Geometric Modeling and Processing

Size: px
Start display at page:

Download "Geometric Modeling and Processing"

Transcription

1 Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011

2 4. Geometric Registration

3 4.1 Rigid Registration

4 Range Scanning: Reconstruction Set of raw scans Reconstructed model

5 Scanned Pieces

6 Registration (Alignment) Problem

7 Formulation Find the optimal rigid transformation (rotation and translation):

8 ICP (Iterated Closest Point) Step 1: Build a set of corresponding points Step 2: Align corresponding points Step 3: Iterate

9 ICP (Iterated Closest Point) Dense correspondence sets Converges if starting positions are close enough

10 Basic ICP

11 ICP Variants Weighting the correspondences Rejecting certain (outlier) point pairs Adaptive sampling

12 Performance of ICP Solving the correspondence problem Minimizing point-to-surface squared distance

13 About ICP ICP is like (Gauss-) Newton method on an approximation of the distance function ICP variants affect shape of global error function or local approximation

14 Questions?

15 4.2 Non-Rigid Registration

16 Two Scanned Frames of Dynamic Objects Frame n Frame n+1

17 Initial Alignment

18 Deformation and Occlusion

19 No Explicit Prior Knowledge No knowledge about Full 3D model Correspondences Regions of overlap

20 Goal: Automatic Local Registration

21 Deformable Shape Matching What is the problem? Settings: We have two or more shapes The same object, but deformed Question: What point correspond?

22 Chicken&Egg Dilemma Correspondence Region of Overlap Deformation But, solve with a single optimization problem!

23 Embedded Deformation

24 See more: Eurographics 2010 tutorial: Geometric Registration for Deformable Shapes Eurographics 2011 tutorial: Computing Correspondences in Geometric Datasets Hot topics!

25 Questions?

26 5. Mesh Smoothing (Denoising)

27 Noise on Meshes Meshes obtained from real world objects are often noisy. From range image of Stanford Bunny Angel model from shadow scanning

28 Mesh Smoothing is Required Mesh Smoothing

29 In the Literature Fast Mesh Smoothing Taubin 1995 Feature Preserving Clarenz et al. 2000; Desbrun et al. 2000; Meyer et al. 2002; Zhang and Fiume 2002; Bajaj and Xu 2003 Diffusion on Normal Field Taubin 2001; Belyaev and Ohtake 2001; Ohtake et al. 2002; Tasdizen et al Wiener Filtering of Meshes Peng et al. 2001; Alexa 2002; Pauly and Gross 2001 (points) Bilateral filtering Choudhury and Tumblin 2003, Jones et al. 2003, Fleishman et al Global Smoothing Desbrun et al. 1999, Ji et al. 2005

30 But What is noise on a surface? Small bumps on the surface High-frequent tiny parts on the surface NO accurate math definition! How to detect the noise? High curvature parts High fairing energy parts

31 How to denoise? Eliminate high frequency Preserve global features + = filter

32 Other Terminologies Mesh denoising Mesh filtering Surface fairing Mesh improvement Quality metrics

33 Mesh Smoothing Moving mesh vertices Without changing connectivity Reduce curvature variation Used to Reduce noise Improve mesh triangle shape

34 Smoothing Can apply not only to positions but also to any property assigned to vertices Curvature, normals, physical properties (color, texture),... Small number of iterations Shrinkage problem

35 General Smoothing Procedure Shape evolution P t F (P) P new P old t F ( Pold) t

36 Explicit and Implicit Mesh Evolutions (P) t P F Shape evolution scheme implicit ) ( scheme explicit ) ( n n n n n n M M M M M M L L M n M n I 1 ( L)

37 5.1 Laplace Smoothing

38 Laplacian Smoothing Flow P new P old L ( Pold) Average of the vectors to neighboring vertices L Pold Move each vertex Pold Pnew L Q k1 Q k Median direction Q k1

39 Umbrella Operator Umbrella operator L P 1 n PQ Weighted umbrella operator L w P 1 w Squared umbrella operator i n n 1 n n i i1 i1 w PQ 1 w Q i i i1 i i1 n 2 w i i i i 1 n i 1 L P w L( Q ) L( P) w P w Q i i P

40 Laplacian Smoothing P new P old L P old Equivalent to box filter in signal processing Apply to all vertices on mesh Typically repeat several times Can describe as energy minimization Energy = sum of squared edge lengths in mesh Parameter controls convergence "speed" 0

41 Laplacian Smoothing Example

42 Problem of Over-smoothing How to find appropriate and number of iterations Noisy Best Over-smoothing Iterations

43 Properties of Laplacian Flow Increases mesh regularity Develops unnatural deformations High density sampling Low density sampling

