training a network to replicate its input to its output Applications:

More information

GENERATIVE ADVERSARIAL NETWORK-BASED VIR-

GENERATIVE ADVERSARIAL NETWORK-BASED VIR- GENERATIVE ADVERSARIAL NETWORK-BASED VIR- TUAL TRY-ON WITH CLOTHING REGION Shizuma Kubo, Yusuke Iwasawa, and Yutaka Matsuo The University of Tokyo Bunkyo-ku, Japan {kubo, iwasawa, matsuo}@weblab.t.u-tokyo.ac.jp

More information

arxiv: v1 [cs.gr] 22 Sep 2017

arxiv: v1 [cs.gr] 22 Sep 2017 Hierarchical Detail Enhancing Mesh-Based Shape Generation with 3D Generative Adversarial Network arxiv:1709.07581v1 [cs.gr] 22 Sep 2017 Chiyu Max Jiang University of California Berkeley, CA 94720 chiyu.jiang@berkeley.edu

More information

(University Improving of Montreal) Generative Adversarial Networks with Denoising Feature Matching / 17

(University Improving of Montreal) Generative Adversarial Networks with Denoising Feature Matching / 17 Improving Generative Adversarial Networks with Denoising Feature Matching David Warde-Farley 1 Yoshua Bengio 1 1 University of Montreal, ICLR,2017 Presenter: Bargav Jayaraman Outline 1 Introduction 2 Background

More information

arxiv: v1 [cs.cv] 9 Nov 2018

arxiv: v1 [cs.cv] 9 Nov 2018 Typeface Completion with Generative Adversarial Networks Yonggyu Park, Junhyun Lee, Yookyung Koh, Inyeop Lee, Jinhyuk Lee, Jaewoo Kang Department of Computer Science and Engineering Korea University {yongqyu,

More information

GAN Frontiers/Related Methods

GAN Frontiers/Related Methods GAN Frontiers/Related Methods Improving GAN Training Improved Techniques for Training GANs (Salimans, et. al 2016) CSC 2541 (07/10/2016) Robin Swanson (robin@cs.toronto.edu) Training GANs is Difficult

More information

Learning from 3D Data

Learning from 3D Data Learning from 3D Data Thomas Funkhouser Princeton University* * On sabbatical at Stanford and Google Disclaimer: I am talking about the work of these people Shuran Song Andy Zeng Fisher Yu Yinda Zhang

More information

Composable Unpaired Image to Image Translation

Composable Unpaired Image to Image Translation Composable Unpaired Image to Image Translation Laura Graesser New York University lhg256@nyu.edu Anant Gupta New York University ag4508@nyu.edu Abstract There has been remarkable recent work in unpaired

More information

arxiv: v3 [cs.cv] 30 Oct 2017

arxiv: v3 [cs.cv] 30 Oct 2017 Improved Adversarial Systems for 3D Object Generation and Reconstruction Edward J. Smith Department of Computer Science McGill University Canada edward.smith@mail.mcgill.ca David Meger Department of Computer

More information

Adversarially Learned Inference

Adversarially Learned Inference Institut des algorithmes d apprentissage de Montréal Adversarially Learned Inference Aaron Courville CIFAR Fellow Université de Montréal Joint work with: Vincent Dumoulin, Ishmael Belghazi, Olivier Mastropietro,

More information

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas Big Data + Deep Representation Learning Robot Perception Augmented Reality

More information

arxiv: v1 [stat.ml] 14 Sep 2017

arxiv: v1 [stat.ml] 14 Sep 2017 The Conditional Analogy GAN: Swapping Fashion Articles on People Images Nikolay Jetchev Zalando Research nikolay.jetchev@zalando.de Urs Bergmann Zalando Research urs.bergmann@zalando.de arxiv:1709.04695v1

More information

Generating Images with Perceptual Similarity Metrics based on Deep Networks

Generating Images with Perceptual Similarity Metrics based on Deep Networks Generating Images with Perceptual Similarity Metrics based on Deep Networks Alexey Dosovitskiy and Thomas Brox University of Freiburg {dosovits, brox}@cs.uni-freiburg.de Abstract We propose a class of

More information

arxiv: v1 [cs.cv] 8 Jan 2019

arxiv: v1 [cs.cv] 8 Jan 2019 GILT: Generating Images from Long Text Ori Bar El, Ori Licht, Netanel Yosephian Tel-Aviv University {oribarel, oril, yosephian}@mail.tau.ac.il arxiv:1901.02404v1 [cs.cv] 8 Jan 2019 Abstract Creating an