44 Improved by Mean Curvature Flow Increases mesh irregularity. Doesn t develop unnatural deformations High density sampling Low density sampling

45 5.2 Normal based Smoothing An Image Processing Approach

46 An Image Processing Approach Smooth mesh normals Reconstruct smoothed mesh from new normals Smoothing normals Reconstruction from mesh normals

47 An Image Processing Approach Reconstruction from smoothed normals E ( M ) area( T) n( T) m( T) fit all trianglest 2 E fit ( M ) min

48 5.3 Global Laplacian Smoothing

49 Smoothing Problem Mathematically Find a smoothed surface with minimum fairing energy S Fairing energy: S '

50 Approach Smooth Global S Global Laplacian operator Global shape preservation Non-iterative Feature preserving S '

51 Smoothing Problem A global optimization problem Minimize smoothness energy within some tolerance min ES ( ) A mathematical model E( S) ( S) dudv ( S S) dudv S Smoothness term membrane, thin-plate Fidelity term

52 Local Lapacian Fairness Local discrete Laplacian smoothing operator v i v i L( v ) v v 0 i i ij j jn () i d cotangent : w ij = cot ij + cot ij

53 Laplacian of Mesh Discrete Laplacians L x = 0 L( v ) v v 0 i i ij j jn () i 1, i j, Lij ij, ( i, j) E, 0, other. Laplacian of the mesh

54 Laplacian of Mesh Surface reconstruction L x 0 L x = 0 y 0 L z 0 L( v ) v v 0 i i ij j jn () i

55 Properties of Laplacian v v v L Rank(L) = n-k k is the number of connected components of the mesh Need to add some constraints

56 Vertex Constraints Add position constraint for one vertex L x L y = 0 L z fix c 1

57 Vertex Constraints Add position constraints for more vertices L x L y = 0 L z fix fix c c 2

58 Adding Vertex Constraints 2 2 min{ LX v i vi } X ic 2 Ax b

59 Least Square Solution An over-determined system: A x = b Normal equation: A T A x = x = A T b (A T A) -1 A T b

60 Results 8 -like mesh model 3070 vertices, 6144 triangles

61 Results Venus head model vertices, triangles

62 LoD Smoothing Applying our algorithm to the bunny model with different parameters.

63 Conclusion A new smoothing framework Global Laplacian operator Non-iterative Feature preserving Vertex constraints Face constraints Other linear constraints

64 Many Problems Remain Mesh smoothing remains to be an active research area Scanned mesh Photo Smoothed mesh

65 Questions?

1.7.1 Laplacian Smoothing

1.7.1 Laplacian Smoothing 1.7.1 Laplacian Smoothing 320491: Advanced Graphics - Chapter 1 434 Theory Minimize energy functional total curvature estimate by polynomial-fitting non-linear (very slow!) 320491: Advanced Graphics -

More information

A Global Laplacian Smoothing Approach with Feature Preservation

A Global Laplacian Smoothing Approach with Feature Preservation A Global Laplacian Smoothing Approach with Feature Preservation hongping Ji Ligang Liu Guojin Wang Department of Mathematics State Key Lab of CAD&CG hejiang University Hangzhou, 310027 P.R. China jzpboy@yahoo.com.cn,

More information

Non-Iterative, Feature-Preserving Mesh Smoothing

Non-Iterative, Feature-Preserving Mesh Smoothing Non-Iterative, Feature-Preserving Mesh Smoothing Thouis R. Jones (MIT), Frédo Durand (MIT), Mathieu Desbrun (USC) thouis@graphics.csail.mit.edu, fredo@graphics.csail.mit.edu, desbrun@usc.edu 3D scanners

More information

Smoothing & Fairing. Mario Botsch

Smoothing & Fairing. Mario Botsch Smoothing & Fairing Mario Botsch Motivation Filter out high frequency noise Desbrun, Meyer, Schroeder, Barr: Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow, SIGGRAPH 99 2 Motivation

More information

Mesh Processing Pipeline

Mesh Processing Pipeline Mesh Smoothing 1 Mesh Processing Pipeline... Scan Reconstruct Clean Remesh 2 Mesh Quality Visual inspection of sensitive attributes Specular shading Flat Shading Gouraud Shading Phong Shading 3 Mesh Quality

More information

Laplacian Meshes. COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman

Laplacian Meshes. COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman Laplacian Meshes COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman Outline Differential surface representation Ideas and applications Compact shape representation Mesh editing and manipulation

More information

ing and enhancing operations for shapes represented by level sets (isosurfaces) and applied unsharp masking to the level set normals. Their approach t

ing and enhancing operations for shapes represented by level sets (isosurfaces) and applied unsharp masking to the level set normals. Their approach t Shape Deblurring with Unsharp Masking Applied to Mesh Normals Hirokazu Yagou Λ Alexander Belyaev y Daming Wei z Λ y z ; ; Shape Modeling Laboratory, University of Aizu, Aizu-Wakamatsu 965-8580 Japan fm50534,

More information

Parameterization of Meshes

Parameterization of Meshes 2-Manifold Parameterization of Meshes What makes for a smooth manifold? locally looks like Euclidian space collection of charts mutually compatible on their overlaps form an atlas Parameterizations are

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 6. Mesh Simplification Problems High resolution meshes becoming increasingly available 3D active scanners Computer

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University.

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University. 3D Computer Vision Structured Light II Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Introduction

More information

Estimating affine-invariant structures on triangle meshes

Estimating affine-invariant structures on triangle meshes Estimating affine-invariant structures on triangle meshes Thales Vieira Mathematics, UFAL Dimas Martinez Mathematics, UFAM Maria Andrade Mathematics, UFS Thomas Lewiner École Polytechnique Invariant descriptors

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

Non-Iterative, Feature-Preserving Mesh Smoothing

Non-Iterative, Feature-Preserving Mesh Smoothing Non-Iterative, Feature-Preserving Mesh Smoothing Thouis R. Jones MIT Frédo Durand MIT Mathieu Desbrun USC Figure 1: The dragon model (left) is artificially corrupted by Gaussian noise (σ = 1/5 of the mean

More information

Geometric Modeling Assignment 3: Discrete Differential Quantities

Geometric Modeling Assignment 3: Discrete Differential Quantities Geometric Modeling Assignment : Discrete Differential Quantities Acknowledgements: Julian Panetta, Olga Diamanti Assignment (Optional) Topic: Discrete Differential Quantities with libigl Vertex Normals,

More information

Feature Preserving Smoothing of 3D Surface Scans. Thouis Raymond Jones

Feature Preserving Smoothing of 3D Surface Scans. Thouis Raymond Jones Feature Preserving Smoothing of 3D Surface Scans by Thouis Raymond Jones Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree

More information

Geometric Registration for Deformable Shapes 2.2 Deformable Registration

Geometric Registration for Deformable Shapes 2.2 Deformable Registration Geometric Registration or Deormable Shapes 2.2 Deormable Registration Variational Model Deormable ICP Variational Model What is deormable shape matching? Example? What are the Correspondences? Eurographics

More information

Surface Reconstruction. Gianpaolo Palma

Surface Reconstruction. Gianpaolo Palma Surface Reconstruction Gianpaolo Palma Surface reconstruction Input Point cloud With or without normals Examples: multi-view stereo, union of range scan vertices Range scans Each scan is a triangular mesh

More information

Removing local irregularities of triangular meshes with highlight line models

Removing local irregularities of triangular meshes with highlight line models Removing local irregularities of triangular meshes with highlight line models YONG Jun-Hai 1,4, DENG Bai-Lin 1,2,4, CHENG Fuhua 3, WANG Bin 1,4, WU Kun 1,2,4 & GU Hejin 5 1 School of Software, Tsinghua

More information

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov Shape Matching & Correspondence CS 468 Geometry Processing Algorithms Maks Ovsjanikov Wednesday, October 27 th 2010 Overall Goal Given two shapes, find correspondences between them. Overall Goal Given

More information

Triangular surface mesh fairing via Gaussian curvature flow

Triangular surface mesh fairing via Gaussian curvature flow Journal of Computational and Applied Mathematics ( ) www.elsevier.com/locate/cam Triangular surface mesh fairing via Gaussian curvature flow Huanxi Zhao a,b,, Guoliang Xu b a Department of Mathematics,

More information

Scanning Real World Objects without Worries 3D Reconstruction

Scanning Real World Objects without Worries 3D Reconstruction Scanning Real World Objects without Worries 3D Reconstruction 1. Overview Feng Li 308262 Kuan Tian 308263 This document is written for the 3D reconstruction part in the course Scanning real world objects

More information

5.2 Surface Registration

5.2 Surface Registration Spring 2018 CSCI 621: Digital Geometry Processing 5.2 Surface Registration Hao Li http://cs621.hao-li.com 1 Acknowledgement Images and Slides are courtesy of Prof. Szymon Rusinkiewicz, Princeton University

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Surface Registration. Gianpaolo Palma

Surface Registration. Gianpaolo Palma Surface Registration Gianpaolo Palma The problem 3D scanning generates multiple range images Each contain 3D points for different parts of the model in the local coordinates of the scanner Find a rigid