More information

GAL: Geometric Adversarial Loss for Single-View 3D-Object Reconstruction

GAL: Geometric Adversarial Loss for Single-View 3D-Object Reconstruction GAL: Geometric Adversarial Loss for Single-View 3D-Object Reconstruction Li Jiang 1, Shaoshuai Shi 1, Xiaojuan Qi 1, and Jiaya Jia 1,2 1 The Chinese University of Hong Kong 2 Tencent YouTu Lab {lijiang,

More information

arxiv: v1 [stat.ml] 15 Feb 2018

arxiv: v1 [stat.ml] 15 Feb 2018 Conditioning of three-dimensional generative adversarial networks for pore and reservoir-scale models arxiv:1802.05622v1 [stat.ml] 15 Feb 2018 Lukas J. Mosser lukas.mosser15@imperial.ac.uk Martin J. Blunt

More information

Bidirectional GAN. Adversarially Learned Inference (ICLR 2017) Adversarial Feature Learning (ICLR 2017)

Bidirectional GAN. Adversarially Learned Inference (ICLR 2017) Adversarial Feature Learning (ICLR 2017) Bidirectional GAN Adversarially Learned Inference (ICLR 2017) V. Dumoulin 1, I. Belghazi 1, B. Poole 2, O. Mastropietro 1, A. Lamb 1, M. Arjovsky 3 and A. Courville 1 1 Universite de Montreal & 2 Stanford

More information

arxiv: v1 [cs.cv] 14 Feb 2019

arxiv: v1 [cs.cv] 14 Feb 2019 GeoGAN: A Conditional GAN with Reconstruction and Style Loss to Generate Standard Layer of Maps from Satellite Images arxiv:1902.05611v1 [cs.cv] 14 Feb 2019 Swetava Ganguli, Pedro Garzon, Noa Glaser Department

More information

Face Transfer with Generative Adversarial Network

Face Transfer with Generative Adversarial Network Face Transfer with Generative Adversarial Network Runze Xu, Zhiming Zhou, Weinan Zhang, Yong Yu Shanghai Jiao Tong University We explore the impact of discriminators with different receptive field sizes

More information

Learning Social Graph Topologies using Generative Adversarial Neural Networks

Learning Social Graph Topologies using Generative Adversarial Neural Networks Learning Social Graph Topologies using Generative Adversarial Neural Networks Sahar Tavakoli 1, Alireza Hajibagheri 1, and Gita Sukthankar 1 1 University of Central Florida, Orlando, Florida sahar@knights.ucf.edu,alireza@eecs.ucf.edu,gitars@eecs.ucf.edu

More information

Multi-view 3D Models from Single Images with a Convolutional Network

Multi-view 3D Models from Single Images with a Convolutional Network Multi-view 3D Models from Single Images with a Convolutional Network Maxim Tatarchenko University of Freiburg Skoltech - 2nd Christmas Colloquium on Computer Vision Humans have prior knowledge about 3D

More information

CS468: 3D Deep Learning on Point Cloud Data. class label part label. Hao Su. image. May 10, 2017

CS468: 3D Deep Learning on Point Cloud Data. class label part label. Hao Su. image. May 10, 2017 CS468: 3D Deep Learning on Point Cloud Data class label part label Hao Su image. May 10, 2017 Agenda Point cloud generation Point cloud analysis CVPR 17, Point Set Generation Pipeline render CVPR 17, Point

More information

CAPNet: Continuous Approximation Projection For 3D Point Cloud Reconstruction Using 2D Supervision

CAPNet: Continuous Approximation Projection For 3D Point Cloud Reconstruction Using 2D Supervision CAPNet: Continuous Approximation Projection For 3D Point Cloud Reconstruction Using 2D Supervision Navaneet K L *, Priyanka Mandikal *, Mayank Agarwal, and R. Venkatesh Babu Video Analytics Lab, CDS, Indian

More information

Reconstructing Pore Networks Using Generative Adversarial Networks

Reconstructing Pore Networks Using Generative Adversarial Networks Reconstructing Pore Networks Using Generative Adversarial Networks Kelly Guan (kmguan@stanford.edu) I. INTRODUCTION Understanding fluid flow in porous media at the microscale is relevant to many fields,

More information

A GAN framework for Instance Segmentation using the Mutex Watershed Algorithm

A GAN framework for Instance Segmentation using the Mutex Watershed Algorithm A GAN framework for Instance Segmentation using the Mutex Watershed Algorithm Mandikal Vikram National Institute of Technology Karnataka, India 15it217.vikram@nitk.edu.in Steffen Wolf HCI/IWR, University