More information

Fairing Triangular Meshes with Highlight Line Model

Fairing Triangular Meshes with Highlight Line Model Fairing Triangular Meshes with Highlight Line Model Jun-Hai Yong, Bai-Lin Deng, Fuhua (Frank) Cheng and Kun Wu School of Software, Tsinghua University, Beijing 100084, P. R. China Department of Computer

More information

Dynamic Geometry Processing

Dynamic Geometry Processing Dynamic Geometry Processing EG 2012 Tutorial Will Chang, Hao Li, Niloy Mitra, Mark Pauly, Michael Wand Tutorial: Dynamic Geometry Processing 1 Articulated Global Registration Introduction and Overview

More information

Non-Iterative, Feature-Preserving Mesh Smoothing

Non-Iterative, Feature-Preserving Mesh Smoothing Non-Iterative, Feature-Preserving Mesh Smoothing Thouis R. Jones, Frédo Durand, Mathieu Desbrun Computer Science and Artificial Intelligence Laboratory, MIT Computer Science Department, USC Abstract With

More information

Geometric Registration for Deformable Shapes 1.1 Introduction

Geometric Registration for Deformable Shapes 1.1 Introduction Geometric Registration for Deformable Shapes 1.1 Introduction Overview Data Sources and Applications Problem Statement Overview Presenters Will Chang University of California at San Diego, USA Hao Li ETH

More information

A Fast and Accurate Denoising Algorithm for Two-Dimensional Curves

A Fast and Accurate Denoising Algorithm for Two-Dimensional Curves 199 A Fast and Accurate Denoising Algorithm for Two-Dimensional Curves Jie Shen and David Yoon University of Michigan-Dearborn, {shen dhyoon}@umich.edu ABSTRACT In this paper we propose a new concept,

More information

An Efficient Approach for Feature-preserving Mesh Denoising

An Efficient Approach for Feature-preserving Mesh Denoising An Efficient Approach for Feature-preserving Mesh Denoising Xuequan Lu a, Xiaohong Liu a, Zhigang Deng b, Wenzhi Chen a a X. Lu, X. Liu and W. Chen are with the College of Computer Science and Technology,

More information

weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces.

weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces. weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces. joint work with (S. Osher, R. Fedkiw and M. Kang) Desired properties for surface reconstruction:

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Non-Iterative, Feature-Preserving Mesh Smoothing

Non-Iterative, Feature-Preserving Mesh Smoothing Non-Iterative, Feature-Preserving Mesh Smoothing Thouis R. Jones MIT Frédo Durand MIT Mathieu Desbrun USC Figure 1: The dragon model (left) is artificially corrupted by Gaussian noise (σ = 1/5 of the mean

More information

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2011 2/22/2011 Differential Geometry of Surfaces Continuous and Discrete Motivation Smoothness

More information

Large Mesh Deformation Using the Volumetric Graph Laplacian

Large Mesh Deformation Using the Volumetric Graph Laplacian Large Mesh Deformation Using the Volumetric Graph Laplacian Kun Zhou1 Jin Huang2 John Snyder3 Xinguo Liu1 Hujun Bao2 Baining Guo1 Heung-Yeung Shum1 1 Microsoft Research Asia 2 Zhejiang University 3 Microsoft

More information

Three-dimensional Modeling of Carbon Fiber Cloth Surface from Dense and Scattered Points Cloud

Three-dimensional Modeling of Carbon Fiber Cloth Surface from Dense and Scattered Points Cloud Send Orders for Reprints to reprints@benthamscience.ae 152 The Open Materials Science Journal, 2015, 9, 152-157 Open Access Three-dimensional Modeling of Carbon Fiber Cloth Surface from Dense and Scattered

More information

Anisotropic Filtering of Non-Linear Surface Features

Anisotropic Filtering of Non-Linear Surface Features EUROGRAPHICS 2004 / M.-P. Cani and M. Slater (Guest Editors) Volume 23 (2004), Number 3 Anisotropic Filtering of Non-Linear Surface Features Klaus Hildebrandt Konrad Polthier Zuse Institute Berlin, Germany

More information

Structured light 3D reconstruction

Structured light 3D reconstruction Structured light 3D reconstruction Reconstruction pipeline and industrial applications rodola@dsi.unive.it 11/05/2010 3D Reconstruction 3D reconstruction is the process of capturing the shape and appearance

More information

CSE 554 Lecture 7: Deformation II

CSE 554 Lecture 7: Deformation II CSE 554 Lecture 7: Deformation II Fall 2011 CSE554 Deformation II Slide 1 Review Rigid-body alignment Non-rigid deformation Intrinsic methods: deforming the boundary points An optimization problem Minimize