More information

Lab meeting (Paper review session) Stacked Generative Adversarial Networks

Lab meeting (Paper review session) Stacked Generative Adversarial Networks Lab meeting (Paper review session) Stacked Generative Adversarial Networks 2017. 02. 01. Saehoon Kim (Ph. D. candidate) Machine Learning Group Papers to be covered Stacked Generative Adversarial Networks

More information

arxiv: v2 [cs.cv] 16 Dec 2017

arxiv: v2 [cs.cv] 16 Dec 2017 CycleGAN, a Master of Steganography Casey Chu Stanford University caseychu@stanford.edu Andrey Zhmoginov Google Inc. azhmogin@google.com Mark Sandler Google Inc. sandler@google.com arxiv:1712.02950v2 [cs.cv]

More information

Towards Principled Methods for Training Generative Adversarial Networks. Martin Arjovsky & Léon Bottou

Towards Principled Methods for Training Generative Adversarial Networks. Martin Arjovsky & Léon Bottou Towards Principled Methods for Training Generative Adversarial Networks Martin Arjovsky & Léon Bottou Unsupervised learning - We have samples from an unknown distribution Unsupervised learning - We have

More information

Instance Map based Image Synthesis with a Denoising Generative Adversarial Network

Instance Map based Image Synthesis with a Denoising Generative Adversarial Network Instance Map based Image Synthesis with a Denoising Generative Adversarial Network Ziqiang Zheng, Chao Wang, Zhibin Yu*, Haiyong Zheng, Bing Zheng College of Information Science and Engineering Ocean University

More information

Infrared Image Colorization based on a Triplet DCGAN Architecture

Infrared Image Colorization based on a Triplet DCGAN Architecture Infrared Image Colorization based on a Triplet DCGAN Architecture Patricia L. Suárez plsuarez@espol.edu.ec Angel D. Sappa,2 sappa@ieee.org Boris X. Vintimilla boris.vintimilla@espol.edu.ec Escuela Superior

More information

Tempered Adversarial Networks

Tempered Adversarial Networks Mehdi S. M. Sajjadi 1 2 Giambattista Parascandolo 1 2 Arash Mehrjou 1 Bernhard Schölkopf 1 Abstract Generative adversarial networks (GANs) have been shown to produce realistic samples from high-dimensional

More information

POINT CLOUD DEEP LEARNING

POINT CLOUD DEEP LEARNING POINT CLOUD DEEP LEARNING Innfarn Yoo, 3/29/28 / 57 Introduction AGENDA Previous Work Method Result Conclusion 2 / 57 INTRODUCTION 3 / 57 2D OBJECT CLASSIFICATION Deep Learning for 2D Object Classification

More information

arxiv: v3 [cs.cv] 30 Mar 2018

arxiv: v3 [cs.cv] 30 Mar 2018 Learning to Generate Time-Lapse Videos Using Multi-Stage Dynamic Generative Adversarial Networks Wei Xiong Wenhan Luo Lin Ma Wei Liu Jiebo Luo Tencent AI Lab University of Rochester {wxiong5,jluo}@cs.rochester.edu

More information

arxiv: v1 [cs.cv] 6 Sep 2018

arxiv: v1 [cs.cv] 6 Sep 2018 arxiv:1809.01890v1 [cs.cv] 6 Sep 2018 Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto

More information

Seismic data reconstruction with Generative Adversarial Networks

Seismic data reconstruction with Generative Adversarial Networks Seismic data reconstruction with Generative Adversarial Networks Ali Siahkoohi 1, Rajiv Kumar 1,2 and Felix J. Herrmann 2 1 Seismic Laboratory for Imaging and Modeling (SLIM), The University of British

More information

Attribute Augmented Convolutional Neural Network for Face Hallucination

Attribute Augmented Convolutional Neural Network for Face Hallucination Attribute Augmented Convolutional Neural Network for Face Hallucination Cheng-Han Lee 1 Kaipeng Zhang 1 Hu-Cheng Lee 1 Chia-Wen Cheng 2 Winston Hsu 1 1 National Taiwan University 2 The University of Texas

More information

Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco

Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco 2016-09-13 Generative Modeling Density estimation Sample generation Training examples Model samples

More information

Stochastic Simulation with Generative Adversarial Networks

Stochastic Simulation with Generative Adversarial Networks Stochastic Simulation with Generative Adversarial Networks Lukas Mosser, Olivier Dubrule, Martin J. Blunt lukas.mosser15@imperial.ac.uk, o.dubrule@imperial.ac.uk, m.blunt@imperial.ac.uk (Deep) Generative