More information

Shape Modeling with Point-Sampled Geometry

Shape Modeling with Point-Sampled Geometry Shape Modeling with Point-Sampled Geometry Mark Pauly Richard Keiser Leif Kobbelt Markus Gross ETH Zürich ETH Zürich RWTH Aachen ETH Zürich Motivation Surface representations Explicit surfaces (B-reps)

More information

Surfel Based Geometry Reconstruction

Surfel Based Geometry Reconstruction EG UK Theory and Practice of Computer Graphics (2010) John Collomosse, Ian Grimstead (Editors) Surfel Based Geometry Reconstruction Vedrana Andersen 1, Henrik Aanæs 1 and Andreas Bærentzen 1 1 Technical

More information

Feature-Preserving Mesh Denoising via Anisotropic Surface Fitting

Feature-Preserving Mesh Denoising via Anisotropic Surface Fitting Wang J, Yu Z. Feature-preserving mesh denoising via anisotropic surface fitting. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 27(1): 163 173 Jan. 2012. DOI 10.1007/s11390-012-1214-3 Feature-Preserving Mesh

More information

Distance Functions 1

Distance Functions 1 Distance Functions 1 Distance function Given: geometric object F (curve, surface, solid, ) Assigns to each point the shortest distance from F Level sets of the distance function are trimmed offsets F p

More information

Fan-Meshes: A Geometric Primitive for Point-based Description of 3D Models and Scenes

Fan-Meshes: A Geometric Primitive for Point-based Description of 3D Models and Scenes Fan-Meshes: A Geometric Primitive for Point-based Description of 3D Models and Scenes Xiaotian Yan, Fang Meng, Hongbin Zha National Laboratory on Machine Perception Peking University, Beijing, P. R. China

More information

Surfaces, meshes, and topology

Surfaces, meshes, and topology Surfaces from Point Samples Surfaces, meshes, and topology A surface is a 2-manifold embedded in 3- dimensional Euclidean space Such surfaces are often approximated by triangle meshes 2 1 Triangle mesh

More information

Introduction to Mobile Robotics Iterative Closest Point Algorithm. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras

Introduction to Mobile Robotics Iterative Closest Point Algorithm. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras Introduction to Mobile Robotics Iterative Closest Point Algorithm Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras 1 Motivation 2 The Problem Given: two corresponding point sets: Wanted: translation

More information

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION Dan Englesson danen344@student.liu.se Sunday 12th April, 2011 Abstract In this lab assignment which was done in the course TNM079, Modeling and animation,

More information

Computational Design. Stelian Coros

Computational Design. Stelian Coros Computational Design Stelian Coros Schedule for presentations February 3 5 10 12 17 19 24 26 March 3 5 10 12 17 19 24 26 30 April 2 7 9 14 16 21 23 28 30 Send me: ASAP: 3 choices for dates + approximate

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

Point-based Simplification Algorithm

Point-based Simplification Algorithm Point-based Simplification Algorithm Pai-Feng Lee 1, Bin-Shyan Jong 2 Department of Information Management, Hsing Wu College 1 Dept. of Information and Computer Engineering Engineering, Chung Yuan Christian

More information

Deformation Transfer for Detail-Preserving Surface Editing

Deformation Transfer for Detail-Preserving Surface Editing Deformation Transfer for Detail-Preserving Surface Editing Mario Botsch Robert W Sumner 2 Mark Pauly 2 Markus Gross Computer Graphics Laboratory, ETH Zurich 2 Applied Geometry Group, ETH Zurich Abstract

More information

03 - Reconstruction. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Spring 17 - Daniele Panozzo

03 - Reconstruction. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Spring 17 - Daniele Panozzo 3 - Reconstruction Acknowledgements: Olga Sorkine-Hornung Geometry Acquisition Pipeline Scanning: results in range images Registration: bring all range images to one coordinate system Stitching/ reconstruction:

More information

Robust Poisson Surface Reconstruction

Robust Poisson Surface Reconstruction Robust Poisson Surface Reconstruction V. Estellers, M. Scott, K. Tew, and S. Soatto Univeristy of California, Los Angeles Brigham Young University June 2, 2015 1/19 Goals: Surface reconstruction from noisy

More information

Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching

Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching Correlated Correspondences [ASP*04] A Complete Registration System [HAW*08] In this session Advanced Global Matching Some practical

More information

Anisotropic Smoothing of Point Sets,

Anisotropic Smoothing of Point Sets, Anisotropic Smoothing of Point Sets, Carsten Lange Konrad Polthier TU Berlin Zuse Institute Berlin (a) (b) (c) (d) (e) Figure 1: The initial point set of the Venus torso (a) was disturbed with a 3% normal

More information

Accurate 3D Face and Body Modeling from a Single Fixed Kinect

Accurate 3D Face and Body Modeling from a Single Fixed Kinect Accurate 3D Face and Body Modeling from a Single Fixed Kinect Ruizhe Wang*, Matthias Hernandez*, Jongmoo Choi, Gérard Medioni Computer Vision Lab, IRIS University of Southern California Abstract In this

More information

TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA

TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA Tomoki Hayashi 1, Francois de Sorbier 1 and Hideo Saito 1 1 Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi,

More information

Point Cloud Denoising

Point Cloud Denoising Point Cloud Denoising Boris Mederos Luiz Velho Luiz Henrique de Figueiredo IMPA Instituto de Matemática Pura e Aplicada Estrada Dona Castorina 110, 22461-320 Rio Me Janeiro, RJ, Brazil boris@impa.br lvelho@impa.br

More information

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles Mesh Simplification Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2 Applications Overtessellation: E.g. iso-surface extraction 3 Applications Multi-resolution hierarchies for efficient

More information

Geometric Modeling Summer Semester 2012 Point-Based Modeling

Geometric Modeling Summer Semester 2012 Point-Based Modeling Geometric Modeling Summer Semester 2012 Point-Based Modeling 3D Scanning MLS-Surfaces Reconstruction & Registration Overview... Topics: Subdivision Surfaces Implicit Functions Variational Modeling Point-Based

More information

Mesh Smoothing by Adaptive and Anisotropic Gaussian Filter Applied to Mesh Normals

Mesh Smoothing by Adaptive and Anisotropic Gaussian Filter Applied to Mesh Normals Mesh Smoothing by Adaptive and Anisotropic Gaussian Filter Applied to Mesh Normals Yutaka Ohtake Alexander Belyaev Hans-Peter Seidel Computer Graphics Group, Max-Planck-Institut für Informatik Stuhlsatzenhausweg

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662 Geometry Processing & Geometric Queries Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: fans,

More information

Algorithm research of 3D point cloud registration based on iterative closest point 1

Algorithm research of 3D point cloud registration based on iterative closest point 1 Acta Technica 62, No. 3B/2017, 189 196 c 2017 Institute of Thermomechanics CAS, v.v.i. Algorithm research of 3D point cloud registration based on iterative closest point 1 Qian Gao 2, Yujian Wang 2,3,

More information

DIGITAL scanning devices are widely used to acquire

DIGITAL scanning devices are widely used to acquire IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. X, XXX/XXX 2010 1 Robust Feature-Preserving Mesh Denoising Based on Consistent Subneighborhoods Hanqi Fan, Yizhou Yu, and Qunsheng

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2009 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2009 3/4/2009 Recap Differential Geometry of Curves Andrew Nealen, Rutgers, 2009 3/4/2009

More information

Using Augmented Measurements to Improve the Convergence of ICP. Jacopo Serafin and Giorgio Grisetti

Using Augmented Measurements to Improve the Convergence of ICP. Jacopo Serafin and Giorgio Grisetti Jacopo Serafin and Giorgio Grisetti Point Cloud Registration We want to find the rotation and the translation that maximize the overlap between two point clouds Page 2 Point Cloud Registration We want

More information

A Comparison of Mesh Smoothing Methods

A Comparison of Mesh Smoothing Methods A Comparison of Mesh Smoothing Methods Alexander Belyaev Yutaka Ohtake Computer Graphics Group, Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany Phone: [+49](681)9325-408 Fax: [+49](681)9325-499

More information

MeshLab. Gianpaolo Palma

MeshLab. Gianpaolo Palma MeshLab Gianpaolo Palma MeshLab Version MeshLab 2016 http://www.meshlab.net/ Video Tutorial https://www.youtube.com/user/mrpmeshlabtutor ials MeshLab MeshLab doesn t have a undo. Please save your project

More information

Kernel-Based Laplacian Smoothing Method for 3D Mesh Denoising

Kernel-Based Laplacian Smoothing Method for 3D Mesh Denoising Kernel-Based Laplacian Smoothing Method for 3D Mesh Denoising Hicham Badri, Mohammed El Hassouni, Driss Aboutajdine To cite this version: Hicham Badri, Mohammed El Hassouni, Driss Aboutajdine. Kernel-Based

More information

A Multi-scale Approach to 3D Scattered Data Interpolation with Compactly Supported Basis Functions