More information

maagma Modified-Adversarial-Autoencoding Generator with Multiple Adversaries: Optimizing Multiple Learning Objectives for Image Generation with GANs

maagma Modified-Adversarial-Autoencoding Generator with Multiple Adversaries: Optimizing Multiple Learning Objectives for Image Generation with GANs maagma Modified-Adversarial-Autoencoding Generator with Multiple Adversaries: Optimizing Multiple Learning Objectives for Image Generation with GANs Sahil Chopra Stanford University 353 Serra Mall, Stanford

More information

Autoencoder. Representation learning (related to dictionary learning) Both the input and the output are x

Autoencoder. Representation learning (related to dictionary learning) Both the input and the output are x Deep Learning 4 Autoencoder, Attention (spatial transformer), Multi-modal learning, Neural Turing Machine, Memory Networks, Generative Adversarial Net Jian Li IIIS, Tsinghua Autoencoder Autoencoder Unsupervised

More information

DCGANs for image super-resolution, denoising and debluring

DCGANs for image super-resolution, denoising and debluring DCGANs for image super-resolution, denoising and debluring Qiaojing Yan Stanford University Electrical Engineering qiaojing@stanford.edu Wei Wang Stanford University Electrical Engineering wwang23@stanford.edu

More information

Controllable Generative Adversarial Network

Controllable Generative Adversarial Network Controllable Generative Adversarial Network arxiv:1708.00598v2 [cs.lg] 12 Sep 2017 Minhyeok Lee 1 and Junhee Seok 1 1 School of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul,

More information

Generative Adversarial Nets. Priyanka Mehta Sudhanshu Srivastava

Generative Adversarial Nets. Priyanka Mehta Sudhanshu Srivastava Generative Adversarial Nets Priyanka Mehta Sudhanshu Srivastava Outline What is a GAN? How does GAN work? Newer Architectures Applications of GAN Future possible applications Generative Adversarial Networks

More information

Conditional DCGAN For Anime Avatar Generation

Conditional DCGAN For Anime Avatar Generation Conditional DCGAN For Anime Avatar Generation Wang Hang School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240, China Email: wang hang@sjtu.edu.cn Abstract

More information

Variational Autoencoders. Sargur N. Srihari

Variational Autoencoders. Sargur N. Srihari Variational Autoencoders Sargur N. srihari@cedar.buffalo.edu Topics 1. Generative Model 2. Standard Autoencoder 3. Variational autoencoders (VAE) 2 Generative Model A variational autoencoder (VAE) is a

More information

3D Deep Learning on Geometric Forms. Hao Su

3D Deep Learning on Geometric Forms. Hao Su 3D Deep Learning on Geometric Forms Hao Su Many 3D representations are available Candidates: multi-view images depth map volumetric polygonal mesh point cloud primitive-based CAD models 3D representation

More information

GENERATIVE ADVERSARIAL NETWORKS FOR IMAGE STEGANOGRAPHY

GENERATIVE ADVERSARIAL NETWORKS FOR IMAGE STEGANOGRAPHY GENERATIVE ADVERSARIAL NETWORKS FOR IMAGE STEGANOGRAPHY Denis Volkhonskiy 2,3, Boris Borisenko 3 and Evgeny Burnaev 1,2,3 1 Skolkovo Institute of Science and Technology 2 The Institute for Information

More information

Introduction to GAN. Generative Adversarial Networks. Junheng(Jeff) Hao

Introduction to GAN. Generative Adversarial Networks. Junheng(Jeff) Hao Introduction to GAN Generative Adversarial Networks Junheng(Jeff) Hao Adversarial Training is the coolest thing since sliced bread. -- Yann LeCun Roadmap 1. Generative Modeling 2. GAN 101: What is GAN?