A Multi-scale Approach to 3D Scattered Data Interpolation with Compactly Supported Basis Functions Shape Modeling International 2003 Seoul, Korea A Multi-scale Approach to 3D Scattered Data Interpolation with Compactly Supported Basis Functions Yutaa Ohtae Alexander Belyaev Hans-Peter Seidel Objective

More information

Math in image processing

Math in image processing Math in image processing Math in image processing Nyquist theorem Math in image processing Discrete Fourier Transformation Math in image processing Image enhancement: scaling Math in image processing Image

More information

Geometric Modeling. Mesh Decimation. Mesh Decimation. Applications. Copyright 2010 Gotsman, Pauly Page 1. Oversampled 3D scan data

Geometric Modeling. Mesh Decimation. Mesh Decimation. Applications. Copyright 2010 Gotsman, Pauly Page 1. Oversampled 3D scan data Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2 Copyright 2010 Gotsman, Pauly Page 1 Applications Overtessellation: E.g. iso-surface extraction 3 Applications Multi-resolution hierarchies

More information

Mesh Smoothing via Mean and Median Filtering Applied to Face Normals

Mesh Smoothing via Mean and Median Filtering Applied to Face Normals Mesh Smoothing via Mean and ing Applied to Face Normals Ý Hirokazu Yagou Yutaka Ohtake Ý Alexander G. Belyaev Ý Shape Modeling Lab, University of Aizu, Aizu-Wakamatsu 965-8580 Japan Computer Graphics Group,

More information

Surface Curvature Estimation for Edge Spinning Algorithm *

Surface Curvature Estimation for Edge Spinning Algorithm * Surface Curvature Estimation for Edge Spinning Algorithm * Martin Cermak and Vaclav Skala University of West Bohemia in Pilsen Department of Computer Science and Engineering Czech Republic {cermakm skala}@kiv.zcu.cz

More information

FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING (4) 20 STEPS OF NEW ALGORITHM WITH = 0:33 = 0:34 FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING (

FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING (4) 20 STEPS OF NEW ALGORITHM WITH = 0:33 = 0:34 FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING ( SMOOTH INTERPOLATION (2) ONE CONSTRAINT (x N C ) 1 = x 1 WRITE DESIRED CONSTRAINED SMOOTH SIGNAL x N AS SUM OF C UNCONSTRAINED SMOOTH SIGNAL x N = Fx (F = f(k) N ) PLUS SMOOTH DEFORMATION d 1 x N C = xn

More information

Deposited on: 1 st May 2012

Deposited on: 1 st May 2012 Xiang, G., Ju, X., and Holt, P. (2010) Automatic facial expression tracking for 4D range scans. In: 2010 International Conference on Computer Graphics and Virtual Reality, 12-15 July 2010, Las Vegas, Nevada,

More information

High-resolution Shape Reconstruction from Multiple Range Images based on Simultaneous Estimation of Surface and Motion

High-resolution Shape Reconstruction from Multiple Range Images based on Simultaneous Estimation of Surface and Motion High-resolution Shape Reconstruction from Multiple Range Images based on Simultaneous Estimation of Surface and Motion Yoshihiro Watanabe, Takashi Komuro and Masatoshi Ishikawa Graduate School of Information

More information

THE GEOMETRIC HEAT EQUATION AND SURFACE FAIRING

THE GEOMETRIC HEAT EQUATION AND SURFACE FAIRING THE GEOMETRIC HEAT EQUATION AN SURFACE FAIRING ANREW WILLIS BROWN UNIVERSITY, IVISION OF ENGINEERING, PROVIENCE, RI 02912, USA 1. INTROUCTION This paper concentrates on analysis and discussion of the heat

More information

Research Proposal: Computational Geometry with Applications on Medical Images

Research Proposal: Computational Geometry with Applications on Medical Images Research Proposal: Computational Geometry with Applications on Medical Images MEI-HENG YUEH yueh@nctu.edu.tw National Chiao Tung University 1 Introduction My research mainly focuses on the issues of computational

More information

Topology-Invariant Similarity and Diffusion Geometry

Topology-Invariant Similarity and Diffusion Geometry 1 Topology-Invariant Similarity and Diffusion Geometry Lecture 7 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Intrinsic

More information

An Application of Markov Random Fields to Range Sensing

An Application of Markov Random Fields to Range Sensing An Application of Markov Random Fields to Range Sensing James Diebel and Sebastian Thrun Stanford AI Lab Stanford University, Stanford, CA 94305 Abstract This paper describes a highly successful application

More information

Registration of Dynamic Range Images

Registration of Dynamic Range Images Registration of Dynamic Range Images Tan-Chi Ho 1,2 Jung-Hong Chuang 1 Wen-Wei Lin 2 Song-Sun Lin 2 1 Department of Computer Science National Chiao-Tung University 2 Department of Applied Mathematics National

More information

Scan Matching. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Scan Matching. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Scan Matching Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Scan Matching Overview Problem statement: Given a scan and a map, or a scan and a scan,

More information

As-Rigid-As-Possible Shape Manipulation

As-Rigid-As-Possible Shape Manipulation As-Rigid-As-Possible Shape Manipulation T. Igarashi 1, T. Mascovich 2 J. F. Hughes 3 1 The University of Tokyo 2 Brown University 3 PRESTO, JST SIGGRAPH 2005 Presented by: Prabin Bariya Interactive shape

More information

Filtering Images. Contents

Filtering Images. Contents Image Processing and Data Visualization with MATLAB Filtering Images Hansrudi Noser June 8-9, 010 UZH, Multimedia and Robotics Summer School Noise Smoothing Filters Sigmoid Filters Gradient Filters Contents

More information

GeoFilter: Geometric Selection of Mesh Filter Parameters

GeoFilter: Geometric Selection of Mesh Filter Parameters EUROGRAPHICS 5 / M. Alexa and J. Marks (Guest Editors) Volume 4 (5), Number 3 GeoFilter: Geometric Selection of Mesh Filter Parameters ByungMoon Kim Georgia Institute of Technology, Jarek Rossignac Atlanta,

More information

Motion Estimation. There are three main types (or applications) of motion estimation:

Motion Estimation. There are three main types (or applications) of motion estimation: Members: D91922016 朱威達 R93922010 林聖凱 R93922044 謝俊瑋 Motion Estimation There are three main types (or applications) of motion estimation: Parametric motion (image alignment) The main idea of parametric motion

More information

TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA

TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA Tomoki Hayashi, Francois de Sorbier and Hideo Saito Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku,

More information

Salient Critical Points for Meshes

Salient Critical Points for Meshes Salient Critical Points for Meshes Yu-Shen Liu Min Liu Daisuke Kihara Karthik Ramani Purdue University, West Lafayette, Indiana, USA (a) (b) (c) (d) Figure 1: Salient critical points (the blue, red, and

More information

Dynamic 2D/3D Registration for the Kinect

Dynamic 2D/3D Registration for the Kinect Dynamic 2D/3D Registration for the Kinect Sofien Bouaziz Mark Pauly École Polytechnique Fédérale de Lausanne Abstract Image and geometry registration algorithms are an essential component of many computer

More information

Mesh Editing with Poisson-Based Gradient Field Manipulation

Mesh Editing with Poisson-Based Gradient Field Manipulation Mesh Editing with Poisson-Based Gradient Field Manipulation Yizhou Yu Kun Zhou Dong Xu Xiaohan Shi Hujun Bao Baining Guo Heung-Yeung Shum University of Illinois at Urbana-Champaign Microsoft Research Asia

More information

Markov Random Fields on Triangle Meshes

Markov Random Fields on Triangle Meshes Downloaded from orbit.dtu.dk on: Jun 21, 2018 Markov Random Fields on Triangle Meshes Dahl, Vedrana Andersen; Aanæs, Henrik; Bærentzen, Jakob Andreas; Nielsen, Mads Published in: 18th International Conference

More information

Advanced Computer Graphics

Advanced Computer Graphics G22.2274 001, Fall 2009 Advanced Computer Graphics Project details and tools 1 Project Topics Computer Animation Geometric Modeling Computational Photography Image processing 2 Optimization All projects

More information

Geometry Representations with Unsupervised Feature Learning

Geometry Representations with Unsupervised Feature Learning Geometry Representations with Unsupervised Feature Learning Yeo-Jin Yoon 1, Alexander Lelidis 2, A. Cengiz Öztireli 3, Jung-Min Hwang 1, Markus Gross 3 and Soo-Mi Choi 1 1 Department of Computer Science

More information

Image Registration Lecture 4: First Examples

Image Registration Lecture 4: First Examples Image Registration Lecture 4: First Examples Prof. Charlene Tsai Outline Example Intensity-based registration SSD error function Image mapping Function minimization: Gradient descent Derivative calculation

More information

How does bilateral filter relates with other methods?

How does bilateral filter relates with other methods? A Gentle Introduction to Bilateral Filtering and its Applications How does bilateral filter relates with other methods? Fredo Durand (MIT CSAIL) Slides by Pierre Kornprobst (INRIA) 0:35 Many people worked

More information

VOLUME CONSERVATION OF 3D SURFACE TRIANGULAR MESH SMOOTHING

VOLUME CONSERVATION OF 3D SURFACE TRIANGULAR MESH SMOOTHING 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) E. Oñate, J. Oliver

More information