More information

Class-Splitting Generative Adversarial Networks

Class-Splitting Generative Adversarial Networks Class-Splitting Generative Adversarial Networks Guillermo L. Grinblat 1, Lucas C. Uzal 1, and Pablo M. Granitto 1 arxiv:1709.07359v2 [stat.ml] 17 May 2018 1 CIFASIS, French Argentine International Center

More information

arxiv: v1 [cs.cv] 1 Dec 2017

arxiv: v1 [cs.cv] 1 Dec 2017 Multi-Content GAN for Few-Shot Font Style Transfer Samaneh Azadi 1, Matthew Fisher 2, Vladimir Kim 2, Zhaowen Wang 2, Eli Shechtman 2, Trevor Darrell 1 1 UC Berkeley, 2 Adobe Research {sazadi,trevor}@eecs.berkeley.edu

More information

SiftingGAN: Generating and Sifting Labeled Samples to Improve the Remote Sensing Image Scene Classification Baseline in vitro

SiftingGAN: Generating and Sifting Labeled Samples to Improve the Remote Sensing Image Scene Classification Baseline in vitro 1 SiftingGAN: Generating and Sifting Labeled Samples to Improve the Remote Sensing Image Scene Classification Baseline in vitro Dongao Ma, Ping Tang, and Lijun Zhao arxiv:1809.04985v4 [cs.cv] 30 Nov 2018

More information

Supplementary Material: Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos

Supplementary Material: Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos Supplementary Material: Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos Kihyuk Sohn 1 Sifei Liu 2 Guangyu Zhong 3 Xiang Yu 1 Ming-Hsuan Yang 2 Manmohan Chandraker 1,4 1 NEC Labs

More information

Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material

Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material Charles R. Qi Hao Su Matthias Nießner Angela Dai Mengyuan Yan Leonidas J. Guibas Stanford University 1. Details

More information

Multi-Agent Diverse Generative Adversarial Networks

Multi-Agent Diverse Generative Adversarial Networks Multi-Agent Diverse Generative Adversarial Networks Arnab Ghosh University of Oxford, UK arnabg@robots.ox.ac.uk Philip H.S. Torr University of Oxford, UK philip.torr@eng.ox.ac.uk Viveka Kulharia University

More information

19: Inference and learning in Deep Learning

19: Inference and learning in Deep Learning 10-708: Probabilistic Graphical Models 10-708, Spring 2017 19: Inference and learning in Deep Learning Lecturer: Zhiting Hu Scribes: Akash Umakantha, Ryan Williamson 1 Classes of Deep Generative Models

More information

arxiv: v1 [cs.cv] 30 Jul 2017

arxiv: v1 [cs.cv] 30 Jul 2017 Virtual PET Images from CT Data Using Deep Convolutional Networks: Initial Results Avi Ben-Cohen 1, Eyal Klang 2, Stephen P. Raskin 2, Michal Marianne Amitai 2, and Hayit Greenspan 1 arxiv:1707.09585v1

More information

Fine-grained Multi-attribute Adversarial Learning for Face Generation of Age, Gender and Ethnicity

Fine-grained Multi-attribute Adversarial Learning for Face Generation of Age, Gender and Ethnicity Fine-grained Multi-attribute Adversarial Learning for Face Generation of Age, Gender and Ethnicity Lipeng Wan 1+, Jun Wan 2+, Yi Jin 1, Zichang Tan 2, Stan Z. Li 2 1 School of Computer and Information

More information

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) Generative Adversarial Networks (GANs) Hossein Azizpour Most of the slides are courtesy of Dr. Ian Goodfellow (Research Scientist at OpenAI) and from his presentation at NIPS 2016 tutorial Note. I am generally

More information

Deep Models for 3D Reconstruction

Deep Models for 3D Reconstruction Deep Models for 3D Reconstruction Andreas Geiger Autonomous Vision Group, MPI for Intelligent Systems, Tübingen Computer Vision and Geometry Group, ETH Zürich October 12, 2017 Max Planck Institute for

More information

Learning to Discover Cross-Domain Relations with Generative Adversarial Networks

Learning to Discover Cross-Domain Relations with Generative Adversarial Networks OUTPUT OUTPUT Learning to Discover Cross-Domain Relations with Generative Adversarial Networks Taeksoo Kim 1 Moonsu Cha 1 Hyunsoo Kim 1 Jung Kwon Lee 1 Jiwon Kim 1 Abstract While humans easily recognize

More information

arxiv: v4 [cs.lg] 1 May 2018

arxiv: v4 [cs.lg] 1 May 2018 Controllable Generative Adversarial Network arxiv:1708.00598v4 [cs.lg] 1 May 2018 Minhyeok Lee School of Electrical Engineering Korea University Seoul, Korea 02841 suam6409@korea.ac.kr Abstract Junhee

More information

Implicit generative models: dual vs. primal approaches

Implicit generative models: dual vs. primal approaches Implicit generative models: dual vs. primal approaches Ilya Tolstikhin MPI for Intelligent Systems ilya@tue.mpg.de Machine Learning Summer School 2017 Tübingen, Germany Contents 1. Unsupervised generative

More information